mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-09 06:22:08 +00:00
9bd60ea2d4
--HG-- extra : rebase_source : bd427749667ddd6641eff414879c3706a5cb5f5e
691 lines
24 KiB
C++
691 lines
24 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
|
|
/* libunwind - a platform-independent unwind library
|
|
Copyright 2011 Linaro Limited
|
|
|
|
This file is part of libunwind.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
|
|
// Copyright (c) 2010 Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Derived from libunwind, with extensive modifications.
|
|
|
|
// This file translates EXIDX unwind information into the same format
|
|
// that LUL uses for CFI information. Hence LUL's CFI unwinding
|
|
// abilities also become usable for EXIDX.
|
|
//
|
|
// See: "Exception Handling ABI for the ARM Architecture", ARM IHI 0038A
|
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
|
|
|
|
// EXIDX data is presented in two parts:
|
|
//
|
|
// * an index table. This contains two words per routine,
|
|
// the first of which identifies the routine, and the second
|
|
// of which is a reference to the unwind bytecode. If the
|
|
// bytecode is very compact -- 3 bytes or less -- it can be
|
|
// stored directly in the second word.
|
|
//
|
|
// * an area containing the unwind bytecodes.
|
|
//
|
|
// General flow is: ExceptionTableInfo::Start iterates over all
|
|
// of the index table entries (pairs). For each entry, it:
|
|
//
|
|
// * calls ExceptionTableInfo::ExtabEntryExtract to copy the bytecode
|
|
// out into an intermediate buffer.
|
|
|
|
// * uses ExceptionTableInfo::ExtabEntryDecode to parse the intermediate
|
|
// buffer. Each bytecode instruction is bundled into a
|
|
// arm_ex_to_module::extab_data structure, and handed to ..
|
|
//
|
|
// * .. ARMExToModule::ImproveStackFrame, which in turn hands it to
|
|
// ARMExToModule::TranslateCmd, and that generates the pseudo-CFI
|
|
// records that Breakpad stores.
|
|
|
|
// This file is derived from the following files in
|
|
// toolkit/crashreporter/google-breakpad:
|
|
// src/common/arm_ex_to_module.cc
|
|
// src/common/arm_ex_reader.cc
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/NullPtr.h"
|
|
|
|
#include "LulExidxExt.h"
|
|
|
|
|
|
#define ARM_EXBUF_START(x) (((x) >> 4) & 0x0f)
|
|
#define ARM_EXBUF_COUNT(x) ((x) & 0x0f)
|
|
#define ARM_EXBUF_END(x) (ARM_EXBUF_START(x) + ARM_EXBUF_COUNT(x))
|
|
|
|
namespace lul {
|
|
|
|
// Translate command from extab_data to command for Module.
|
|
int ARMExToModule::TranslateCmd(const struct extab_data* edata,
|
|
LExpr& vsp) {
|
|
int ret = 0;
|
|
switch (edata->cmd) {
|
|
case ARM_EXIDX_CMD_FINISH:
|
|
/* Copy LR to PC if there isn't currently a rule for PC in force. */
|
|
if (curr_rules_.mR15expr.mHow == LExpr::UNKNOWN) {
|
|
if (curr_rules_.mR14expr.mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR15expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R14, 0);
|
|
} else {
|
|
curr_rules_.mR15expr = curr_rules_.mR14expr;
|
|
}
|
|
}
|
|
break;
|
|
case ARM_EXIDX_CMD_SUB_FROM_VSP:
|
|
vsp = vsp.add_delta(- static_cast<long>(edata->data));
|
|
break;
|
|
case ARM_EXIDX_CMD_ADD_TO_VSP:
|
|
vsp = vsp.add_delta(static_cast<long>(edata->data));
|
|
break;
|
|
case ARM_EXIDX_CMD_REG_POP:
|
|
for (unsigned int i = 0; i < 16; i++) {
|
|
if (edata->data & (1 << i)) {
|
|
// See if we're summarising for int register |i|. If so,
|
|
// describe how to pull it off the stack. The cast of |i| is
|
|
// a bit of a kludge but works because DW_REG_ARM_Rn has the
|
|
// value |n|, for 0 <= |n| <= 15 -- that is, for the ARM
|
|
// general-purpose registers.
