gecko-dev/servo/components/script/timers.rs
Igor Matuszewski d3e1a09b4c servo: Merge #20399 - Sanitize Heap::handle(_mut) functions (from Xanewok:remove-heap-handle-mut); r=jdm
<!-- Please describe your changes on the following line: -->
Complementary to https://github.com/servo/rust-mozjs/pull/404.

Removing `Heap::handle_mut` didn't warrant any changes on Servo side, and so the changes here are only to fix compilation with `Heap::handle` being now marked as `unsafe`.

The main idea is that we can't hand out handles to heap values themselves, since they're not guaranteed to be rooted, but it's safe to do when we are - hence why the safe impl on `RootedTraceableBox<Heap<T>>` and why it's safe to use inside structs that hold a Heap and are `#[must_root]`.

---
<!-- Thank you for contributing to Servo! Please replace each `[ ]` by `[X]` when the step is complete, and replace `__` with appropriate data: -->
- [X] `./mach build -d` does not report any errors
- [X] `./mach test-tidy` does not report any errors
- [ ] These changes fix #__ (github issue number if applicable).

<!-- Either: -->
- [ ] There are tests for these changes OR
- [X] These changes do not require tests because the compiler forces correctness here.

<!-- Also, please make sure that "Allow edits from maintainers" checkbox is checked, so that we can help you if you get stuck somewhere along the way.-->

<!-- Pull requests that do not address these steps are welcome, but they will require additional verification as part of the review process. -->

Source-Repo: https://github.com/servo/servo
Source-Revision: 18ef5874dd3e11551e2f9503746540847eeb974c

--HG--
extra : subtree_source : https%3A//hg.mozilla.org/projects/converted-servo-linear
extra : subtree_revision : 51f863c54f4fa1d159691fea3ae5b9ff76e004b9
2018-03-23 13:06:01 -04:00

