gecko-dev/dom/media/MediaDecoderStateMachine.cpp
Kaku Kuo 3ca20588a1 Bug 1309494 part 0 - make the seek operation at StateObject::HandleResumeVideoDecoding() observable; r=jwwang
So that the we can listen to the 'canplay' event in the videocontrols.xml.

MozReview-Commit-ID: 5T7akeC7EJq

--HG--
extra : rebase_source : c9f932e021fc7939dc8558813a1a974753a968ec
2017-03-13 18:01:42 +08:00

3931 lines
117 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif
#include <algorithm>
#include <stdint.h>
#include "gfx2DGlue.h"
#include "mediasink/AudioSinkWrapper.h"
#include "mediasink/DecodedAudioDataSink.h"
#include "mediasink/DecodedStream.h"
#include "mediasink/OutputStreamManager.h"
#include "mediasink/VideoSink.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/IndexSequence.h"
#include "mozilla/Logging.h"
#include "mozilla/mozalloc.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Preferences.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/SizePrintfMacros.h"
#include "mozilla/Sprintf.h"
#include "mozilla/TaskQueue.h"
#include "mozilla/Tuple.h"
#include "nsComponentManagerUtils.h"
#include "nsContentUtils.h"
#include "nsIEventTarget.h"
#include "nsITimer.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "nsDeque.h"
#include "prenv.h"
#include "AudioSegment.h"
#include "DOMMediaStream.h"
#include "ImageContainer.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "MediaDecoderReaderWrapper.h"
#include "MediaDecoderStateMachine.h"
#include "MediaShutdownManager.h"
#include "MediaPrefs.h"
#include "MediaTimer.h"
#include "TimeUnits.h"
#include "VideoSegment.h"
#include "VideoUtils.h"
#include "gfxPrefs.h"
namespace mozilla {
using namespace mozilla::dom;
using namespace mozilla::layers;
using namespace mozilla::media;
#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead
// avoid redefined macro in unified build
#undef FMT
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef SAMPLE_LOG
#undef DECODER_WARN
#undef SFMT
#undef SLOG
#undef SWARN
#define FMT(x, ...) "Decoder=%p " x, mDecoderID, ##__VA_ARGS__
#define DECODER_LOG(x, ...) MOZ_LOG(gMediaDecoderLog, LogLevel::Debug, (FMT(x, ##__VA_ARGS__)))
#define VERBOSE_LOG(x, ...) MOZ_LOG(gMediaDecoderLog, LogLevel::Verbose, (FMT(x, ##__VA_ARGS__)))
#define SAMPLE_LOG(x, ...) MOZ_LOG(gMediaSampleLog, LogLevel::Debug, (FMT(x, ##__VA_ARGS__)))
#define DECODER_WARN(x, ...) NS_WARNING(nsPrintfCString(FMT(x, ##__VA_ARGS__)).get())
// Used by StateObject and its sub-classes
#define SFMT(x, ...) "Decoder=%p state=%s " x, mMaster->mDecoderID, ToStateStr(GetState()), ##__VA_ARGS__
#define SLOG(x, ...) MOZ_LOG(gMediaDecoderLog, LogLevel::Debug, (SFMT(x, ##__VA_ARGS__)))
#define SWARN(x, ...) NS_WARNING(nsPrintfCString(SFMT(x, ##__VA_ARGS__)).get())
// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using these
// constants directly, so we put them in a namespace.
namespace detail {
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
static const int64_t AMPLE_AUDIO_USECS = 2000000;
} // namespace detail
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 2;
// Threshold in usecs that used to check if we are low on decoded video.
// If the last video frame's end time |mDecodedVideoEndTime| is more than
// |LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| after the current clock in
// Advanceframe(), the video decode is lagging, and we skip to next keyframe.
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 60000;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
namespace detail {
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_DATA_THRESHOLD_USECS is too small");
} // namespace detail
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 100000;
static int64_t DurationToUsecs(TimeDuration aDuration)
{
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
#ifdef MOZ_APPLEMEDIA
static const uint32_t HW_VIDEO_QUEUE_SIZE = 10;
#else
static const uint32_t HW_VIDEO_QUEUE_SIZE = 3;
#endif
static const uint32_t VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE = 9999;
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = HW_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueSendToCompositorSize =
VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE;
static void InitVideoQueuePrefs()
{
MOZ_ASSERT(NS_IsMainThread());
static bool sPrefInit = false;
if (!sPrefInit) {
sPrefInit = true;
sVideoQueueDefaultSize = Preferences::GetUint(
"media.video-queue.default-size", MAX_VIDEO_QUEUE_SIZE);
sVideoQueueHWAccelSize = Preferences::GetUint(
"media.video-queue.hw-accel-size", HW_VIDEO_QUEUE_SIZE);
sVideoQueueSendToCompositorSize = Preferences::GetUint(
"media.video-queue.send-to-compositor-size", VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE);
}
}
// Delay, in milliseconds, that tabs needs to be in background before video
// decoding is suspended.
static TimeDuration
SuspendBackgroundVideoDelay()
{
return TimeDuration::FromMilliseconds(
MediaPrefs::MDSMSuspendBackgroundVideoDelay());
}
class MediaDecoderStateMachine::StateObject
{
public:
virtual ~StateObject() { }
virtual void Exit() { } // Exit action.
virtual void Step() { } // Perform a 'cycle' of this state object.
virtual State GetState() const = 0;
// Event handlers for various events.
virtual void HandleCDMProxyReady() { }
virtual void HandleAudioCaptured() { }
virtual void HandleAudioDecoded(MediaData* aAudio)
{
Crash("Unexpected event!", __func__);
}
virtual void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart)
{
Crash("Unexpected event!", __func__);
}
virtual void HandleAudioWaited(MediaData::Type aType)
{
Crash("Unexpected event!", __func__);
}
virtual void HandleVideoWaited(MediaData::Type aType)
{
Crash("Unexpected event!", __func__);
}
virtual void HandleWaitingForAudio()
{
Crash("Unexpected event!", __func__);
}
virtual void HandleAudioCanceled()
{
Crash("Unexpected event!", __func__);
}
virtual void HandleEndOfAudio()
{
Crash("Unexpected event!", __func__);
}
virtual void HandleWaitingForVideo()
{
Crash("Unexpected event!", __func__);
}
virtual void HandleVideoCanceled()
{
Crash("Unexpected event!", __func__);
}
virtual void HandleEndOfVideo()
{
Crash("Unexpected event!", __func__);
}
virtual RefPtr<MediaDecoder::SeekPromise> HandleSeek(SeekTarget aTarget);
virtual RefPtr<ShutdownPromise> HandleShutdown();
virtual void HandleVideoSuspendTimeout() = 0;
virtual void HandleResumeVideoDecoding();
virtual void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) {}
virtual nsCString GetDebugInfo() { return nsCString(); }
private:
template <class S, typename R, typename... As>
auto ReturnTypeHelper(R(S::*)(As...)) -> R;
void Crash(const char* aReason, const char* aSite)
{
char buf[1024];
SprintfLiteral(buf, "%s state=%s callsite=%s", aReason,
ToStateStr(GetState()), aSite);
MOZ_ReportAssertionFailure(buf, __FILE__, __LINE__);
MOZ_CRASH();
}
protected:
enum class EventVisibility : int8_t
{
Observable,
Suppressed
};
using Master = MediaDecoderStateMachine;
explicit StateObject(Master* aPtr) : mMaster(aPtr) {}
TaskQueue* OwnerThread() const { return mMaster->mTaskQueue; }
MediaResource* Resource() const { return mMaster->mResource; }
MediaDecoderReaderWrapper* Reader() const { return mMaster->mReader; }
const MediaInfo& Info() const { return mMaster->Info(); }
bool IsExpectingMoreData() const
{
// We are expecting more data if either the resource states so, or if we
// have a waiting promise pending (such as with non-MSE EME).
return Resource()->IsExpectingMoreData()
|| mMaster->IsWaitingAudioData()
|| mMaster->IsWaitingVideoData();
}
MediaQueue<MediaData>& AudioQueue() const { return mMaster->mAudioQueue; }
MediaQueue<MediaData>& VideoQueue() const { return mMaster->mVideoQueue; }
template <class S, typename... Args, size_t... Indexes>
auto
CallEnterMemberFunction(S* aS,
Tuple<Args...>& aTuple,
IndexSequence<Indexes...>)
-> decltype(ReturnTypeHelper(&S::Enter))
{
return aS->Enter(Move(Get<Indexes>(aTuple))...);
}
// Note this function will delete the current state object.
// Don't access members to avoid UAF after this call.
template <class S, typename... Ts>
auto SetState(Ts&&... aArgs)
-> decltype(ReturnTypeHelper(&S::Enter))
{
// |aArgs| must be passed by reference to avoid passing MOZ_NON_PARAM class
// SeekJob by value. See bug 1287006 and bug 1338374. But we still *must*
// copy the parameters, because |Exit()| can modify them. See bug 1312321.
// So we 1) pass the parameters by reference, but then 2) immediately copy
// them into a Tuple to be safe against modification, and finally 3) move
// the elements of the Tuple into the final function call.
auto copiedArgs = MakeTuple(Forward<Ts>(aArgs)...);
// keep mMaster in a local object because mMaster will become invalid after
// the current state object is deleted.
auto master = mMaster;
auto* s = new S(master);
MOZ_ASSERT(GetState() != s->GetState()
|| GetState() == DECODER_STATE_SEEKING);
SLOG("change state to: %s", ToStateStr(s->GetState()));
Exit();
master->mStateObj.reset(s);
return CallEnterMemberFunction(s, copiedArgs,
typename IndexSequenceFor<Ts...>::Type());
}
RefPtr<MediaDecoder::SeekPromise>
SetSeekingState(SeekJob&& aSeekJob, EventVisibility aVisibility);
// Take a raw pointer in order not to change the life cycle of MDSM.
// It is guaranteed to be valid by MDSM.
Master* mMaster;
};
/**
* Purpose: decode metadata like duration and dimensions of the media resource.
*
* Transition to other states when decoding metadata is done:
* SHUTDOWN if failing to decode metadata.
* WAIT_FOR_CDM if the media is encrypted and CDM is not available.
* DECODING_FIRSTFRAME otherwise.
*/
class MediaDecoderStateMachine::DecodeMetadataState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit DecodeMetadataState(Master* aPtr) : StateObject(aPtr) { }
void Enter()
{
MOZ_ASSERT(!mMaster->mVideoDecodeSuspended);
MOZ_ASSERT(!mMetadataRequest.Exists());
SLOG("Dispatching AsyncReadMetadata");
// Set mode to METADATA since we are about to read metadata.
Resource()->SetReadMode(MediaCacheStream::MODE_METADATA);
// We disconnect mMetadataRequest in Exit() so it is fine to capture
// a raw pointer here.
Reader()->ReadMetadata()
->Then(OwnerThread(), __func__,
[this] (MetadataHolder* aMetadata) {
OnMetadataRead(aMetadata);
},
[this] (const MediaResult& aError) {
OnMetadataNotRead(aError);
})
->Track(mMetadataRequest);
}
void Exit() override
{
mMetadataRequest.DisconnectIfExists();
}
State GetState() const override
{
return DECODER_STATE_DECODING_METADATA;
}
RefPtr<MediaDecoder::SeekPromise> HandleSeek(SeekTarget aTarget) override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Can't seek while decoding metadata.");
return MediaDecoder::SeekPromise::CreateAndReject(true, __func__);
}
void HandleVideoSuspendTimeout() override
{
// Do nothing since no decoders are created yet.
}
void HandleResumeVideoDecoding() override
{
// We never suspend video decoding in this state.
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
private:
void OnMetadataRead(MetadataHolder* aMetadata);
void OnMetadataNotRead(const MediaResult& aError)
{
mMetadataRequest.Complete();
SWARN("Decode metadata failed, shutting down decoder");
mMaster->DecodeError(aError);
}
MozPromiseRequestHolder<MediaDecoderReader::MetadataPromise> mMetadataRequest;
};
/**
* Purpose: wait for the CDM to start decoding.
*
* Transition to other states when CDM is ready:
* SEEKING if any pending seek request.
* DECODING_FIRSTFRAME otherwise.
*/
class MediaDecoderStateMachine::WaitForCDMState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit WaitForCDMState(Master* aPtr) : StateObject(aPtr) { }
void Enter()
{
MOZ_ASSERT(!mMaster->mVideoDecodeSuspended);
}
void Exit() override
{
// mPendingSeek is either moved in HandleCDMProxyReady() or should be
// rejected here before transition to SHUTDOWN.
mPendingSeek.RejectIfExists(__func__);
}
State GetState() const override
{
return DECODER_STATE_WAIT_FOR_CDM;
}
void HandleCDMProxyReady() override;
RefPtr<MediaDecoder::SeekPromise> HandleSeek(SeekTarget aTarget) override
{
SLOG("Not Enough Data to seek at this stage, queuing seek");
mPendingSeek.RejectIfExists(__func__);
mPendingSeek.mTarget.emplace(aTarget);
return mPendingSeek.mPromise.Ensure(__func__);
}
void HandleVideoSuspendTimeout() override
{
// Do nothing since no decoders are created yet.
}
void HandleResumeVideoDecoding() override
{
// We never suspend video decoding in this state.
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
private:
SeekJob mPendingSeek;
};
/**
* Purpose: release decoder resources to save memory and hardware resources.
*
* Transition to:
* SEEKING if any seek request or play state changes to PLAYING.
*/
class MediaDecoderStateMachine::DormantState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit DormantState(Master* aPtr) : StateObject(aPtr) { }
void Enter()
{
if (mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
// Calculate the position to seek to when exiting dormant.
auto t = mMaster->mMediaSink->IsStarted() ? mMaster->GetClock()
: mMaster->GetMediaTime();
mPendingSeek.mTarget.emplace(t, SeekTarget::Accurate);
// SeekJob asserts |mTarget.IsValid() == !mPromise.IsEmpty()| so we
// need to create the promise even it is not used at all.
RefPtr<MediaDecoder::SeekPromise> x =
mPendingSeek.mPromise.Ensure(__func__);
mMaster->ResetDecode();
mMaster->StopMediaSink();
mMaster->mReader->ReleaseResources();
}
void Exit() override
{
// mPendingSeek is either moved when exiting dormant or
// should be rejected here before transition to SHUTDOWN.
mPendingSeek.RejectIfExists(__func__);
}
State GetState() const override
{
return DECODER_STATE_DORMANT;
}
void HandleVideoSuspendTimeout() override
{
// Do nothing since we've released decoders in Enter().