527 lines
19 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use dom::bindings::callback::ExceptionHandling::Report;
use dom::bindings::cell::DomRefCell;
use dom::bindings::codegen::Bindings::FunctionBinding::Function;
use dom::bindings::reflector::DomObject;
use dom::bindings::str::DOMString;
use dom::document::FakeRequestAnimationFrameCallback;
use dom::eventsource::EventSourceTimeoutCallback;
use dom::globalscope::GlobalScope;
use dom::testbinding::TestBindingCallback;
use dom::xmlhttprequest::XHRTimeoutCallback;
use euclid::Length;
use ipc_channel::ipc::IpcSender;
use js::jsapi::{HandleValue, Heap};
use js::jsval::{JSVal, UndefinedValue};
use script_traits::{MsDuration, precise_time_ms};
use script_traits::{TimerEvent, TimerEventId, TimerEventRequest};
use script_traits::{TimerSchedulerMsg, TimerSource};
use servo_config::prefs::PREFS;
use std::cell::Cell;
use std::cmp::{self, Ord, Ordering};
use std::collections::HashMap;
use std::default::Default;
use std::rc::Rc;
#[derive(Clone, Copy, Debug, Eq, Hash, JSTraceable, MallocSizeOf, Ord, PartialEq, PartialOrd)]
pub struct OneshotTimerHandle(i32);
#[derive(DenyPublicFields, JSTraceable, MallocSizeOf)]
pub struct OneshotTimers {
js_timers: JsTimers,
#[ignore_malloc_size_of = "Defined in std"]
timer_event_chan: IpcSender<TimerEvent>,
#[ignore_malloc_size_of = "Defined in std"]
scheduler_chan: IpcSender<TimerSchedulerMsg>,
next_timer_handle: Cell<OneshotTimerHandle>,
timers: DomRefCell<Vec<OneshotTimer>>,
suspended_since: Cell<Option<MsDuration>>,
/// Initially 0, increased whenever the associated document is reactivated
/// by the amount of ms the document was inactive. The current time can be
/// offset back by this amount for a coherent time across document
/// activations.
suspension_offset: Cell<MsDuration>,
/// Calls to `fire_timer` with a different argument than this get ignored.
/// They were previously scheduled and got invalidated when
/// - timers were suspended,
/// - the timer it was scheduled for got canceled or
/// - a timer was added with an earlier callback time. In this case the
/// original timer is rescheduled when it is the next one to get called.
expected_event_id: Cell<TimerEventId>,
}
#[derive(DenyPublicFields, JSTraceable, MallocSizeOf)]
struct OneshotTimer {
handle: OneshotTimerHandle,
source: TimerSource,
callback: OneshotTimerCallback,
scheduled_for: MsDuration,
}
// This enum is required to work around the fact that trait objects do not support generic methods.
// A replacement trait would have a method such as
// `invoke<T: DomObject>(self: Box<Self>, this: &T, js_timers: &JsTimers);`.
#[derive(JSTraceable, MallocSizeOf)]
pub enum OneshotTimerCallback {
XhrTimeout(XHRTimeoutCallback),
EventSourceTimeout(EventSourceTimeoutCallback),
JsTimer(JsTimerTask),
TestBindingCallback(TestBindingCallback),
FakeRequestAnimationFrame(FakeRequestAnimationFrameCallback),
}
impl OneshotTimerCallback {
fn invoke<T: DomObject>(self, this: &T, js_timers: &JsTimers) {
match self {
OneshotTimerCallback::XhrTimeout(callback) => callback.invoke(),
OneshotTimerCallback::EventSourceTimeout(callback) => callback.invoke(),
OneshotTimerCallback::JsTimer(task) => task.invoke(this, js_timers),
OneshotTimerCallback::TestBindingCallback(callback) => callback.invoke(),
OneshotTimerCallback::FakeRequestAnimationFrame(callback) => callback.invoke(),
}
}
}
impl Ord for OneshotTimer {
fn cmp(&self, other: &OneshotTimer) -> Ordering {
match self.scheduled_for.cmp(&other.scheduled_for).reverse() {
Ordering::Equal => self.handle.cmp(&other.handle).reverse(),
res => res
}
}
}
impl PartialOrd for OneshotTimer {
fn partial_cmp(&self, other: &OneshotTimer) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Eq for OneshotTimer {}
impl PartialEq for OneshotTimer {
fn eq(&self, other: &OneshotTimer) -> bool {
self as *const OneshotTimer == other as *const OneshotTimer
}
}
impl OneshotTimers {
pub fn new(timer_event_chan: IpcSender<TimerEvent>,
scheduler_chan: IpcSender<TimerSchedulerMsg>)
-> OneshotTimers {
OneshotTimers {
js_timers: JsTimers::new(),
timer_event_chan: timer_event_chan,
scheduler_chan: scheduler_chan,
next_timer_handle: Cell::new(OneshotTimerHandle(1)),
timers: DomRefCell::new(Vec::new()),
suspended_since: Cell::new(None),
suspension_offset: Cell::new(Length::new(0)),
expected_event_id: Cell::new(TimerEventId(0)),
}
}
pub fn schedule_callback(&self,
callback: OneshotTimerCallback,
duration: MsDuration,
source: TimerSource)
-> OneshotTimerHandle {
let new_handle = self.next_timer_handle.get();
self.next_timer_handle.set(OneshotTimerHandle(new_handle.0 + 1));
let scheduled_for = self.base_time() + duration;
let timer = OneshotTimer {
handle: new_handle,
source: source,
callback: callback,
scheduled_for: scheduled_for,
};
{
let mut timers = self.timers.borrow_mut();
let insertion_index = timers.binary_search(&timer).err().unwrap();
timers.insert(insertion_index, timer);
}
if self.is_next_timer(new_handle) {
self.schedule_timer_call();
}
new_handle
}
pub fn unschedule_callback(&self, handle: OneshotTimerHandle) {
let was_next = self.is_next_timer(handle);
self.timers.borrow_mut().retain(|t| t.handle != handle);
if was_next {
self.invalidate_expected_event_id();
self.schedule_timer_call();
}
}
fn is_next_timer(&self, handle: OneshotTimerHandle) -> bool {
match self.timers.borrow().last() {
None => false,
Some(ref max_timer) => max_timer.handle == handle
}
}
pub fn fire_timer(&self, id: TimerEventId, global: &GlobalScope) {
let expected_id = self.expected_event_id.get();
if expected_id != id {
debug!("ignoring timer fire event {:?} (expected {:?})", id, expected_id);
return;
}
assert!(self.suspended_since.get().is_none());
let base_time = self.base_time();
// Since the event id was the expected one, at least one timer should be due.
if base_time < self.timers.borrow().last().unwrap().scheduled_for {
warn!("Unexpected timing!");
return;
}
// select timers to run to prevent firing timers
// that were installed during fire of another timer
let mut timers_to_run = Vec::new();
loop {
let mut timers = self.timers.borrow_mut();
if timers.is_empty() || timers.last().unwrap().scheduled_for > base_time {
break;
}
timers_to_run.push(timers.pop().unwrap());
}
for timer in timers_to_run {
let callback = timer.callback;
callback.invoke(global, &self.js_timers);
}
self.schedule_timer_call();
}
fn base_time(&self) -> MsDuration {
let offset = self.suspension_offset.get();
match self.suspended_since.get() {
Some(time) => time - offset,
None => precise_time_ms() - offset,
}
}
pub fn slow_down(&self) {
let duration = PREFS.get("js.timers.minimum_duration").as_u64().unwrap_or(1000);
self.js_timers.set_min_duration(MsDuration::new(duration));
}
pub fn speed_up(&self) {
self.js_timers.remove_min_duration();
}
pub fn suspend(&self) {
// Suspend is idempotent: do nothing if the timers are already suspended.
if self.suspended_since.get().is_some() {
return warn!("Suspending an already suspended timer.");
}
debug!("Suspending timers.");
self.suspended_since.set(Some(precise_time_ms()));
self.invalidate_expected_event_id();
}
pub fn resume(&self) {
// Suspend is idempotent: do nothing if the timers are already suspended.
let additional_offset = match self.suspended_since.get() {
Some(suspended_since) => precise_time_ms() - suspended_since,
None => return warn!("Resuming an already resumed timer."),
};
debug!("Resuming timers.");
self.suspension_offset.set(self.suspension_offset.get() + additional_offset);
self.suspended_since.set(None);
self.schedule_timer_call();
}
fn schedule_timer_call(&self) {
if self.suspended_since.get().is_some() {
// The timer will be scheduled when the pipeline is fully activated.