}
void HandleResumeVideoDecoding() override
{
// Do nothing since we won't resume decoding until exiting dormant.
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override;
private:
SeekJob mPendingSeek;
};
/**
* Purpose: decode the 1st audio and video frames to fire the 'loadeddata' event.
*
* Transition to:
* SHUTDOWN if any decode error.
* SEEKING if any seek request.
* DECODING when the 'loadeddata' event is fired.
*/
class MediaDecoderStateMachine::DecodingFirstFrameState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit DecodingFirstFrameState(Master* aPtr) : StateObject(aPtr) { }
void Enter();
void Exit() override
{
// mPendingSeek is either moved in MaybeFinishDecodeFirstFrame()
// or should be rejected here before transition to SHUTDOWN.
mPendingSeek.RejectIfExists(__func__);
}
State GetState() const override
{
return DECODER_STATE_DECODING_FIRSTFRAME;
}
void HandleAudioDecoded(MediaData* aAudio) override
{
mMaster->PushAudio(aAudio);
MaybeFinishDecodeFirstFrame();
}
void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart) override
{
mMaster->PushVideo(aVideo);
MaybeFinishDecodeFirstFrame();
}
void HandleWaitingForAudio() override
{
mMaster->WaitForData(MediaData::AUDIO_DATA);
}
void HandleAudioCanceled() override
{
mMaster->RequestAudioData();
}
void HandleEndOfAudio() override
{
AudioQueue().Finish();
MaybeFinishDecodeFirstFrame();
}
void HandleWaitingForVideo() override
{
mMaster->WaitForData(MediaData::VIDEO_DATA);
}
void HandleVideoCanceled() override
{
mMaster->RequestVideoData(false, media::TimeUnit());
}
void HandleEndOfVideo() override
{
VideoQueue().Finish();
MaybeFinishDecodeFirstFrame();
}
void HandleAudioWaited(MediaData::Type aType) override
{
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override
{
mMaster->RequestVideoData(false, media::TimeUnit());
}
void HandleVideoSuspendTimeout() override
{
// Do nothing for we need to decode the 1st video frame to get the
// dimensions.
}
void HandleResumeVideoDecoding() override
{
// We never suspend video decoding in this state.
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
RefPtr<MediaDecoder::SeekPromise> HandleSeek(SeekTarget aTarget) override
{
if (mMaster->mIsMSE) {
return StateObject::HandleSeek(aTarget);
}
// Delay seek request until decoding first frames for non-MSE media.
SLOG("Not Enough Data to seek at this stage, queuing seek");
mPendingSeek.RejectIfExists(__func__);
mPendingSeek.mTarget.emplace(aTarget);
return mPendingSeek.mPromise.Ensure(__func__);
}
private:
// Notify FirstFrameLoaded if having decoded first frames and
// transition to SEEKING if there is any pending seek, or DECODING otherwise.
void MaybeFinishDecodeFirstFrame();
SeekJob mPendingSeek;
};
/**
* Purpose: decode audio/video data for playback.
*
* Transition to:
* DORMANT if playback is paused for a while.
* SEEKING if any seek request.
* SHUTDOWN if any decode error.
* BUFFERING if playback can't continue due to lack of decoded data.
* COMPLETED when having decoded all audio/video data.
*/
class MediaDecoderStateMachine::DecodingState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit DecodingState(Master* aPtr)
: StateObject(aPtr)
, mDormantTimer(OwnerThread())
{
}
void Enter();
void Exit() override
{
if (!mDecodeStartTime.IsNull()) {
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
SLOG("Exiting DECODING, decoded for %.3lfs", decodeDuration.ToSeconds());
}
mDormantTimer.Reset();
mOnAudioPopped.DisconnectIfExists();
mOnVideoPopped.DisconnectIfExists();
}
void Step() override
{
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING
&& mMaster->IsPlaying()) {
// We're playing, but the element/decoder is in paused state. Stop
// playing!
mMaster->StopPlayback();
}
// Start playback if necessary so that the clock can be properly queried.
if (!mIsPrerolling) {
mMaster->MaybeStartPlayback();
}
mMaster->UpdatePlaybackPositionPeriodically();
MOZ_ASSERT(!mMaster->IsPlaying()
|| mMaster->IsStateMachineScheduled(),
"Must have timer scheduled");
MaybeStartBuffering();
}
State GetState() const override
{
return DECODER_STATE_DECODING;
}
void HandleAudioDecoded(MediaData* aAudio) override
{
mMaster->PushAudio(aAudio);
DispatchDecodeTasksIfNeeded();
MaybeStopPrerolling();
}
void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart) override
{
mMaster->PushVideo(aVideo);
DispatchDecodeTasksIfNeeded();
MaybeStopPrerolling();
CheckSlowDecoding(aDecodeStart);
}
void HandleAudioCanceled() override
{
mMaster->RequestAudioData();
}
void HandleVideoCanceled() override
{
mMaster->RequestVideoData(
NeedToSkipToNextKeyframe(),
media::TimeUnit::FromMicroseconds(mMaster->GetMediaTime()));
}
void HandleEndOfAudio() override;
void HandleEndOfVideo() override;
void HandleWaitingForAudio() override
{
mMaster->WaitForData(MediaData::AUDIO_DATA);
MaybeStopPrerolling();
}
void HandleWaitingForVideo() override
{
mMaster->WaitForData(MediaData::VIDEO_DATA);
MaybeStopPrerolling();
}
void HandleAudioWaited(MediaData::Type aType) override
{
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override
{
mMaster->RequestVideoData(
NeedToSkipToNextKeyframe(),
media::TimeUnit::FromMicroseconds(mMaster->GetMediaTime()));
}
void HandleAudioCaptured() override
{
MaybeStopPrerolling();
// MediaSink is changed. Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
void HandleVideoSuspendTimeout() override
{
// No video, so nothing to suspend.
if (!mMaster->HasVideo()) {
return;
}
mMaster->mVideoDecodeSuspended = true;
mMaster->mOnPlaybackEvent.Notify(MediaEventType::EnterVideoSuspend);
Reader()->SetVideoBlankDecode(true);
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override
{
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
// Try to dispatch decoding tasks for mMinimizePreroll might be reset.
DispatchDecodeTasksIfNeeded();
}
if (aPlayState == MediaDecoder::PLAY_STATE_PAUSED) {
StartDormantTimer();
} else {
mDormantTimer.Reset();
}
}
nsCString GetDebugInfo() override
{
return nsPrintfCString("mIsPrerolling=%d", mIsPrerolling);
}
private:
void DispatchDecodeTasksIfNeeded();
void EnsureAudioDecodeTaskQueued();
void EnsureVideoDecodeTaskQueued();
bool NeedToSkipToNextKeyframe();
void MaybeStartBuffering();
void CheckSlowDecoding(TimeStamp aDecodeStart)
{
// For non async readers, if the requested video sample was slow to
// arrive, increase the amount of audio we buffer to ensure that we
// don't run out of audio. This is unnecessary for async readers,
// since they decode audio and video on different threads so they
// are unlikely to run out of decoded audio.
if (Reader()->IsAsync()) {
return;
}
TimeDuration decodeTime = TimeStamp::Now() - aDecodeStart;
int64_t adjustedTime = THRESHOLD_FACTOR * DurationToUsecs(decodeTime);
if (adjustedTime > mMaster->mLowAudioThresholdUsecs
&& !mMaster->HasLowBufferedData())
{
mMaster->mLowAudioThresholdUsecs =
std::min(adjustedTime, mMaster->mAmpleAudioThresholdUsecs);
mMaster->mAmpleAudioThresholdUsecs =
std::max(THRESHOLD_FACTOR * mMaster->mLowAudioThresholdUsecs,
mMaster->mAmpleAudioThresholdUsecs);
SLOG("Slow video decode, set "
"mLowAudioThresholdUsecs=%" PRId64
" mAmpleAudioThresholdUsecs=%" PRId64,
mMaster->mLowAudioThresholdUsecs,
mMaster->mAmpleAudioThresholdUsecs);
}
}
bool DonePrerollingAudio()
{
return !mMaster->IsAudioDecoding()
|| mMaster->GetDecodedAudioDuration()
>= mMaster->AudioPrerollUsecs() * mMaster->mPlaybackRate;
}
bool DonePrerollingVideo()
{
return !mMaster->IsVideoDecoding()
|| static_cast<uint32_t>(mMaster->VideoQueue().GetSize())
>= mMaster->VideoPrerollFrames() * mMaster->mPlaybackRate + 1;
}
void MaybeStopPrerolling()
{
if (mIsPrerolling
&& (DonePrerollingAudio() || mMaster->IsWaitingAudioData())
&& (DonePrerollingVideo() || mMaster->IsWaitingVideoData())) {
mIsPrerolling = false;
// Check if we can start playback.
mMaster->ScheduleStateMachine();
}
}
void StartDormantTimer()
{
if (!mMaster->mMediaSeekable) {
// Don't enter dormant if the media is not seekable because we need to
// seek when exiting dormant.
return;
}
if (mMaster->mMinimizePreroll) {
SetState<DormantState>();
return;
}
auto timeout = MediaPrefs::DormantOnPauseTimeout();
if (timeout < 0) {
// Disabled when timeout is negative.
return;
} else if (timeout == 0) {
// Enter dormant immediately without scheduling a timer.
SetState<DormantState>();
return;
}
TimeStamp target = TimeStamp::Now() +
TimeDuration::FromMilliseconds(timeout);
mDormantTimer.Ensure(target,
[this] () {
mDormantTimer.CompleteRequest();
SetState<DormantState>();
}, [this] () {
mDormantTimer.CompleteRequest();
});
}
// Time at which we started decoding.
TimeStamp mDecodeStartTime;
// When we start decoding (either for the first time, or after a pause)
// we may be low on decoded data. We don't want our "low data" logic to
// kick in and decide that we're low on decoded data because the download
// can't keep up with the decode, and cause us to pause playback. So we
// have a "preroll" stage, where we ignore the results of our "low data"
// logic during the first few frames of our decode. This occurs during
// playback.
bool mIsPrerolling = true;
// Fired when playback is paused for a while to enter dormant.
DelayedScheduler mDormantTimer;
MediaEventListener mOnAudioPopped;
MediaEventListener mOnVideoPopped;
};
/**
* Purpose: seek to a particular new playback position.
*
* Transition to:
* SEEKING if any new seek request.
* SHUTDOWN if seek failed.
* COMPLETED if the new playback position is the end of the media resource.
* DECODING otherwise.
*/
class MediaDecoderStateMachine::SeekingState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit SeekingState(Master* aPtr) : StateObject(aPtr) { }
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility)
{
mSeekJob = Move(aSeekJob);
// Always switch off the blank decoder otherwise we might become visible
// in the middle of seeking and won't have a valid video frame to show
// when seek is done.
if (mMaster->mVideoDecodeSuspended) {
mMaster->mVideoDecodeSuspended = false;
mMaster->mOnPlaybackEvent.Notify(MediaEventType::ExitVideoSuspend);
Reader()->SetVideoBlankDecode(false);
}
// Don't stop playback for a video-only seek since audio is playing.
if (!mSeekJob.mTarget->IsVideoOnly()) {
mMaster->StopPlayback();
}
mMaster->UpdatePlaybackPositionInternal(
mSeekJob.mTarget->GetTime().ToMicroseconds());
if (aVisibility == EventVisibility::Observable) {
mMaster->mOnPlaybackEvent.Notify(MediaEventType::SeekStarted);
// We want dormant actions to be transparent to the user.
// So we only notify the change when the seek request is from the user.
mMaster->UpdateNextFrameStatus(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING);
}
DoSeek();
return mSeekJob.mPromise.Ensure(__func__);
}
virtual void Exit() override = 0;
State GetState() const override
{
return DECODER_STATE_SEEKING;
}
void HandleAudioDecoded(MediaData* aAudio) override = 0;
void HandleVideoDecoded(MediaData* aVideo,
TimeStamp aDecodeStart) override = 0;
void HandleAudioWaited(MediaData::Type aType) override = 0;
void HandleVideoWaited(MediaData::Type aType) override = 0;
void HandleVideoSuspendTimeout() override
{
// Do nothing since we want a valid video frame to show when seek is done.
}
void HandleResumeVideoDecoding() override
{
// We set mVideoDecodeSuspended to false in Enter().