return;
}
let timers = self.timers.borrow();
if let Some(timer) = timers.last() {
let expected_event_id = self.invalidate_expected_event_id();
let delay = Length::new(timer.scheduled_for.get().saturating_sub(precise_time_ms().get()));
let request = TimerEventRequest(self.timer_event_chan.clone(), timer.source,
expected_event_id, delay);
self.scheduler_chan.send(TimerSchedulerMsg::Request(request)).unwrap();
}
}
fn invalidate_expected_event_id(&self) -> TimerEventId {
let TimerEventId(currently_expected) = self.expected_event_id.get();
let next_id = TimerEventId(currently_expected + 1);
debug!("invalidating expected timer (was {:?}, now {:?}", currently_expected, next_id);
self.expected_event_id.set(next_id);
next_id
}
pub fn set_timeout_or_interval(&self,
global: &GlobalScope,
callback: TimerCallback,
arguments: Vec<HandleValue>,
timeout: i32,
is_interval: IsInterval,
source: TimerSource)
-> i32 {
self.js_timers.set_timeout_or_interval(global,
callback,
arguments,
timeout,
is_interval,
source)
}
pub fn clear_timeout_or_interval(&self, global: &GlobalScope, handle: i32) {
self.js_timers.clear_timeout_or_interval(global, handle)
}
}
#[derive(Clone, Copy, Eq, Hash, JSTraceable, MallocSizeOf, Ord, PartialEq, PartialOrd)]
pub struct JsTimerHandle(i32);
#[derive(DenyPublicFields, JSTraceable, MallocSizeOf)]
pub struct JsTimers {
next_timer_handle: Cell<JsTimerHandle>,
active_timers: DomRefCell<HashMap<JsTimerHandle, JsTimerEntry>>,
/// The nesting level of the currently executing timer task or 0.
nesting_level: Cell<u32>,
/// Used to introduce a minimum delay in event intervals
min_duration: Cell<Option<MsDuration>>,
}
#[derive(JSTraceable, MallocSizeOf)]
struct JsTimerEntry {
oneshot_handle: OneshotTimerHandle,
}
// Holder for the various JS values associated with setTimeout
// (ie. function value to invoke and all arguments to pass
// to the function when calling it)
// TODO: Handle rooting during invocation when movable GC is turned on
#[derive(JSTraceable, MallocSizeOf)]
pub struct JsTimerTask {
#[ignore_malloc_size_of = "Because it is non-owning"]
handle: JsTimerHandle,
source: TimerSource,
callback: InternalTimerCallback,
is_interval: IsInterval,
nesting_level: u32,
duration: MsDuration,
}
// Enum allowing more descriptive values for the is_interval field
#[derive(Clone, Copy, JSTraceable, MallocSizeOf, PartialEq)]
pub enum IsInterval {
Interval,
NonInterval,
}
#[derive(Clone)]
pub enum TimerCallback {
StringTimerCallback(DOMString),
FunctionTimerCallback(Rc<Function>),
}
#[derive(Clone, JSTraceable, MallocSizeOf)]
enum InternalTimerCallback {
StringTimerCallback(DOMString),
FunctionTimerCallback(
#[ignore_malloc_size_of = "Rc"]
Rc<Function>,
#[ignore_malloc_size_of = "Rc"]
Rc<Box<[Heap<JSVal>]>>),
}
impl JsTimers {
pub fn new() -> JsTimers {
JsTimers {
next_timer_handle: Cell::new(JsTimerHandle(1)),
active_timers: DomRefCell::new(HashMap::new()),
nesting_level: Cell::new(0),
min_duration: Cell::new(None),
}
}
// see https://html.spec.whatwg.org/multipage/#timer-initialisation-steps
pub fn set_timeout_or_interval(&self,
global: &GlobalScope,
callback: TimerCallback,
arguments: Vec<HandleValue>,
timeout: i32,
is_interval: IsInterval,
source: TimerSource)
-> i32 {
let callback = match callback {
TimerCallback::StringTimerCallback(code_str) =>
InternalTimerCallback::StringTimerCallback(code_str),
TimerCallback::FunctionTimerCallback(function) => {
// This is a bit complicated, but this ensures that the vector's
// buffer isn't reallocated (and moved) after setting the Heap values
let mut args = Vec::with_capacity(arguments.len());
for _ in 0..arguments.len() {
args.push(Heap::default());
}
for (i, item) in arguments.iter().enumerate() {
args.get_mut(i).unwrap().set(item.get());
}
InternalTimerCallback::FunctionTimerCallback(function, Rc::new(args.into_boxed_slice()))