MOZ_ASSERT(false, "Shouldn't have suspended video decoding.");
}
protected:
SeekJob mSeekJob;
void SeekCompleted();
private:
virtual void DoSeek() = 0;
virtual int64_t CalculateNewCurrentTime() const = 0;
};
class MediaDecoderStateMachine::AccurateSeekingState
: public MediaDecoderStateMachine::SeekingState
{
public:
explicit AccurateSeekingState(Master* aPtr) : SeekingState(aPtr)
{
}
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility)
{
MOZ_ASSERT(aSeekJob.mTarget->IsAccurate() || aSeekJob.mTarget->IsFast());
mCurrentTimeBeforeSeek =
TimeUnit::FromMicroseconds(mMaster->GetMediaTime());
return SeekingState::Enter(Move(aSeekJob), aVisibility);
}
void Exit() override
{
// Disconnect MediaDecoder.
mSeekJob.RejectIfExists(__func__);
// Disconnect MediaDecoderReaderWrapper.
mSeekRequest.DisconnectIfExists();
mWaitRequest.DisconnectIfExists();
}
void HandleAudioDecoded(MediaData* aAudio) override
{
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
MOZ_ASSERT(aAudio);
// Video-only seek doesn't reset audio decoder. There might be pending audio
// requests when AccurateSeekTask::Seek() begins. We will just store the
// data without checking |mDiscontinuity| or calling
// DropAudioUpToSeekTarget().
if (mSeekJob.mTarget->IsVideoOnly()) {
mMaster->PushAudio(aAudio);
return;
}
AdjustFastSeekIfNeeded(aAudio);
if (mSeekJob.mTarget->IsFast()) {
// Non-precise seek; we can stop the seek at the first sample.
mMaster->PushAudio(aAudio);
mDoneAudioSeeking = true;
} else {
nsresult rv = DropAudioUpToSeekTarget(aAudio->As<AudioData>());
if (NS_FAILED(rv)) {
mMaster->DecodeError(rv);
return;
}
}
if (!mDoneAudioSeeking) {
RequestAudioData();
return;
}
MaybeFinishSeek();
}
void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart) override
{
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
MOZ_ASSERT(aVideo);
AdjustFastSeekIfNeeded(aVideo);
if (mSeekJob.mTarget->IsFast()) {
// Non-precise seek. We can stop the seek at the first sample.
mMaster->PushVideo(aVideo);
mDoneVideoSeeking = true;
} else {
nsresult rv = DropVideoUpToSeekTarget(aVideo);
if (NS_FAILED(rv)) {
mMaster->DecodeError(rv);
return;
}
}
if (!mDoneVideoSeeking) {
RequestVideoData();
return;
}
MaybeFinishSeek();
}
void HandleWaitingForAudio() override
{
if (!mSeekJob.mTarget->IsVideoOnly()) {
MOZ_ASSERT(!mDoneAudioSeeking);
mMaster->WaitForData(MediaData::AUDIO_DATA);
}
}
void HandleAudioCanceled() override
{
if (!mSeekJob.mTarget->IsVideoOnly()) {
MOZ_ASSERT(!mDoneAudioSeeking);
RequestAudioData();
}
}
void HandleEndOfAudio() override
{
if (!mSeekJob.mTarget->IsVideoOnly()) {
MOZ_ASSERT(!mDoneAudioSeeking);
AudioQueue().Finish();
mDoneAudioSeeking = true;
MaybeFinishSeek();
}
}
void HandleWaitingForVideo() override
{
MOZ_ASSERT(!mDoneVideoSeeking);
mMaster->WaitForData(MediaData::VIDEO_DATA);
}
void HandleVideoCanceled() override
{
MOZ_ASSERT(!mDoneVideoSeeking);
RequestVideoData();
}
void HandleEndOfVideo() override
{
MOZ_ASSERT(!mDoneVideoSeeking);
if (mFirstVideoFrameAfterSeek) {
// Hit the end of stream. Move mFirstVideoFrameAfterSeek into
// mSeekedVideoData so we have something to display after seeking.
mMaster->PushVideo(mFirstVideoFrameAfterSeek);
}
VideoQueue().Finish();
mDoneVideoSeeking = true;
MaybeFinishSeek();
}
void HandleAudioWaited(MediaData::Type aType) override
{
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
// Ignore pending requests from video-only seek.
if (mSeekJob.mTarget->IsVideoOnly()) {
return;
}
RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override
{
MOZ_ASSERT(!mDoneAudioSeeking || !mDoneVideoSeeking,
"Seek shouldn't be finished");
RequestVideoData();
}
private:
void DemuxerSeek()
{
// Request the demuxer to perform seek.
Reader()->Seek(mSeekJob.mTarget.ref())
->Then(OwnerThread(), __func__,
[this] (const media::TimeUnit& aUnit) {
OnSeekResolved(aUnit);
},
[this] (const SeekRejectValue& aReject) {
OnSeekRejected(aReject);
})
->Track(mSeekRequest);
}
void DoSeek() override
{
mDoneAudioSeeking = !Info().HasAudio() || mSeekJob.mTarget->IsVideoOnly();
mDoneVideoSeeking = !Info().HasVideo();
if (mSeekJob.mTarget->IsVideoOnly()) {
mMaster->ResetDecode(TrackInfo::kVideoTrack);
} else {
mMaster->ResetDecode();
mMaster->StopMediaSink();
}
DemuxerSeek();
}
int64_t CalculateNewCurrentTime() const override
{
const int64_t seekTime = mSeekJob.mTarget->GetTime().ToMicroseconds();
// For the accurate seek, we always set the newCurrentTime = seekTime so
// that the updated HTMLMediaElement.currentTime will always be the seek
// target; we rely on the MediaSink to handles the gap between the
// newCurrentTime and the real decoded samples' start time.
if (mSeekJob.mTarget->IsAccurate()) {
return seekTime;
}
// For the fast seek, we update the newCurrentTime with the decoded audio
// and video samples, set it to be the one which is closet to the seekTime.
if (mSeekJob.mTarget->IsFast()) {
RefPtr<MediaData> audio = AudioQueue().PeekFront();
RefPtr<MediaData> video = VideoQueue().PeekFront();
// A situation that both audio and video approaches the end.
if (!audio && !video) {
return seekTime;
}
const int64_t audioStart = audio ? audio->mTime : INT64_MAX;
const int64_t videoStart = video ? video->mTime : INT64_MAX;
const int64_t audioGap = std::abs(audioStart - seekTime);
const int64_t videoGap = std::abs(videoStart - seekTime);
return audioGap <= videoGap ? audioStart : videoStart;
}
MOZ_ASSERT(false, "AccurateSeekTask doesn't handle other seek types.");
return 0;
}
void OnSeekResolved(media::TimeUnit)
{
mSeekRequest.Complete();
// We must decode the first samples of active streams, so we can determine
// the new stream time. So dispatch tasks to do that.
if (!mDoneVideoSeeking) {
RequestVideoData();
}
if (!mDoneAudioSeeking) {
RequestAudioData();
}
}
void OnSeekRejected(const SeekRejectValue& aReject)
{
mSeekRequest.Complete();
if (aReject.mError == NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA) {
SLOG("OnSeekRejected reason=WAITING_FOR_DATA type=%d", aReject.mType);
MOZ_ASSERT(!mMaster->IsRequestingAudioData());
MOZ_ASSERT(!mMaster->IsRequestingVideoData());
MOZ_ASSERT(!mMaster->IsWaitingAudioData());
MOZ_ASSERT(!mMaster->IsWaitingVideoData());
// Fire 'waiting' to notify the player that we are waiting for data.
mMaster->UpdateNextFrameStatus(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING);
Reader()
->WaitForData(aReject.mType)
->Then(OwnerThread(), __func__,
[this](MediaData::Type aType) {
SLOG("OnSeekRejected wait promise resolved");
mWaitRequest.Complete();
DemuxerSeek();
},
[this](const WaitForDataRejectValue& aRejection) {
SLOG("OnSeekRejected wait promise rejected");
mWaitRequest.Complete();
mMaster->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})
->Track(mWaitRequest);
return;
}
MOZ_ASSERT(NS_FAILED(aReject.mError),
"Cancels should also disconnect mSeekRequest");
mMaster->DecodeError(aReject.mError);
}
void RequestAudioData()
{
MOZ_ASSERT(!mDoneAudioSeeking);
mMaster->RequestAudioData();
}
void RequestVideoData()
{
MOZ_ASSERT(!mDoneVideoSeeking);
mMaster->RequestVideoData(false, media::TimeUnit());
}
void AdjustFastSeekIfNeeded(MediaData* aSample)
{
if (mSeekJob.mTarget->IsFast()
&& mSeekJob.mTarget->GetTime() > mCurrentTimeBeforeSeek
&& aSample->mTime < mCurrentTimeBeforeSeek.ToMicroseconds()) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mSeekJob.mTarget->SetType(SeekTarget::Accurate);
}
}
nsresult DropAudioUpToSeekTarget(AudioData* aAudio)
{
MOZ_ASSERT(aAudio && mSeekJob.mTarget->IsAccurate());
CheckedInt64 sampleDuration =
FramesToUsecs(aAudio->mFrames, Info().mAudio.mRate);
if (!sampleDuration.isValid()) {
return NS_ERROR_DOM_MEDIA_OVERFLOW_ERR;
}
if (aAudio->mTime + sampleDuration.value()
<= mSeekJob.mTarget->GetTime().ToMicroseconds()) {
// Our seek target lies after the frames in this AudioData. Don't
// push it onto the audio queue, and keep decoding forwards.
return NS_OK;
}
if (aAudio->mTime > mSeekJob.mTarget->GetTime().ToMicroseconds()) {
// The seek target doesn't lie in the audio block just after the last
// audio frames we've seen which were before the seek target. This
// could have been the first audio data we've seen after seek, i.e. the
// seek terminated after the seek target in the audio stream. Just
// abort the audio decode-to-target, the state machine will play
// silence to cover the gap. Typically this happens in poorly muxed
// files.
SWARN("Audio not synced after seek, maybe a poorly muxed file?");
mMaster->PushAudio(aAudio);
mDoneAudioSeeking = true;
return NS_OK;
}
// The seek target lies somewhere in this AudioData's frames, strip off
// any frames which lie before the seek target, so we'll begin playback
// exactly at the seek target.
NS_ASSERTION(mSeekJob.mTarget->GetTime().ToMicroseconds() >= aAudio->mTime,
"Target must at or be after data start.");
NS_ASSERTION(mSeekJob.mTarget->GetTime().ToMicroseconds()
< aAudio->mTime + sampleDuration.value(),
"Data must end after target.");
CheckedInt64 framesToPrune = UsecsToFrames(
mSeekJob.mTarget->GetTime().ToMicroseconds() - aAudio->mTime,
Info().mAudio.mRate);
if (!framesToPrune.isValid()) {
return NS_ERROR_DOM_MEDIA_OVERFLOW_ERR;
}
if (framesToPrune.value() > aAudio->mFrames) {
// We've messed up somehow. Don't try to trim frames, the |frames|
// variable below will overflow.
SWARN("Can't prune more frames that we have!");
return NS_ERROR_FAILURE;
}
uint32_t frames =
aAudio->mFrames - static_cast<uint32_t>(framesToPrune.value());
uint32_t channels = aAudio->mChannels;
AlignedAudioBuffer audioData(frames * channels);
if (!audioData) {
return NS_ERROR_OUT_OF_MEMORY;
}
memcpy(audioData.get(),
aAudio->mAudioData.get() + (framesToPrune.value() * channels),
frames * channels * sizeof(AudioDataValue));
CheckedInt64 duration = FramesToUsecs(frames, Info().mAudio.mRate);
if (!duration.isValid()) {
return NS_ERROR_DOM_MEDIA_OVERFLOW_ERR;
}
RefPtr<AudioData> data(new AudioData(
aAudio->mOffset, mSeekJob.mTarget->GetTime().ToMicroseconds(),
duration.value(), frames, Move(audioData), channels, aAudio->mRate));
MOZ_ASSERT(AudioQueue().GetSize() == 0,
"Should be the 1st sample after seeking");
mMaster->PushAudio(data);
mDoneAudioSeeking = true;
return NS_OK;
}
nsresult DropVideoUpToSeekTarget(MediaData* aSample)
{
RefPtr<VideoData> video(aSample->As<VideoData>());
MOZ_ASSERT(video);
SLOG("DropVideoUpToSeekTarget() frame [%" PRId64 ", %" PRId64 "]",
video->mTime, video->GetEndTime());
const int64_t target = mSeekJob.mTarget->GetTime().ToMicroseconds();
// If the frame end time is less than the seek target, we won't want
// to display this frame after the seek, so discard it.
if (target >= video->GetEndTime()) {
SLOG("DropVideoUpToSeekTarget() pop video frame [%" PRId64 ", %" PRId64 "] target=%" PRId64,
video->mTime, video->GetEndTime(), target);
mFirstVideoFrameAfterSeek = video;
} else {
if (target >= video->mTime && video->GetEndTime() >= target) {
// The seek target lies inside this frame's time slice. Adjust the
// frame's start time to match the seek target.
video->UpdateTimestamp(target);
}
mFirstVideoFrameAfterSeek = nullptr;
SLOG("DropVideoUpToSeekTarget() found video frame [%" PRId64 ", %" PRId64 "] "
"containing target=%" PRId64,
video->mTime, video->GetEndTime(), target);
MOZ_ASSERT(VideoQueue().GetSize() == 0,
"Should be the 1st sample after seeking");
mMaster->PushVideo(video);
mDoneVideoSeeking = true;
}
return NS_OK;
}
void MaybeFinishSeek()
{
if (mDoneAudioSeeking && mDoneVideoSeeking) {
SeekCompleted();
}
}
/*
* Track the current seek promise made by the reader.
*/
MozPromiseRequestHolder<MediaDecoderReader::SeekPromise> mSeekRequest;
/*
* Internal state.
*/
media::TimeUnit mCurrentTimeBeforeSeek;
bool mDoneAudioSeeking = false;
bool mDoneVideoSeeking = false;
MozPromiseRequestHolder<WaitForDataPromise> mWaitRequest;
// This temporarily stores the first frame we decode after we seek.
// This is so that if we hit end of stream while we're decoding to reach
// the seek target, we will still have a frame that we can display as the
// last frame in the media.
RefPtr<MediaData> mFirstVideoFrameAfterSeek;
};
/*
* Remove samples from the queue until aCompare() returns false.
* aCompare A function object with the signature bool(int64_t) which returns
* true for samples that should be removed.
*/
template <typename Function> static void
DiscardFrames(MediaQueue<MediaData>& aQueue, const Function& aCompare)
{
while(aQueue.GetSize() > 0) {
if (aCompare(aQueue.PeekFront()->mTime)) {
RefPtr<MediaData> releaseMe = aQueue.PopFront();
continue;
}
break;
}
}
class MediaDecoderStateMachine::NextFrameSeekingState
: public MediaDecoderStateMachine::SeekingState
{
public:
explicit NextFrameSeekingState(Master* aPtr) : SeekingState(aPtr)
{
}
RefPtr<MediaDecoder::SeekPromise> Enter(SeekJob&& aSeekJob,
EventVisibility aVisibility)
{
MOZ_ASSERT(aSeekJob.mTarget->IsNextFrame());
mCurrentTime = mMaster->GetMediaTime();
mDuration = mMaster->Duration();
return SeekingState::Enter(Move(aSeekJob), aVisibility);
}
void Exit() override
{
// Disconnect my async seek operation.
mAsyncSeekTask->Cancel();
// Disconnect MediaDecoder.
mSeekJob.RejectIfExists(__func__);
}
private:
void DoSeekInternal()
{
auto currentTime = mCurrentTime;
DiscardFrames(VideoQueue(), [currentTime] (int64_t aSampleTime) {
return aSampleTime <= currentTime;
});
if (!NeedMoreVideo()) {
FinishSeek();
} else if (!mMaster->IsRequestingVideoData()
&& !mMaster->IsWaitingVideoData()) {
RequestVideoData();
}
}
class AysncNextFrameSeekTask : public Runnable
{
public:
explicit AysncNextFrameSeekTask(NextFrameSeekingState* aStateObject)
: mStateObj(aStateObject)
{
}
void Cancel() { mStateObj = nullptr; }
NS_IMETHOD Run() override
{
if (mStateObj) {
mStateObj->DoSeekInternal();
}
return NS_OK;
}
private:
NextFrameSeekingState* mStateObj;
};
void DoSeek() override
{
// We need to do the seek operation asynchronously. Because for a special
// case (bug504613.ogv) which has no data at all, the 1st seekToNextFrame()
// operation reaches to the end of the media. If we did the seek operation
// synchronously, we immediately resolve the SeekPromise in mSeekJob and
// then switch to the CompletedState which dispatches an "ended" event.
// However, the ThenValue of the SeekPromise has not yet been set, so the
// promise resolving is postponed and then the JS developer receives the
// "ended" event before the seek promise is resolved.
// An asynchronous seek operation helps to solve this issue since while the
// seek is actually performed, the ThenValue of SeekPromise has already
// been set so that it won't be postponed.
RefPtr<Runnable> r = mAsyncSeekTask = new AysncNextFrameSeekTask(this);
OwnerThread()->Dispatch(r.forget());
}
void HandleAudioDecoded(MediaData* aAudio) override
{
mMaster->PushAudio(aAudio);
}
void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart) override
{
MOZ_ASSERT(aVideo);
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
if (aVideo->mTime > mCurrentTime) {
mMaster->PushVideo(aVideo);
FinishSeek();
} else {
RequestVideoData();
}
}
void HandleWaitingForAudio() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleAudioCanceled() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleEndOfAudio() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
// We don't care about audio decode errors in this state which will be
// handled by other states after seeking.
}
void HandleWaitingForVideo() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
mMaster->WaitForData(MediaData::VIDEO_DATA);
}
void HandleVideoCanceled() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
RequestVideoData();
}
void HandleEndOfVideo() override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
VideoQueue().Finish();
FinishSeek();
}
void HandleAudioWaited(MediaData::Type aType) override
{
// We don't care about audio in this state.
}
void HandleVideoWaited(MediaData::Type aType) override
{
MOZ_ASSERT(!mSeekJob.mPromise.IsEmpty(), "Seek shouldn't be finished");
MOZ_ASSERT(NeedMoreVideo());
RequestVideoData();
}
int64_t CalculateNewCurrentTime() const override
{
// The HTMLMediaElement.currentTime should be updated to the seek target
// which has been updated to the next frame's time.
return mSeekJob.mTarget->GetTime().ToMicroseconds();
}
void RequestVideoData()
{
mMaster->RequestVideoData(false, media::TimeUnit());
}
bool NeedMoreVideo() const
{
// Need to request video when we have none and video queue is not finished.
return VideoQueue().GetSize() == 0
&& !VideoQueue().IsFinished();
}
// Update the seek target's time before resolving this seek task, the updated
// time will be used in the MDSM::SeekCompleted() to update the MDSM's
// position.
void UpdateSeekTargetTime()
{
RefPtr<MediaData> data = VideoQueue().PeekFront();
if (data) {
mSeekJob.mTarget->SetTime(TimeUnit::FromMicroseconds(data->mTime));
} else {
MOZ_ASSERT(VideoQueue().AtEndOfStream());
mSeekJob.mTarget->SetTime(mDuration);
}
}
void FinishSeek()
{
MOZ_ASSERT(!NeedMoreVideo());
UpdateSeekTargetTime();
auto time = mSeekJob.mTarget->GetTime().ToMicroseconds();
DiscardFrames(AudioQueue(), [time] (int64_t aSampleTime) {
return aSampleTime < time;
});
SeekCompleted();
}
/*
* Internal state.
*/
int64_t mCurrentTime;
media::TimeUnit mDuration;
RefPtr<AysncNextFrameSeekTask> mAsyncSeekTask;
};
/**
* Purpose: stop playback until enough data is decoded to continue playback.
*
* Transition to:
* SEEKING if any seek request.
* SHUTDOWN if any decode error.
* COMPLETED when having decoded all audio/video data.
* DECODING when having decoded enough data to continue playback.
*/
class MediaDecoderStateMachine::BufferingState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit BufferingState(Master* aPtr) : StateObject(aPtr) { }
void Enter()
{
if (mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
mBufferingStart = TimeStamp::Now();
MediaStatistics stats = mMaster->GetStatistics();
SLOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
stats.mPlaybackRate / 1024,
stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate / 1024,
stats.mDownloadRateReliable ? "" : " (unreliable)");
mMaster->ScheduleStateMachineIn(USECS_PER_S);
mMaster->UpdateNextFrameStatus(
MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING);
}
void Step() override;
State GetState() const override
{
return DECODER_STATE_BUFFERING;
}
void HandleAudioDecoded(MediaData* aAudio) override
{
// This might be the sample we need to exit buffering.
// Schedule Step() to check it.
mMaster->PushAudio(aAudio);
mMaster->ScheduleStateMachine();
}
void HandleVideoDecoded(MediaData* aVideo, TimeStamp aDecodeStart) override
{
// This might be the sample we need to exit buffering.
// Schedule Step() to check it.
mMaster->PushVideo(aVideo);
mMaster->ScheduleStateMachine();
}
void HandleAudioCanceled() override
{
mMaster->RequestAudioData();
}
void HandleVideoCanceled() override
{
mMaster->RequestVideoData(false, media::TimeUnit());
}
void HandleWaitingForAudio() override
{
mMaster->WaitForData(MediaData::AUDIO_DATA);
}
void HandleWaitingForVideo() override
{
mMaster->WaitForData(MediaData::VIDEO_DATA);
}
void HandleAudioWaited(MediaData::Type aType) override
{
mMaster->RequestAudioData();
}
void HandleVideoWaited(MediaData::Type aType) override
{
mMaster->RequestVideoData(false, media::TimeUnit());
}
void HandleEndOfAudio() override;
void HandleEndOfVideo() override;
void HandleVideoSuspendTimeout() override
{
// No video, so nothing to suspend.
if (!mMaster->HasVideo()) {
return;
}
mMaster->mVideoDecodeSuspended = true;
mMaster->mOnPlaybackEvent.Notify(MediaEventType::EnterVideoSuspend);
Reader()->SetVideoBlankDecode(true);
}
private:
void DispatchDecodeTasksIfNeeded();
TimeStamp mBufferingStart;
// The maximum number of second we spend buffering when we are short on
// unbuffered data.
const uint32_t mBufferingWait = 15;
};
/**
* Purpose: play all the decoded data and fire the 'ended' event.
*
* Transition to:
* SEEKING if any seek request.
*/
class MediaDecoderStateMachine::CompletedState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit CompletedState(Master* aPtr) : StateObject(aPtr) { }
void Enter()
{
// We've decoded all samples. We don't need decoders anymore.
Reader()->ReleaseResources();
bool hasNextFrame = (!mMaster->HasAudio() || !mMaster->mAudioCompleted)
&& (!mMaster->HasVideo() || !mMaster->mVideoCompleted);
mMaster->UpdateNextFrameStatus(
hasNextFrame ? MediaDecoderOwner::NEXT_FRAME_AVAILABLE
: MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE);
Step();
}
void Exit() override
{
mSentPlaybackEndedEvent = false;
}
void Step() override
{
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING
&& mMaster->IsPlaying()) {
mMaster->StopPlayback();
}
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if ((mMaster->HasVideo() && !mMaster->mVideoCompleted)
|| (mMaster->HasAudio() && !mMaster->mAudioCompleted)) {
// Start playback if necessary to play the remaining media.
mMaster->MaybeStartPlayback();
mMaster->UpdatePlaybackPositionPeriodically();
MOZ_ASSERT(!mMaster->IsPlaying()
|| mMaster->IsStateMachineScheduled(),
"Must have timer scheduled");
return;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
mMaster->StopPlayback();
if (!mSentPlaybackEndedEvent) {
int64_t clockTime =
std::max(mMaster->AudioEndTime(), mMaster->VideoEndTime());
clockTime = std::max(
int64_t(0), std::max(clockTime, mMaster->Duration().ToMicroseconds()));
mMaster->UpdatePlaybackPosition(clockTime);
// Ensure readyState is updated before firing the 'ended' event.
mMaster->UpdateNextFrameStatus(MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE);
mMaster->mOnPlaybackEvent.Notify(MediaEventType::PlaybackEnded);
mSentPlaybackEndedEvent = true;
// MediaSink::GetEndTime() must be called before stopping playback.
mMaster->StopMediaSink();
}
}
State GetState() const override
{
return DECODER_STATE_COMPLETED;
}
void HandleAudioCaptured() override
{
// MediaSink is changed. Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
void HandleVideoSuspendTimeout() override
{
// Do nothing since no decoding is going on.
}
void HandlePlayStateChanged(MediaDecoder::PlayState aPlayState) override
{
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Schedule Step() to check if we can start playback.
mMaster->ScheduleStateMachine();
}
}
private:
bool mSentPlaybackEndedEvent = false;
};
/**
* Purpose: release all resources allocated by MDSM.
*
* Transition to:
* None since this is the final state.
*
* Transition from:
* Any states other than SHUTDOWN.
*/
class MediaDecoderStateMachine::ShutdownState
: public MediaDecoderStateMachine::StateObject
{
public:
explicit ShutdownState(Master* aPtr) : StateObject(aPtr) { }
RefPtr<ShutdownPromise> Enter();
void Exit() override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Shouldn't escape the SHUTDOWN state.");
}
State GetState() const override
{
return DECODER_STATE_SHUTDOWN;
}
RefPtr<MediaDecoder::SeekPromise> HandleSeek(SeekTarget aTarget) override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Can't seek in shutdown state.");
return MediaDecoder::SeekPromise::CreateAndReject(true, __func__);
}
RefPtr<ShutdownPromise> HandleShutdown() override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
return nullptr;
}
void HandleVideoSuspendTimeout() override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
}
void HandleResumeVideoDecoding() override
{
MOZ_DIAGNOSTIC_ASSERT(false, "Already shutting down.");
}
};
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::
StateObject::HandleSeek(SeekTarget aTarget)
{
SLOG("Changed state to SEEKING (to %" PRId64 ")", aTarget.GetTime().ToMicroseconds());
SeekJob seekJob;
seekJob.mTarget = Some(aTarget);
return SetSeekingState(Move(seekJob), EventVisibility::Observable);
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::
StateObject::HandleShutdown()
{
return SetState<ShutdownState>();
}
static void
ReportRecoveryTelemetry(const TimeStamp& aRecoveryStart,
const MediaInfo& aMediaInfo,
bool aIsHardwareAccelerated)
{
MOZ_ASSERT(NS_IsMainThread());
if (!aMediaInfo.HasVideo()) {
return;
}
// Keyed by audio+video or video alone, hardware acceleration,
// and by a resolution range.
nsCString key(aMediaInfo.HasAudio() ? "AV" : "V");
key.AppendASCII(aIsHardwareAccelerated ? "(hw)," : ",");
static const struct { int32_t mH; const char* mRes; } sResolutions[] = {
{ 240, "0-240" },
{ 480, "241-480" },
{ 720, "481-720" },
{ 1080, "721-1080" },
{ 2160, "1081-2160" }
};
const char* resolution = "2161+";
int32_t height = aMediaInfo.mVideo.mImage.height;
for (const auto& res : sResolutions) {
if (height <= res.mH) {
resolution = res.mRes;
break;
}
}
key.AppendASCII(resolution);
TimeDuration duration = TimeStamp::Now() - aRecoveryStart;
double duration_ms = duration.ToMilliseconds();
Telemetry::Accumulate(Telemetry::VIDEO_SUSPEND_RECOVERY_TIME_MS,
key,
uint32_t(duration_ms + 0.5));
Telemetry::Accumulate(Telemetry::VIDEO_SUSPEND_RECOVERY_TIME_MS,
NS_LITERAL_CSTRING("All"),
uint32_t(duration_ms + 0.5));
}
void
MediaDecoderStateMachine::
StateObject::HandleResumeVideoDecoding()
{
MOZ_ASSERT(mMaster->mVideoDecodeSuspended);
// Start counting recovery time from right now.
TimeStamp start = TimeStamp::Now();
// Local reference to mInfo, so that it will be copied in the lambda below.
auto& info = Info();
bool hw = Reader()->VideoIsHardwareAccelerated();
// Start video-only seek to the current time.
SeekJob seekJob;
const SeekTarget::Type type = mMaster->HasAudio()
? SeekTarget::Type::Accurate
: SeekTarget::Type::PrevSyncPoint;
seekJob.mTarget.emplace(mMaster->GetMediaTime(),
type,
true /* aVideoOnly */);
// Hold mMaster->mAbstractMainThread here because this->mMaster will be
// invalid after the current state object is deleted in SetState();
RefPtr<AbstractThread> mainThread = mMaster->mAbstractMainThread;
SetSeekingState(Move(seekJob), EventVisibility::Observable)->Then(
mainThread, __func__,
[start, info, hw](){ ReportRecoveryTelemetry(start, info, hw); },
[](){});
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::
StateObject::SetSeekingState(SeekJob&& aSeekJob, EventVisibility aVisibility)
{
if (aSeekJob.mTarget->IsAccurate() || aSeekJob.mTarget->IsFast()) {
return SetState<AccurateSeekingState>(Move(aSeekJob), aVisibility);
}
if (aSeekJob.mTarget->IsNextFrame()) {
return SetState<NextFrameSeekingState>(Move(aSeekJob), aVisibility);
}
MOZ_ASSERT_UNREACHABLE("Unknown SeekTarget::Type.");
return nullptr;
}
void
MediaDecoderStateMachine::
DecodeMetadataState::OnMetadataRead(MetadataHolder* aMetadata)
{
mMetadataRequest.Complete();
// Set mode to PLAYBACK after reading metadata.
Resource()->SetReadMode(MediaCacheStream::MODE_PLAYBACK);
mMaster->mInfo.emplace(aMetadata->mInfo);
mMaster->mMetadataTags = aMetadata->mTags.forget();
mMaster->mMediaSeekable = Info().mMediaSeekable;
mMaster->mMediaSeekableOnlyInBufferedRanges =
Info().mMediaSeekableOnlyInBufferedRanges;
if (Info().mMetadataDuration.isSome()) {
mMaster->RecomputeDuration();
} else if (Info().mUnadjustedMetadataEndTime.isSome()) {
const TimeUnit unadjusted = Info().mUnadjustedMetadataEndTime.ref();
const TimeUnit adjustment = Info().mStartTime;
mMaster->mInfo->mMetadataDuration.emplace(unadjusted - adjustment);
mMaster->RecomputeDuration();
}
// If we don't know the duration by this point, we assume infinity, per spec.
if (mMaster->mDuration.Ref().isNothing()) {
mMaster->mDuration = Some(TimeUnit::FromInfinity());
}
if (mMaster->HasVideo()) {
SLOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
Reader()->IsAsync(),
Reader()->VideoIsHardwareAccelerated(),
mMaster->GetAmpleVideoFrames());
}
MOZ_ASSERT(mMaster->mDuration.Ref().isSome());
mMaster->EnqueueLoadedMetadataEvent();
if (Info().IsEncrypted() && !mMaster->mCDMProxy) {
// Metadata parsing was successful but we're still waiting for CDM caps
// to become available so that we can build the correct decryptor/decoder.