}
};
// step 2
let JsTimerHandle(new_handle) = self.next_timer_handle.get();
self.next_timer_handle.set(JsTimerHandle(new_handle + 1));
// step 3 as part of initialize_and_schedule below
// step 4
let mut task = JsTimerTask {
handle: JsTimerHandle(new_handle),
source: source,
callback: callback,
is_interval: is_interval,
nesting_level: 0,
duration: Length::new(0),
};
// step 5
task.duration = Length::new(cmp::max(0, timeout) as u64);
// step 3, 6-9, 11-14
self.initialize_and_schedule(global, task);
// step 10
new_handle
}
pub fn clear_timeout_or_interval(&self, global: &GlobalScope, handle: i32) {
let mut active_timers = self.active_timers.borrow_mut();
if let Some(entry) = active_timers.remove(&JsTimerHandle(handle)) {
global.unschedule_callback(entry.oneshot_handle);
}
}
pub fn set_min_duration(&self, duration: MsDuration) {
self.min_duration.set(Some(duration));
}
pub fn remove_min_duration(&self) {
self.min_duration.set(None);
}
// see step 13 of https://html.spec.whatwg.org/multipage/#timer-initialisation-steps
fn user_agent_pad(&self, current_duration: MsDuration) -> MsDuration {
match self.min_duration.get() {
Some(min_duration) => {
cmp::max(min_duration, current_duration)
},
None => current_duration
}
}
// see https://html.spec.whatwg.org/multipage/#timer-initialisation-steps
fn initialize_and_schedule(&self, global: &GlobalScope, mut task: JsTimerTask) {
let handle = task.handle;
let mut active_timers = self.active_timers.borrow_mut();
// step 6
let nesting_level = self.nesting_level.get();
// step 7, 13
let duration = self.user_agent_pad(clamp_duration(nesting_level, task.duration));
// step 8, 9
task.nesting_level = nesting_level + 1;
// essentially step 11, 12, and 14
let callback = OneshotTimerCallback::JsTimer(task);
let oneshot_handle = global.schedule_callback(callback, duration);
// step 3
let entry = active_timers.entry(handle).or_insert(JsTimerEntry {
oneshot_handle: oneshot_handle,
});
entry.oneshot_handle = oneshot_handle;
}
}
// see step 7 of https://html.spec.whatwg.org/multipage/#timer-initialisation-steps
fn clamp_duration(nesting_level: u32, unclamped: MsDuration) -> MsDuration {
let lower_bound = if nesting_level > 5 {
4
} else {
0
};
cmp::max(Length::new(lower_bound), unclamped)
}
impl JsTimerTask {
// see https://html.spec.whatwg.org/multipage/#timer-initialisation-steps
pub fn invoke<T: DomObject>(self, this: &T, timers: &JsTimers) {
// step 4.1 can be ignored, because we proactively prevent execution
// of this task when its scheduled execution is canceled.
// prep for step 6 in nested set_timeout_or_interval calls
timers.nesting_level.set(self.nesting_level);
// step 4.2
match self.callback {
InternalTimerCallback::StringTimerCallback(ref code_str) => {
let global = this.global();
let cx = global.get_cx();
rooted!(in(cx) let mut rval = UndefinedValue());
global.evaluate_js_on_global_with_result(
code_str, rval.handle_mut());
},
InternalTimerCallback::FunctionTimerCallback(ref function, ref arguments) => {
let arguments = self.collect_heap_args(arguments);
let _ = function.Call_(this, arguments, Report);
},
};
// reset nesting level (see above)
timers.nesting_level.set(0);
// step 4.3
// Since we choose proactively prevent execution (see 4.1 above), we must only
// reschedule repeating timers when they were not canceled as part of step 4.2.
if self.is_interval == IsInterval::Interval &&
timers.active_timers.borrow().contains_key(&self.handle) {
timers.initialize_and_schedule(&this.global(), self);
}
}
// Returning Handles directly from Heap values is inherently unsafe, but here it's
// always done via rooted JsTimers, which is safe.
#[allow(unsafe_code)]
fn collect_heap_args(&self, args: &[Heap<JSVal>]) -> Vec<HandleValue> {
args.iter().map(|arg| unsafe { arg.handle() }).collect()
}
}