SetState<WaitForCDMState>();
} else {
SetState<DecodingFirstFrameState>();
}
}
void
MediaDecoderStateMachine::
DormantState::HandlePlayStateChanged(MediaDecoder::PlayState aPlayState)
{
if (aPlayState == MediaDecoder::PLAY_STATE_PLAYING) {
// Exit dormant when the user wants to play.
MOZ_ASSERT(!Info().IsEncrypted() || mMaster->mCDMProxy);
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
SetSeekingState(Move(mPendingSeek), EventVisibility::Suppressed);
}
}
void
MediaDecoderStateMachine::
WaitForCDMState::HandleCDMProxyReady()
{
if (mPendingSeek.Exists()) {
SetSeekingState(Move(mPendingSeek), EventVisibility::Observable);
} else {
SetState<DecodingFirstFrameState>();
}
}
void
MediaDecoderStateMachine::
DecodingFirstFrameState::Enter()
{
// Transition to DECODING if we've decoded first frames.
if (mMaster->mSentFirstFrameLoadedEvent) {
SetState<DecodingState>();
return;
}
MOZ_ASSERT(!mMaster->mVideoDecodeSuspended);
// Dispatch tasks to decode first frames.
if (mMaster->HasAudio()) {
mMaster->RequestAudioData();
}
if (mMaster->HasVideo()) {
mMaster->RequestVideoData(false, media::TimeUnit());
}
}
void
MediaDecoderStateMachine::
DecodingFirstFrameState::MaybeFinishDecodeFirstFrame()
{
MOZ_ASSERT(!mMaster->mSentFirstFrameLoadedEvent);
if ((mMaster->IsAudioDecoding() && AudioQueue().GetSize() == 0)
|| (mMaster->IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return;
}
mMaster->FinishDecodeFirstFrame();
if (mPendingSeek.Exists()) {
SetSeekingState(Move(mPendingSeek), EventVisibility::Observable);
} else {
SetState<DecodingState>();
}
}
void
MediaDecoderStateMachine::
DecodingState::Enter()
{
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
if (mMaster->mVideoDecodeMode == VideoDecodeMode::Suspend
&& !mMaster->mVideoDecodeSuspendTimer.IsScheduled()
&& !mMaster->mVideoDecodeSuspended) {
// If the VideoDecodeMode is Suspend and the timer is not schedule, it means
// the timer has timed out and we should suspend video decoding now if
// necessary.
HandleVideoSuspendTimeout();
}
if (!mMaster->IsVideoDecoding() && !mMaster->IsAudioDecoding()) {
SetState<CompletedState>();
return;
}
mOnAudioPopped = AudioQueue().PopEvent().Connect(
OwnerThread(), [this] () {
if (mMaster->IsAudioDecoding() && !mMaster->HaveEnoughDecodedAudio()) {
EnsureAudioDecodeTaskQueued();
}
});
mOnVideoPopped = VideoQueue().PopEvent().Connect(
OwnerThread(), [this] () {
if (mMaster->IsVideoDecoding() && !mMaster->HaveEnoughDecodedVideo()) {
EnsureVideoDecodeTaskQueued();
}
});
mMaster->UpdateNextFrameStatus(MediaDecoderOwner::NEXT_FRAME_AVAILABLE);
mDecodeStartTime = TimeStamp::Now();
MaybeStopPrerolling();
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
mMaster->ScheduleStateMachine();
// Will enter dormant when playback is paused for a while.
if (mMaster->mPlayState == MediaDecoder::PLAY_STATE_PAUSED) {
StartDormantTimer();
}
}
void
MediaDecoderStateMachine::
DecodingState::HandleEndOfAudio()
{
AudioQueue().Finish();
if (!mMaster->IsVideoDecoding()) {
SetState<CompletedState>();
} else {
MaybeStopPrerolling();
}
}
void
MediaDecoderStateMachine::
DecodingState::HandleEndOfVideo()
{
VideoQueue().Finish();
if (!mMaster->IsAudioDecoding()) {
SetState<CompletedState>();
} else {
MaybeStopPrerolling();
}
}
void
MediaDecoderStateMachine::
DecodingState::DispatchDecodeTasksIfNeeded()
{
if (mMaster->IsAudioDecoding()
&& !mMaster->mMinimizePreroll
&& !mMaster->HaveEnoughDecodedAudio()) {
EnsureAudioDecodeTaskQueued();
}
if (mMaster->IsVideoDecoding()
&& !mMaster->mMinimizePreroll
&& !mMaster->HaveEnoughDecodedVideo()) {
EnsureVideoDecodeTaskQueued();
}
}
void
MediaDecoderStateMachine::
DecodingState::EnsureAudioDecodeTaskQueued()
{
if (!mMaster->IsAudioDecoding()
|| mMaster->IsRequestingAudioData()
|| mMaster->IsWaitingAudioData()) {
return;
}
mMaster->RequestAudioData();
}
void
MediaDecoderStateMachine::
DecodingState::EnsureVideoDecodeTaskQueued()
{
if (!mMaster->IsVideoDecoding()
|| mMaster->IsRequestingVideoData()
|| mMaster->IsWaitingVideoData()) {
return;
}
mMaster->RequestVideoData(
NeedToSkipToNextKeyframe(),
media::TimeUnit::FromMicroseconds(mMaster->GetMediaTime()));
}
bool
MediaDecoderStateMachine::
DecodingState::NeedToSkipToNextKeyframe()
{
// Since GetClock() can only be called after starting MediaSink, we return
// false quickly if it is not started because we won't fall behind playback
// when not consuming media data.
if (!mMaster->mMediaSink->IsStarted()) {
return false;
}
// Don't skip frame for video-only decoded stream because the clock time of
// the stream relies on the video frame.
if (mMaster->mAudioCaptured && !mMaster->HasAudio()) {
return false;
}
// We'll skip the video decode to the next keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes. We ignore the low audio calculations for
// readers that are async, as since their audio decode runs on a different
// task queue it should never run low and skipping won't help their decode.
bool isLowOnDecodedAudio =
!Reader()->IsAsync()
&& mMaster->IsAudioDecoding()
&& (mMaster->GetDecodedAudioDuration()
< mMaster->mLowAudioThresholdUsecs * mMaster->mPlaybackRate);
bool isLowOnDecodedVideo =
(mMaster->GetClock() - mMaster->mDecodedVideoEndTime)
* mMaster->mPlaybackRate
> LOW_VIDEO_THRESHOLD_USECS;
bool lowBuffered = mMaster->HasLowBufferedData();
if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowBuffered) {
SLOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d "
"lowUndecoded=%d async=%d",
isLowOnDecodedAudio, isLowOnDecodedVideo, lowBuffered,
Reader()->IsAsync());
return true;
}
return false;
}
void
MediaDecoderStateMachine::
DecodingState::MaybeStartBuffering()
{
// Buffering makes senses only after decoding first frames.
MOZ_ASSERT(mMaster->mSentFirstFrameLoadedEvent);
// Don't enter buffering when MediaDecoder is not playing.
if (mMaster->mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// Don't enter buffering while prerolling so that the decoder has a chance to
// enqueue some decoded data before we give up and start buffering.
if (!mMaster->IsPlaying()) {
return;
}
bool shouldBuffer;
if (Reader()->UseBufferingHeuristics()) {
shouldBuffer = IsExpectingMoreData()
&& mMaster->HasLowDecodedData()
&& mMaster->HasLowBufferedData();
} else {
shouldBuffer =
(mMaster->OutOfDecodedAudio() && mMaster->IsWaitingAudioData())
|| (mMaster->OutOfDecodedVideo() && mMaster->IsWaitingVideoData());
}
if (shouldBuffer) {
SetState<BufferingState>();
}
}
void
MediaDecoderStateMachine::
SeekingState::SeekCompleted()
{
const int64_t newCurrentTime = CalculateNewCurrentTime();
bool isLiveStream = Resource()->IsLiveStream();
if (newCurrentTime == mMaster->Duration().ToMicroseconds() && !isLiveStream) {
// Seeked to end of media. Explicitly finish the queues so DECODING
// will transition to COMPLETED immediately. Note we don't do
// this when playing a live stream, since the end of media will advance
// once we download more data!
AudioQueue().Finish();
VideoQueue().Finish();
// We won't start MediaSink when paused. m{Audio,Video}Completed will
// remain false and 'playbackEnded' won't be notified. Therefore we
// need to set these flags explicitly when seeking to the end.
mMaster->mAudioCompleted = true;
mMaster->mVideoCompleted = true;
// There might still be a pending audio request when doing video-only or
// next-frame seek. Discard it so we won't break the invariants of the
// COMPLETED state by adding audio samples to a finished queue.
mMaster->mAudioDataRequest.DisconnectIfExists();
}
// Cache mTarget for mSeekJob.Resolve() below will reset it.
SeekTarget target = mSeekJob.mTarget.ref();
// We want to resolve the seek request prior finishing the first frame
// to ensure that the seeked event is fired prior loadeded.
mSeekJob.Resolve(__func__);
// Notify FirstFrameLoaded now if we haven't since we've decoded some data
// for readyState to transition to HAVE_CURRENT_DATA and fire 'loadeddata'.
if (!mMaster->mSentFirstFrameLoadedEvent) {
mMaster->FinishDecodeFirstFrame();
}
// Ensure timestamps are up to date.
if (!target.IsVideoOnly()) {
// Don't update playback position for video-only seek.
// Otherwise we might have |newCurrentTime > mMediaSink->GetPosition()|
// and fail the assertion in GetClock() since we didn't stop MediaSink.
mMaster->UpdatePlaybackPositionInternal(newCurrentTime);
}
// Try to decode another frame to detect if we're at the end...
SLOG("Seek completed, mCurrentPosition=%" PRId64,
mMaster->mCurrentPosition.Ref());
if (mMaster->VideoQueue().PeekFront()) {
mMaster->mMediaSink->Redraw(Info().mVideo);
mMaster->mOnPlaybackEvent.Notify(MediaEventType::Invalidate);
}
SetState<DecodingState>();
}
void
MediaDecoderStateMachine::
BufferingState::DispatchDecodeTasksIfNeeded()
{
if (mMaster->IsAudioDecoding()
&& !mMaster->HaveEnoughDecodedAudio()
&& !mMaster->IsRequestingAudioData()
&& !mMaster->IsWaitingAudioData()) {
mMaster->RequestAudioData();
}
if (mMaster->IsVideoDecoding()
&& !mMaster->HaveEnoughDecodedVideo()
&& !mMaster->IsRequestingVideoData()
&& !mMaster->IsWaitingVideoData()) {
mMaster->RequestVideoData(false, media::TimeUnit());
}
}
void
MediaDecoderStateMachine::
BufferingState::Step()
{
TimeStamp now = TimeStamp::Now();
MOZ_ASSERT(!mBufferingStart.IsNull(), "Must know buffering start time.");
// With buffering heuristics we will remain in the buffering state if
// we've not decoded enough data to begin playback, or if we've not
// downloaded a reasonable amount of data inside our buffering time.
if (Reader()->UseBufferingHeuristics()) {
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = Resource()->IsLiveStream();
if ((isLiveStream || !mMaster->CanPlayThrough())
&& elapsed
< TimeDuration::FromSeconds(mBufferingWait * mMaster->mPlaybackRate)
&& mMaster->HasLowBufferedData(mBufferingWait * USECS_PER_S)
&& IsExpectingMoreData()) {
SLOG("Buffering: wait %ds, timeout in %.3lfs",
mBufferingWait, mBufferingWait - elapsed.ToSeconds());
mMaster->ScheduleStateMachineIn(USECS_PER_S);
DispatchDecodeTasksIfNeeded();
return;
}
} else if (mMaster->OutOfDecodedAudio() || mMaster->OutOfDecodedVideo()) {
DispatchDecodeTasksIfNeeded();
MOZ_ASSERT(!mMaster->OutOfDecodedAudio()
|| mMaster->IsRequestingAudioData()
|| mMaster->IsWaitingAudioData());
MOZ_ASSERT(!mMaster->OutOfDecodedVideo()
|| mMaster->IsRequestingVideoData()
|| mMaster->IsWaitingVideoData());
SLOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
mMaster->OutOfDecodedAudio(), mMaster->AudioRequestStatus(),
mMaster->OutOfDecodedVideo(), mMaster->VideoRequestStatus());
return;
}
SLOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
SetState<DecodingState>();
}
void
MediaDecoderStateMachine::
BufferingState::HandleEndOfAudio()
{
AudioQueue().Finish();
if (!mMaster->IsVideoDecoding()) {
SetState<CompletedState>();
} else {
// Check if we can exit buffering.
mMaster->ScheduleStateMachine();
}
}
void
MediaDecoderStateMachine::
BufferingState::HandleEndOfVideo()
{
VideoQueue().Finish();
if (!mMaster->IsAudioDecoding()) {
SetState<CompletedState>();
} else {
// Check if we can exit buffering.
mMaster->ScheduleStateMachine();
}
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::
ShutdownState::Enter()
{
auto master = mMaster;
master->mIsShutdown = true;
master->mDelayedScheduler.Reset();
// Shutdown happens while decode timer is active, we need to disconnect and
// dispose of the timer.
master->CancelSuspendTimer();
master->mCDMProxyPromise.DisconnectIfExists();
if (master->IsPlaying()) {
master->StopPlayback();
}
master->mAudioDataRequest.DisconnectIfExists();
master->mVideoDataRequest.DisconnectIfExists();
master->mAudioWaitRequest.DisconnectIfExists();
master->mVideoWaitRequest.DisconnectIfExists();
master->ResetDecode();
master->StopMediaSink();
master->mMediaSink->Shutdown();
// Prevent dangling pointers by disconnecting the listeners.
master->mAudioQueueListener.Disconnect();
master->mVideoQueueListener.Disconnect();
master->mMetadataManager.Disconnect();
master->mOnMediaNotSeekable.Disconnect();
// Disconnect canonicals and mirrors before shutting down our task queue.
master->mBuffered.DisconnectIfConnected();
master->mEstimatedDuration.DisconnectIfConnected();
master->mExplicitDuration.DisconnectIfConnected();
master->mPlayState.DisconnectIfConnected();
master->mNextPlayState.DisconnectIfConnected();
master->mVolume.DisconnectIfConnected();
master->mPreservesPitch.DisconnectIfConnected();
master->mSameOriginMedia.DisconnectIfConnected();
master->mMediaPrincipalHandle.DisconnectIfConnected();
master->mPlaybackBytesPerSecond.DisconnectIfConnected();
master->mPlaybackRateReliable.DisconnectIfConnected();
master->mDecoderPosition.DisconnectIfConnected();
master->mDuration.DisconnectAll();
master->mIsShutdown.DisconnectAll();
master->mNextFrameStatus.DisconnectAll();
master->mCurrentPosition.DisconnectAll();
master->mPlaybackOffset.DisconnectAll();
master->mIsAudioDataAudible.DisconnectAll();
// Shut down the watch manager to stop further notifications.
master->mWatchManager.Shutdown();
return Reader()->Shutdown()->Then(
OwnerThread(), __func__, master,
&MediaDecoderStateMachine::FinishShutdown,
&MediaDecoderStateMachine::FinishShutdown);
}
#define INIT_WATCHABLE(name, val) \
name(val, "MediaDecoderStateMachine::" #name)
#define INIT_MIRROR(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Mirror)")
#define INIT_CANONICAL(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Canonical)")
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaDecoderReader* aReader) :
mDecoderID(aDecoder),
mAbstractMainThread(aDecoder->AbstractMainThread()),
mFrameStats(&aDecoder->GetFrameStatistics()),
mVideoFrameContainer(aDecoder->GetVideoFrameContainer()),
mAudioChannel(aDecoder->GetAudioChannel()),
mTaskQueue(new TaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
/* aSupportsTailDispatch = */ true)),
mWatchManager(this, mTaskQueue),
mDispatchedStateMachine(false),
mDelayedScheduler(mTaskQueue),
mCurrentFrameID(0),
INIT_WATCHABLE(mObservedDuration, TimeUnit()),
mFragmentEndTime(-1),
mReader(new MediaDecoderReaderWrapper(mTaskQueue, aReader)),
mDecodedAudioEndTime(0),
mDecodedVideoEndTime(0),
mPlaybackRate(1.0),
mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
mAudioCaptured(false),
mMinimizePreroll(aDecoder->GetMinimizePreroll()),
mSentLoadedMetadataEvent(false),
mSentFirstFrameLoadedEvent(false),
mVideoDecodeSuspended(false),
mVideoDecodeSuspendTimer(mTaskQueue),
mOutputStreamManager(new OutputStreamManager()),
mResource(aDecoder->GetResource()),
mVideoDecodeMode(VideoDecodeMode::Normal),
mIsMSE(aDecoder->IsMSE()),
INIT_MIRROR(mBuffered, TimeIntervals()),
INIT_MIRROR(mEstimatedDuration, NullableTimeUnit()),
INIT_MIRROR(mExplicitDuration, Maybe<double>()),
INIT_MIRROR(mPlayState, MediaDecoder::PLAY_STATE_LOADING),
INIT_MIRROR(mNextPlayState, MediaDecoder::PLAY_STATE_PAUSED),
INIT_MIRROR(mVolume, 1.0),
INIT_MIRROR(mPreservesPitch, true),
INIT_MIRROR(mSameOriginMedia, false),
INIT_MIRROR(mMediaPrincipalHandle, PRINCIPAL_HANDLE_NONE),
INIT_MIRROR(mPlaybackBytesPerSecond, 0.0),
INIT_MIRROR(mPlaybackRateReliable, true),
INIT_MIRROR(mDecoderPosition, 0),
INIT_CANONICAL(mDuration, NullableTimeUnit()),
INIT_CANONICAL(mIsShutdown, false),
INIT_CANONICAL(mNextFrameStatus, MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE),
INIT_CANONICAL(mCurrentPosition, 0),
INIT_CANONICAL(mPlaybackOffset, 0),
INIT_CANONICAL(mIsAudioDataAudible, false)
{
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
InitVideoQueuePrefs();
#ifdef XP_WIN
// Ensure high precision timers are enabled on Windows, otherwise the state
// machine isn't woken up at reliable intervals to set the next frame, and we
// drop frames while painting. Note that multiple calls to this function
// per-process is OK, provided each call is matched by a corresponding
// timeEndPeriod() call.
timeBeginPeriod(1);
#endif
}
#undef INIT_WATCHABLE
#undef INIT_MIRROR
#undef INIT_CANONICAL
MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
#ifdef XP_WIN
timeEndPeriod(1);
#endif
}
void
MediaDecoderStateMachine::InitializationTask(MediaDecoder* aDecoder)
{
MOZ_ASSERT(OnTaskQueue());
// Connect mirrors.
mBuffered.Connect(mReader->CanonicalBuffered());
mEstimatedDuration.Connect(aDecoder->CanonicalEstimatedDuration());
mExplicitDuration.Connect(aDecoder->CanonicalExplicitDuration());
mPlayState.Connect(aDecoder->CanonicalPlayState());
mNextPlayState.Connect(aDecoder->CanonicalNextPlayState());
mVolume.Connect(aDecoder->CanonicalVolume());
mPreservesPitch.Connect(aDecoder->CanonicalPreservesPitch());
mSameOriginMedia.Connect(aDecoder->CanonicalSameOriginMedia());
mMediaPrincipalHandle.Connect(aDecoder->CanonicalMediaPrincipalHandle());
mPlaybackBytesPerSecond.Connect(aDecoder->CanonicalPlaybackBytesPerSecond());
mPlaybackRateReliable.Connect(aDecoder->CanonicalPlaybackRateReliable());
mDecoderPosition.Connect(aDecoder->CanonicalDecoderPosition());
// Initialize watchers.
mWatchManager.Watch(mBuffered,
&MediaDecoderStateMachine::BufferedRangeUpdated);
mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
mWatchManager.Watch(mPreservesPitch,
&MediaDecoderStateMachine::PreservesPitchChanged);
mWatchManager.Watch(mEstimatedDuration,
&MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mExplicitDuration,
&MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mObservedDuration,
&MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
MOZ_ASSERT(!mStateObj);
auto* s = new DecodeMetadataState(this);
mStateObj.reset(s);
s->Enter();
}
void
MediaDecoderStateMachine::AudioAudibleChanged(bool aAudible)
{
mIsAudioDataAudible = aAudible;
}
media::MediaSink*
MediaDecoderStateMachine::CreateAudioSink()
{
RefPtr<MediaDecoderStateMachine> self = this;
auto audioSinkCreator = [self] () {
MOZ_ASSERT(self->OnTaskQueue());
DecodedAudioDataSink* audioSink = new DecodedAudioDataSink(
self->mTaskQueue, self->mAudioQueue, self->GetMediaTime(),
self->Info().mAudio, self->mAudioChannel);
self->mAudibleListener = audioSink->AudibleEvent().Connect(
self->mTaskQueue, self.get(),
&MediaDecoderStateMachine::AudioAudibleChanged);
return audioSink;
};
return new AudioSinkWrapper(mTaskQueue, audioSinkCreator);
}
already_AddRefed<media::MediaSink>
MediaDecoderStateMachine::CreateMediaSink(bool aAudioCaptured)
{
RefPtr<media::MediaSink> audioSink =
aAudioCaptured
? new DecodedStream(mTaskQueue, mAbstractMainThread, mAudioQueue,
mVideoQueue, mOutputStreamManager,
mSameOriginMedia.Ref(), mMediaPrincipalHandle.Ref())
: CreateAudioSink();
RefPtr<media::MediaSink> mediaSink =
new VideoSink(mTaskQueue, audioSink, mVideoQueue,
mVideoFrameContainer, *mFrameStats,
sVideoQueueSendToCompositorSize);
return mediaSink.forget();
}
int64_t
MediaDecoderStateMachine::GetDecodedAudioDuration()
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
// mDecodedAudioEndTime might be smaller than GetClock() when there is
// overlap between 2 adjacent audio samples or when we are playing
// a chained ogg file.
return std::max<int64_t>(mDecodedAudioEndTime - GetClock(), 0);
}
// MediaSink not started. All audio samples are in the queue.
return AudioQueue().Duration();
}
bool
MediaDecoderStateMachine::HaveEnoughDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
auto ampleAudioUSecs = mAmpleAudioThresholdUsecs * mPlaybackRate;
return AudioQueue().GetSize() > 0
&& GetDecodedAudioDuration() >= ampleAudioUSecs;
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
MOZ_ASSERT(OnTaskQueue());
return VideoQueue().GetSize() >= GetAmpleVideoFrames() * mPlaybackRate + 1;
}
void
MediaDecoderStateMachine::PushAudio(MediaData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
AudioQueue().Push(aSample);
}
void
MediaDecoderStateMachine::PushVideo(MediaData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
aSample->As<VideoData>()->mFrameID = ++mCurrentFrameID;
VideoQueue().Push(aSample);
}
void
MediaDecoderStateMachine::OnAudioPopped(const RefPtr<MediaData>& aSample)
{
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
}
void
MediaDecoderStateMachine::OnVideoPopped(const RefPtr<MediaData>& aSample)
{
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
}
bool
MediaDecoderStateMachine::IsAudioDecoding()
{
MOZ_ASSERT(OnTaskQueue());
return HasAudio() && !AudioQueue().IsFinished();
}
bool
MediaDecoderStateMachine::IsVideoDecoding()
{
MOZ_ASSERT(OnTaskQueue());
return HasVideo() && !VideoQueue().IsFinished();
}
bool MediaDecoderStateMachine::IsPlaying() const
{
MOZ_ASSERT(OnTaskQueue());
return mMediaSink->IsPlaying();
}
void MediaDecoderStateMachine::SetMediaNotSeekable()
{
mMediaSeekable = false;
}
nsresult MediaDecoderStateMachine::Init(MediaDecoder* aDecoder)
{
MOZ_ASSERT(NS_IsMainThread());
// Dispatch initialization that needs to happen on that task queue.
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<RefPtr<MediaDecoder>>(
this, &MediaDecoderStateMachine::InitializationTask, aDecoder);
mTaskQueue->DispatchStateChange(r.forget());
mAudioQueueListener = AudioQueue().PopEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnAudioPopped);
mVideoQueueListener = VideoQueue().PopEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnVideoPopped);
mMetadataManager.Connect(mReader->TimedMetadataEvent(), OwnerThread());
mOnMediaNotSeekable = mReader->OnMediaNotSeekable().Connect(
OwnerThread(), this, &MediaDecoderStateMachine::SetMediaNotSeekable);
mMediaSink = CreateMediaSink(mAudioCaptured);
aDecoder->RequestCDMProxy()->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnCDMProxyReady,
&MediaDecoderStateMachine::OnCDMProxyNotReady)
->Track(mCDMProxyPromise);
nsresult rv = mReader->Init();
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void
MediaDecoderStateMachine::StopPlayback()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("StopPlayback()");
mOnPlaybackEvent.Notify(MediaEventType::PlaybackStopped);
if (IsPlaying()) {
mMediaSink->SetPlaying(false);
MOZ_ASSERT(!IsPlaying());
}
}
void MediaDecoderStateMachine::MaybeStartPlayback()
{
MOZ_ASSERT(OnTaskQueue());
// Should try to start playback only after decoding first frames.
MOZ_ASSERT(mSentFirstFrameLoadedEvent);
if (IsPlaying()) {
// Logging this case is really spammy - don't do it.
return;
}
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
DECODER_LOG("Not starting playback [mPlayState=%d]", mPlayState.Ref());
return;
}
DECODER_LOG("MaybeStartPlayback() starting playback");
mOnPlaybackEvent.Notify(MediaEventType::PlaybackStarted);
StartMediaSink();
if (!IsPlaying()) {
mMediaSink->SetPlaying(true);
MOZ_ASSERT(IsPlaying());
}
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("UpdatePlaybackPositionInternal(%" PRId64 ")", aTime);
mCurrentPosition = aTime;
NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
mObservedDuration = std::max(mObservedDuration.Ref(),
TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded =
mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
mMetadataManager.DispatchMetadataIfNeeded(TimeUnit::FromMicroseconds(aTime));
if (fragmentEnded) {
StopPlayback();
}
}
/* static */ const char*
MediaDecoderStateMachine::ToStateStr(State aState)
{
switch (aState) {
case DECODER_STATE_DECODING_METADATA: return "DECODING_METADATA";
case DECODER_STATE_WAIT_FOR_CDM: return "WAIT_FOR_CDM";
case DECODER_STATE_DORMANT: return "DORMANT";
case DECODER_STATE_DECODING_FIRSTFRAME: return "DECODING_FIRSTFRAME";
case DECODER_STATE_DECODING: return "DECODING";
case DECODER_STATE_SEEKING: return "SEEKING";
case DECODER_STATE_BUFFERING: return "BUFFERING";
case DECODER_STATE_COMPLETED: return "COMPLETED";
case DECODER_STATE_SHUTDOWN: return "SHUTDOWN";
default: MOZ_ASSERT_UNREACHABLE("Invalid state.");
}
return "UNKNOWN";
}
const char*
MediaDecoderStateMachine::ToStateStr()
{
MOZ_ASSERT(OnTaskQueue());
return ToStateStr(mStateObj->GetState());
}
void MediaDecoderStateMachine::VolumeChanged()
{
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetVolume(mVolume);
}
void MediaDecoderStateMachine::RecomputeDuration()
{
MOZ_ASSERT(OnTaskQueue());
TimeUnit duration;
if (mExplicitDuration.Ref().isSome()) {
double d = mExplicitDuration.Ref().ref();
if (IsNaN(d)) {
// We have an explicit duration (which means that we shouldn't look at
// any other duration sources), but the duration isn't ready yet.
return;
}
// We don't fire duration changed for this case because it should have
// already been fired on the main thread when the explicit duration was set.
duration = TimeUnit::FromSeconds(d);
} else if (mEstimatedDuration.Ref().isSome()) {
duration = mEstimatedDuration.Ref().ref();
} else if (mInfo.isSome() && Info().mMetadataDuration.isSome()) {
// We need to check mInfo.isSome() because that this method might be invoked
// while mObservedDuration is changed which might before the metadata been
// read.
duration = Info().mMetadataDuration.ref();
} else {
return;
}
// Only adjust the duration when an explicit duration isn't set (MSE).
// The duration is always exactly known with MSE and there's no need to adjust
// it based on what may have been seen in the past; in particular as this data
// may no longer exist such as when the mediasource duration was reduced.
if (mExplicitDuration.Ref().isNothing()
&& duration < mObservedDuration.Ref()) {
duration = mObservedDuration;
}
MOZ_ASSERT(duration.ToMicroseconds() >= 0);
mDuration = Some(duration);
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::Shutdown()
{
MOZ_ASSERT(OnTaskQueue());
return mStateObj->HandleShutdown();
}
void MediaDecoderStateMachine::PlayStateChanged()
{
MOZ_ASSERT(OnTaskQueue());
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
CancelSuspendTimer();
} else if (mMinimizePreroll) {
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future. This needs
// to happen before we invoke StartDecoding().
mMinimizePreroll = false;
}
mStateObj->HandlePlayStateChanged(mPlayState);
}
void MediaDecoderStateMachine::SetVideoDecodeMode(VideoDecodeMode aMode)
{
nsCOMPtr<nsIRunnable> r =
NewRunnableMethod<VideoDecodeMode>(this,
&MediaDecoderStateMachine::SetVideoDecodeModeInternal,
aMode);
OwnerThread()->DispatchStateChange(r.forget());
}
void MediaDecoderStateMachine::SetVideoDecodeModeInternal(VideoDecodeMode aMode)
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("VideoDecodeModeChanged: VideoDecodeMode=(%s->%s), mVideoDecodeSuspended=%c",
mVideoDecodeMode == VideoDecodeMode::Normal ? "Normal" : "Suspend",
aMode == VideoDecodeMode::Normal ? "Normal" : "Suspend",
mVideoDecodeSuspended ? 'T' : 'F');
if (!MediaPrefs::MDSMSuspendBackgroundVideoEnabled()) {
return;
}
if (aMode == mVideoDecodeMode) {
return;
}
// Set new video decode mode.
mVideoDecodeMode = aMode;
// Start timer to trigger suspended video decoding.
if (mVideoDecodeMode == VideoDecodeMode::Suspend) {
TimeStamp target = TimeStamp::Now() + SuspendBackgroundVideoDelay();
RefPtr<MediaDecoderStateMachine> self = this;
mVideoDecodeSuspendTimer.Ensure(target,
[=]() { self->OnSuspendTimerResolved(); },
[] () { MOZ_DIAGNOSTIC_ASSERT(false); });
mOnPlaybackEvent.Notify(MediaEventType::StartVideoSuspendTimer);
return;
}
// Resuming from suspended decoding
// If suspend timer exists, destroy it.
CancelSuspendTimer();
if (mVideoDecodeSuspended) {
mStateObj->HandleResumeVideoDecoding();
}
}
void MediaDecoderStateMachine::BufferedRangeUpdated()
{
MOZ_ASSERT(OnTaskQueue());
// While playing an unseekable stream of unknown duration, mObservedDuration
// is updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mObserved won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mObservedDuration here as new data is downloaded to prevent such a lag.
if (!mBuffered.Ref().IsInvalid()) {
bool exists;
media::TimeUnit end{mBuffered.Ref().GetEnd(&exists)};
if (exists) {
mObservedDuration = std::max(mObservedDuration.Ref(), end);
}
}
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::Seek(const SeekTarget& aTarget)
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true,
__func__);
}
// We need to be able to seek in some way
if (!mMediaSeekable && !mMediaSeekableOnlyInBufferedRanges) {
DECODER_WARN(
"Seek() function should not be called on a non-seekable state machine");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true,
__func__);
}
if (aTarget.IsNextFrame() && !HasVideo()) {
DECODER_WARN(
"Ignore a NextFrameSeekTask on a media file without video track.");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true,
__func__);
}
MOZ_ASSERT(mDuration.Ref().isSome(), "We should have got duration already");
return mStateObj->HandleSeek(aTarget);
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::InvokeSeek(const SeekTarget& aTarget)
{
return InvokeAsync<SeekTarget&&>(
OwnerThread(), this, __func__,
&MediaDecoderStateMachine::Seek, aTarget);
}
void MediaDecoderStateMachine::StopMediaSink()
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
DECODER_LOG("Stop MediaSink");
mAudibleListener.DisconnectIfExists();
mMediaSink->Stop();
mMediaSinkAudioPromise.DisconnectIfExists();
mMediaSinkVideoPromise.DisconnectIfExists();
}
}
void
MediaDecoderStateMachine::RequestAudioData()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(IsAudioDecoding());
MOZ_ASSERT(!IsRequestingAudioData());
MOZ_ASSERT(!IsWaitingAudioData());
SAMPLE_LOG("Queueing audio task - queued=%" PRIuSIZE ", decoder-queued=%" PRIuSIZE,
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
RefPtr<MediaDecoderStateMachine> self = this;
mReader->RequestAudioData()->Then(
OwnerThread(), __func__,
[this, self] (MediaData* aAudio) {
MOZ_ASSERT(aAudio);
mAudioDataRequest.Complete();
// audio->GetEndTime() is not always mono-increasing in chained ogg.
mDecodedAudioEndTime =
std::max(aAudio->GetEndTime(), mDecodedAudioEndTime);
SAMPLE_LOG("OnAudioDecoded [%" PRId64 ",%" PRId64 "]", aAudio->mTime,
aAudio->GetEndTime());
mStateObj->HandleAudioDecoded(aAudio);
},
[this, self] (const MediaResult& aError) {
SAMPLE_LOG("OnAudioNotDecoded aError=%" PRIu32, static_cast<uint32_t>(aError.Code()));
mAudioDataRequest.Complete();
switch (aError.Code()) {
case NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA:
mStateObj->HandleWaitingForAudio();
break;
case NS_ERROR_DOM_MEDIA_CANCELED:
mStateObj->HandleAudioCanceled();
break;
case NS_ERROR_DOM_MEDIA_END_OF_STREAM:
mStateObj->HandleEndOfAudio();
break;
default:
DecodeError(aError);
}
})->Track(mAudioDataRequest);
}
void
MediaDecoderStateMachine::RequestVideoData(bool aSkipToNextKeyframe,
const media::TimeUnit& aCurrentTime)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(IsVideoDecoding());
MOZ_ASSERT(!IsRequestingVideoData());
MOZ_ASSERT(!IsWaitingVideoData());
SAMPLE_LOG(
"Queueing video task - queued=%" PRIuSIZE ", decoder-queued=%" PRIoSIZE
", skip=%i, time=%" PRId64,
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(),
aSkipToNextKeyframe, aCurrentTime.ToMicroseconds());
TimeStamp videoDecodeStartTime = TimeStamp::Now();
RefPtr<MediaDecoderStateMachine> self = this;
mReader->RequestVideoData(aSkipToNextKeyframe, aCurrentTime)->Then(
OwnerThread(), __func__,
[this, self, videoDecodeStartTime] (MediaData* aVideo) {
MOZ_ASSERT(aVideo);
mVideoDataRequest.Complete();
// Handle abnormal or negative timestamps.
mDecodedVideoEndTime =
std::max(mDecodedVideoEndTime, aVideo->GetEndTime());
SAMPLE_LOG("OnVideoDecoded [%" PRId64 ",%" PRId64 "]", aVideo->mTime,
aVideo->GetEndTime());
mStateObj->HandleVideoDecoded(aVideo, videoDecodeStartTime);
},
[this, self] (const MediaResult& aError) {
SAMPLE_LOG("OnVideoNotDecoded aError=%" PRIu32 , static_cast<uint32_t>(aError.Code()));
mVideoDataRequest.Complete();
switch (aError.Code()) {
case NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA:
mStateObj->HandleWaitingForVideo();
break;
case NS_ERROR_DOM_MEDIA_CANCELED:
mStateObj->HandleVideoCanceled();
break;
case NS_ERROR_DOM_MEDIA_END_OF_STREAM:
mStateObj->HandleEndOfVideo();
break;
default:
DecodeError(aError);
}
})->Track(mVideoDataRequest);
}
void
MediaDecoderStateMachine::WaitForData(MediaData::Type aType)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aType == MediaData::AUDIO_DATA || aType == MediaData::VIDEO_DATA);
RefPtr<MediaDecoderStateMachine> self = this;
if (aType == MediaData::AUDIO_DATA) {
mReader->WaitForData(MediaData::AUDIO_DATA)->Then(
OwnerThread(), __func__,
[self] (MediaData::Type aType) {
self->mAudioWaitRequest.Complete();
MOZ_ASSERT(aType == MediaData::AUDIO_DATA);
self->mStateObj->HandleAudioWaited(aType);
},
[self] (const WaitForDataRejectValue& aRejection) {
self->mAudioWaitRequest.Complete();
self->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})->Track(mAudioWaitRequest);
} else {
mReader->WaitForData(MediaData::VIDEO_DATA)->Then(
OwnerThread(), __func__,
[self] (MediaData::Type aType) {
self->mVideoWaitRequest.Complete();
MOZ_ASSERT(aType == MediaData::VIDEO_DATA);
self->mStateObj->HandleVideoWaited(aType);
},
[self] (const WaitForDataRejectValue& aRejection) {
self->mVideoWaitRequest.Complete();
self->DecodeError(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA);
})->Track(mVideoWaitRequest);
}
}
void
MediaDecoderStateMachine::StartMediaSink()
{
MOZ_ASSERT(OnTaskQueue());
if (!mMediaSink->IsStarted()) {
mAudioCompleted = false;
mMediaSink->Start(GetMediaTime(), Info());
auto videoPromise = mMediaSink->OnEnded(TrackInfo::kVideoTrack);
auto audioPromise = mMediaSink->OnEnded(TrackInfo::kAudioTrack);
if (audioPromise) {
audioPromise->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkAudioComplete,
&MediaDecoderStateMachine::OnMediaSinkAudioError)
->Track(mMediaSinkAudioPromise);
}
if (videoPromise) {
videoPromise->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkVideoComplete,
&MediaDecoderStateMachine::OnMediaSinkVideoError)
->Track(mMediaSinkVideoPromise);
}
}
}
bool
MediaDecoderStateMachine::HasLowDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding()
&& GetDecodedAudioDuration()
< EXHAUSTED_DATA_MARGIN_USECS * mPlaybackRate;
}
bool
MediaDecoderStateMachine::HasLowDecodedVideo()
{
MOZ_ASSERT(OnTaskQueue());
return IsVideoDecoding()
&& VideoQueue().GetSize() < LOW_VIDEO_FRAMES * mPlaybackRate;
}
bool
MediaDecoderStateMachine::HasLowDecodedData()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mReader->UseBufferingHeuristics());
return HasLowDecodedAudio() || HasLowDecodedVideo();
}
bool MediaDecoderStateMachine::OutOfDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() && !AudioQueue().IsFinished()
&& AudioQueue().GetSize() == 0
&& !mMediaSink->HasUnplayedFrames(TrackInfo::kAudioTrack);
}
bool MediaDecoderStateMachine::HasLowBufferedData()
{
MOZ_ASSERT(OnTaskQueue());
return HasLowBufferedData(detail::LOW_DATA_THRESHOLD_USECS);
}
bool MediaDecoderStateMachine::HasLowBufferedData(int64_t aUsecs)
{
MOZ_ASSERT(OnTaskQueue());
// If we don't have a duration, mBuffered is probably not going to have
// a useful buffered range. Return false here so that we don't get stuck in
// buffering mode for live streams.
if (Duration().IsInfinite()) {
return false;
}
if (mBuffered.Ref().IsInvalid()) {
return false;
}
// We are never low in decoded data when we don't have audio/video or have
// decoded all audio/video samples.
int64_t endOfDecodedVideoData =
(HasVideo() && !VideoQueue().IsFinished())
? mDecodedVideoEndTime
: INT64_MAX;
int64_t endOfDecodedAudioData =
(HasAudio() && !AudioQueue().IsFinished())
? mDecodedAudioEndTime
: INT64_MAX;
int64_t endOfDecodedData =
std::min(endOfDecodedVideoData, endOfDecodedAudioData);
if (Duration().ToMicroseconds() < endOfDecodedData) {
// Our duration is not up to date. No point buffering.
return false;
}
if (endOfDecodedData == INT64_MAX) {
// Have decoded all samples. No point buffering.
return false;
}
int64_t start = endOfDecodedData;
int64_t end = std::min(GetMediaTime() + aUsecs, Duration().ToMicroseconds());
if (start >= end) {
// Duration of decoded samples is greater than our threshold.
return false;
}
media::TimeInterval interval(media::TimeUnit::FromMicroseconds(start),
media::TimeUnit::FromMicroseconds(end));
return !mBuffered.Ref().Contains(interval);
}
void
MediaDecoderStateMachine::DecodeError(const MediaResult& aError)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(!IsShutdown());
DECODER_WARN("Decode error");
// Notify the decode error and MediaDecoder will shut down MDSM.
mOnPlaybackErrorEvent.Notify(aError);
}
void
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
{
MOZ_ASSERT(OnTaskQueue());
MediaDecoderEventVisibility visibility =
mSentLoadedMetadataEvent ? MediaDecoderEventVisibility::Suppressed
: MediaDecoderEventVisibility::Observable;
mMetadataLoadedEvent.Notify(nsAutoPtr<MediaInfo>(new MediaInfo(Info())),
Move(mMetadataTags),
visibility);
mSentLoadedMetadataEvent = true;
}
void
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
{
MOZ_ASSERT(OnTaskQueue());
// Track value of mSentFirstFrameLoadedEvent from before updating it
bool firstFrameBeenLoaded = mSentFirstFrameLoadedEvent;
mSentFirstFrameLoadedEvent = true;
MediaDecoderEventVisibility visibility =
firstFrameBeenLoaded ? MediaDecoderEventVisibility::Suppressed
: MediaDecoderEventVisibility::Observable;
mFirstFrameLoadedEvent.Notify(
nsAutoPtr<MediaInfo>(new MediaInfo(Info())), visibility);
}
void
MediaDecoderStateMachine::FinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(!mSentFirstFrameLoadedEvent);
DECODER_LOG("FinishDecodeFirstFrame");
mMediaSink->Redraw(Info().mVideo);
DECODER_LOG("Media duration %" PRId64 ", "
"transportSeekable=%d, mediaSeekable=%d",
Duration().ToMicroseconds(), mResource->IsTransportSeekable(),
mMediaSeekable);
// Get potentially updated metadata
mReader->ReadUpdatedMetadata(mInfo.ptr());
EnqueueFirstFrameLoadedEvent();
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::BeginShutdown()
{
return InvokeAsync(OwnerThread(), this, __func__,
&MediaDecoderStateMachine::Shutdown);
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::FinishShutdown()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("Shutting down state machine task queue");
return OwnerThread()->BeginShutdown();
}
void
MediaDecoderStateMachine::RunStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
mDispatchedStateMachine = false;
mStateObj->Step();
}
void
MediaDecoderStateMachine::ResetDecode(TrackSet aTracks)
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("MediaDecoderStateMachine::Reset");
// Assert that aTracks specifies to reset the video track because we
// don't currently support resetting just the audio track.
MOZ_ASSERT(aTracks.contains(TrackInfo::kVideoTrack));
if (aTracks.contains(TrackInfo::kVideoTrack)) {
mDecodedVideoEndTime = 0;
mVideoCompleted = false;
VideoQueue().Reset();
mVideoDataRequest.DisconnectIfExists();
mVideoWaitRequest.DisconnectIfExists();
}
if (aTracks.contains(TrackInfo::kAudioTrack)) {
mDecodedAudioEndTime = 0;
mAudioCompleted = false;
AudioQueue().Reset();
mAudioDataRequest.DisconnectIfExists();
mAudioWaitRequest.DisconnectIfExists();
}
mPlaybackOffset = 0;
mReader->ResetDecode(aTracks);
}
int64_t
MediaDecoderStateMachine::GetClock(TimeStamp* aTimeStamp) const
{
MOZ_ASSERT(OnTaskQueue());
int64_t clockTime = mMediaSink->GetPosition(aTimeStamp);
NS_ASSERTION(GetMediaTime() <= clockTime, "Clock should go forwards.");
return clockTime;
}
void
MediaDecoderStateMachine::UpdatePlaybackPositionPeriodically()
{
MOZ_ASSERT(OnTaskQueue());
if (!IsPlaying()) {
return;
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (VideoEndTime() != -1 || AudioEndTime() != -1) {
const int64_t clockTime = GetClock();
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame and drop
// the current frame.
NS_ASSERTION(clockTime >= 0, "Should have positive clock time.");
// These will be non -1 if we've displayed a video frame, or played an audio
// frame.
int64_t t = std::min(clockTime, std::max(VideoEndTime(), AudioEndTime()));
// FIXME: Bug 1091422 - chained ogg files hit this assertion.
//MOZ_ASSERT(t >= GetMediaTime());
if (t > GetMediaTime()) {
UpdatePlaybackPosition(t);
}
}
// Note we have to update playback position before releasing the monitor.
// Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
// assertion in GetClock().
int64_t delay = std::max<int64_t>(1, AUDIO_DURATION_USECS / mPlaybackRate);
ScheduleStateMachineIn(delay);
}
/* static */ const char*
MediaDecoderStateMachine::ToStr(NextFrameStatus aStatus)
{
switch (aStatus) {
case MediaDecoderOwner::NEXT_FRAME_AVAILABLE:
return "NEXT_FRAME_AVAILABLE";
case MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE:
return "NEXT_FRAME_UNAVAILABLE";
case MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING:
return "NEXT_FRAME_UNAVAILABLE_BUFFERING";
case MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING:
return "NEXT_FRAME_UNAVAILABLE_SEEKING";
case MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED:
return "NEXT_FRAME_UNINITIALIZED";
}
return "UNKNOWN";
}
void
MediaDecoderStateMachine::UpdateNextFrameStatus(NextFrameStatus aStatus)
{
MOZ_ASSERT(OnTaskQueue());
if (aStatus != mNextFrameStatus) {
DECODER_LOG("Changed mNextFrameStatus to %s", ToStr(aStatus));
mNextFrameStatus = aStatus;
}
}
bool
MediaDecoderStateMachine::CanPlayThrough()
{
MOZ_ASSERT(OnTaskQueue());
return GetStatistics().CanPlayThrough();
}
MediaStatistics
MediaDecoderStateMachine::GetStatistics()
{
MOZ_ASSERT(OnTaskQueue());
MediaStatistics result;
result.mDownloadRate =
mResource->GetDownloadRate(&result.mDownloadRateReliable);
result.mDownloadPosition = mResource->GetCachedDataEnd(mDecoderPosition);
result.mTotalBytes = mResource->GetLength();
result.mPlaybackRate = mPlaybackBytesPerSecond;
result.mPlaybackRateReliable = mPlaybackRateReliable;
result.mDecoderPosition = mDecoderPosition;
result.mPlaybackPosition = mPlaybackOffset;
return result;
}
void
MediaDecoderStateMachine::ScheduleStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
if (mDispatchedStateMachine) {
return;
}
mDispatchedStateMachine = true;
OwnerThread()->Dispatch(
NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine));
}
void
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
{
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
// the promise, which must happen on the state
// machine task queue.
MOZ_ASSERT(aMicroseconds > 0);
if (mDispatchedStateMachine) {
return;
}
TimeStamp now = TimeStamp::Now();
TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);
// It is OK to capture 'this' without causing UAF because the callback
// always happens before shutdown.
RefPtr<MediaDecoderStateMachine> self = this;
mDelayedScheduler.Ensure(target, [self] () {
self->mDelayedScheduler.CompleteRequest();
self->RunStateMachine();
}, [] () {
MOZ_DIAGNOSTIC_ASSERT(false);
});
}
bool MediaDecoderStateMachine::OnTaskQueue() const
{
return OwnerThread()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::IsStateMachineScheduled() const
{
MOZ_ASSERT(OnTaskQueue());
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}
void
MediaDecoderStateMachine::SetPlaybackRate(double aPlaybackRate)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aPlaybackRate != 0, "Should be handled by MediaDecoder::Pause()");
mPlaybackRate = aPlaybackRate;
mMediaSink->SetPlaybackRate(mPlaybackRate);
// Schedule next cycle to check if we can stop prerolling.
ScheduleStateMachine();
}
void MediaDecoderStateMachine::PreservesPitchChanged()
{
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetPreservesPitch(mPreservesPitch);
}
bool
MediaDecoderStateMachine::IsShutdown() const
{
MOZ_ASSERT(OnTaskQueue());
return mIsShutdown;
}
int64_t
MediaDecoderStateMachine::AudioEndTime() const
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kAudioTrack);
}
return -1;
}
int64_t
MediaDecoderStateMachine::VideoEndTime() const
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kVideoTrack);
}
return -1;
}
void
MediaDecoderStateMachine::OnMediaSinkVideoComplete()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasVideo());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkVideoPromise.Complete();
mVideoCompleted = true;
ScheduleStateMachine();
}
void
MediaDecoderStateMachine::OnMediaSinkVideoError()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasVideo());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkVideoPromise.Complete();
mVideoCompleted = true;
if (HasAudio()) {
return;
}
DecodeError(MediaResult(NS_ERROR_DOM_MEDIA_MEDIASINK_ERR, __func__));
}
void MediaDecoderStateMachine::OnMediaSinkAudioComplete()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasAudio());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkAudioPromise.Complete();
mAudioCompleted = true;
// To notify PlaybackEnded as soon as possible.
ScheduleStateMachine();
// Report OK to Decoder Doctor (to know if issue may have been resolved).
mOnDecoderDoctorEvent.Notify(
DecoderDoctorEvent{DecoderDoctorEvent::eAudioSinkStartup, NS_OK});
}
void MediaDecoderStateMachine::OnMediaSinkAudioError(nsresult aResult)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(HasAudio());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkAudioPromise.Complete();
mAudioCompleted = true;
// Result should never be NS_OK in this *error* handler. Report to Dec-Doc.
MOZ_ASSERT(NS_FAILED(aResult));
mOnDecoderDoctorEvent.Notify(
DecoderDoctorEvent{DecoderDoctorEvent::eAudioSinkStartup, aResult});
// Make the best effort to continue playback when there is video.
if (HasVideo()) {
return;
}
// Otherwise notify media decoder/element about this error for it makes
// no sense to play an audio-only file without sound output.
DecodeError(MediaResult(NS_ERROR_DOM_MEDIA_MEDIASINK_ERR, __func__));
}
void
MediaDecoderStateMachine::OnCDMProxyReady(RefPtr<CDMProxy> aProxy)
{
MOZ_ASSERT(OnTaskQueue());
mCDMProxyPromise.Complete();
mCDMProxy = aProxy;
mReader->SetCDMProxy(aProxy);
mStateObj->HandleCDMProxyReady();
}
void
MediaDecoderStateMachine::OnCDMProxyNotReady()
{
MOZ_ASSERT(OnTaskQueue());
mCDMProxyPromise.Complete();
}
void
MediaDecoderStateMachine::SetAudioCaptured(bool aCaptured)
{
MOZ_ASSERT(OnTaskQueue());
if (aCaptured == mAudioCaptured) {
return;
}
// Rest these flags so they are consistent with the status of the sink.
// TODO: Move these flags into MediaSink to improve cohesion so we don't need
// to reset these flags when switching MediaSinks.
mAudioCompleted = false;
mVideoCompleted = false;
// Backup current playback parameters.
MediaSink::PlaybackParams params = mMediaSink->GetPlaybackParams();
// Stop and shut down the existing sink.
StopMediaSink();
mMediaSink->Shutdown();
// Create a new sink according to whether audio is captured.
mMediaSink = CreateMediaSink(aCaptured);
// Restore playback parameters.
mMediaSink->SetPlaybackParams(params);
mAudioCaptured = aCaptured;
// Don't buffer as much when audio is captured because we don't need to worry
// about high latency audio devices.
mAmpleAudioThresholdUsecs =
mAudioCaptured ? detail::AMPLE_AUDIO_USECS / 2 : detail::AMPLE_AUDIO_USECS;
mStateObj->HandleAudioCaptured();
}
uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const
{
MOZ_ASSERT(OnTaskQueue());
return (mReader->IsAsync() && mReader->VideoIsHardwareAccelerated())
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
}
nsCString
MediaDecoderStateMachine::GetDebugInfo()
{
MOZ_ASSERT(OnTaskQueue());
return nsPrintfCString(
"MediaDecoderStateMachine State: GetMediaTime=%" PRId64 " GetClock="
"%" PRId64 " mMediaSink=%p state=%s mPlayState=%d "
"mSentFirstFrameLoadedEvent=%d IsPlaying=%d mAudioStatus=%s "
"mVideoStatus=%s mDecodedAudioEndTime=%" PRId64
" mDecodedVideoEndTime=%" PRId64 "mAudioCompleted=%d "
"mVideoCompleted=%d",
GetMediaTime(), mMediaSink->IsStarted() ? GetClock() : -1,
mMediaSink.get(), ToStateStr(), mPlayState.Ref(),
mSentFirstFrameLoadedEvent, IsPlaying(), AudioRequestStatus(),
VideoRequestStatus(), mDecodedAudioEndTime, mDecodedVideoEndTime,
mAudioCompleted, mVideoCompleted)
+ mStateObj->GetDebugInfo() + nsCString("\n")
+ mMediaSink->GetDebugInfo();
}
RefPtr<MediaDecoder::DebugInfoPromise>
MediaDecoderStateMachine::RequestDebugInfo()
{
using PromiseType = MediaDecoder::DebugInfoPromise;
RefPtr<PromiseType::Private> p = new PromiseType::Private(__func__);
RefPtr<MediaDecoderStateMachine> self = this;
OwnerThread()->Dispatch(NS_NewRunnableFunction([self, p] () {
p->Resolve(self->GetDebugInfo(), __func__);
}), AbstractThread::AssertDispatchSuccess, AbstractThread::TailDispatch);
return p.forget();
}
void MediaDecoderStateMachine::AddOutputStream(ProcessedMediaStream* aStream,
bool aFinishWhenEnded)
{
MOZ_ASSERT(NS_IsMainThread());
DECODER_LOG("AddOutputStream aStream=%p!", aStream);
mOutputStreamManager->Add(aStream, aFinishWhenEnded);
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<bool>(
this, &MediaDecoderStateMachine::SetAudioCaptured, true);
OwnerThread()->Dispatch(r.forget());
}
void MediaDecoderStateMachine::RemoveOutputStream(MediaStream* aStream)
{
MOZ_ASSERT(NS_IsMainThread());
DECODER_LOG("RemoveOutputStream=%p!", aStream);
mOutputStreamManager->Remove(aStream);
if (mOutputStreamManager->IsEmpty()) {
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<bool>(
this, &MediaDecoderStateMachine::SetAudioCaptured, false);
OwnerThread()->Dispatch(r.forget());
}
}
size_t
MediaDecoderStateMachine::SizeOfVideoQueue() const
{
return mReader->SizeOfVideoQueueInBytes();
}
size_t
MediaDecoderStateMachine::SizeOfAudioQueue() const
{
return mReader->SizeOfAudioQueueInBytes();
}
AbstractCanonical<media::TimeIntervals>*
MediaDecoderStateMachine::CanonicalBuffered() const
{
return mReader->CanonicalBuffered();
}
MediaEventSource<void>&
MediaDecoderStateMachine::OnMediaNotSeekable() const
{
return mReader->OnMediaNotSeekable();
}
const char*
MediaDecoderStateMachine::AudioRequestStatus() const
{
MOZ_ASSERT(OnTaskQueue());
if (IsRequestingAudioData()) {
MOZ_DIAGNOSTIC_ASSERT(!IsWaitingAudioData());
return "pending";
} else if (IsWaitingAudioData()) {
return "waiting";
}
return "idle";
}
const char*
MediaDecoderStateMachine::VideoRequestStatus() const
{
MOZ_ASSERT(OnTaskQueue());
if (IsRequestingVideoData()) {
MOZ_DIAGNOSTIC_ASSERT(!IsWaitingVideoData());
return "pending";
} else if (IsWaitingVideoData()) {
return "waiting";
}
return "idle";
}
void
MediaDecoderStateMachine::OnSuspendTimerResolved()
{
DECODER_LOG("OnSuspendTimerResolved");
mVideoDecodeSuspendTimer.CompleteRequest();
mStateObj->HandleVideoSuspendTimeout();
}
void
MediaDecoderStateMachine::CancelSuspendTimer()
{
DECODER_LOG("CancelSuspendTimer: State: %s, Timer.IsScheduled: %c",
ToStateStr(mStateObj->GetState()),
mVideoDecodeSuspendTimer.IsScheduled() ? 'T' : 'F');
MOZ_ASSERT(OnTaskQueue());
if (mVideoDecodeSuspendTimer.IsScheduled()) {
mOnPlaybackEvent.Notify(MediaEventType::CancelVideoSuspendTimer);
}
mVideoDecodeSuspendTimer.Reset();
}
} // namespace mozilla
#undef NS_DispatchToMainThread