|
|
LExpr* regI_exprP = curr_rules_.ExprForRegno((DW_REG_NUMBER)i);
|
|
if (regI_exprP) {
|
|
*regI_exprP = vsp.deref();
|
|
}
|
|
vsp = vsp.add_delta(4);
|
|
}
|
|
}
|
|
/* Set cfa in case the SP got popped. */
|
|
if (edata->data & (1 << 13)) {
|
|
vsp = curr_rules_.mR13expr;
|
|
}
|
|
break;
|
|
case ARM_EXIDX_CMD_REG_TO_SP: {
|
|
MOZ_ASSERT (edata->data < 16);
|
|
int reg_no = edata->data;
|
|
// Same comment as above, re the casting of |reg_no|, applies.
|
|
LExpr* reg_exprP = curr_rules_.ExprForRegno((DW_REG_NUMBER)reg_no);
|
|
if (reg_exprP) {
|
|
if (reg_exprP->mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR13expr = LExpr(LExpr::NODEREF, reg_no, 0);
|
|
} else {
|
|
curr_rules_.mR13expr = *reg_exprP;
|
|
}
|
|
vsp = curr_rules_.mR13expr;
|
|
}
|
|
break;
|
|
}
|
|
case ARM_EXIDX_CMD_VFP_POP:
|
|
/* Don't recover VFP registers, but be sure to adjust the stack
|
|
pointer. */
|
|
for (unsigned int i = ARM_EXBUF_START(edata->data);
|
|
i <= ARM_EXBUF_END(edata->data); i++) {
|
|
vsp = vsp.add_delta(8);
|
|
}
|
|
if (!(edata->data & ARM_EXIDX_VFP_FSTMD)) {
|
|
vsp = vsp.add_delta(4);
|
|
}
|
|
break;
|
|
case ARM_EXIDX_CMD_WREG_POP:
|
|
for (unsigned int i = ARM_EXBUF_START(edata->data);
|
|
i <= ARM_EXBUF_END(edata->data); i++) {
|
|
vsp = vsp.add_delta(8);
|
|
}
|
|
break;
|
|
case ARM_EXIDX_CMD_WCGR_POP:
|
|
// Pop wCGR registers under mask {wCGR3,2,1,0}, hence "i < 4"
|
|
for (unsigned int i = 0; i < 4; i++) {
|
|
if (edata->data & (1 << i)) {
|
|
vsp = vsp.add_delta(4);
|
|
}
|
|
}
|
|
break;
|
|
case ARM_EXIDX_CMD_REFUSED:
|
|
case ARM_EXIDX_CMD_RESERVED:
|
|
ret = -1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ARMExToModule::AddStackFrame(uintptr_t addr, size_t size) {
|
|
// Here we are effectively reinitialising the EXIDX summariser for a
|
|
// new code address range. smap_ stays unchanged. All other fields
|
|
// are reinitialised.
|
|
vsp_ = LExpr(LExpr::NODEREF, DW_REG_ARM_R13, 0);
|
|
(void) new (&curr_rules_) RuleSet();
|
|
curr_rules_.mAddr = (uintptr_t)addr;
|
|
curr_rules_.mLen = (uintptr_t)size;
|
|
if (0) {
|
|
char buf[100];
|
|
sprintf(buf, " AddStackFrame %llx .. %llx",
|
|
(uint64_t)addr, (uint64_t)(addr + size - 1));
|
|
log_(buf);
|
|
}
|
|
}
|
|
|
|
int ARMExToModule::ImproveStackFrame(const struct extab_data* edata) {
|
|
return TranslateCmd(edata, vsp_) ;
|
|
}
|
|
|
|
void ARMExToModule::DeleteStackFrame() {
|
|
}
|
|
|
|
void ARMExToModule::SubmitStackFrame() {
|
|
// JRS: I'm really not sure what this means, or if it is necessary
|
|
// return address always winds up in pc
|
|
//stack_frame_entry_->initial_rules[ustr__ZDra()] // ".ra"
|
|
// = stack_frame_entry_->initial_rules[ustr__pc()];
|
|
// maybe don't need to do anything here?
|
|
|
|
// the final value of vsp is the new value of sp
|
|
curr_rules_.mR13expr = vsp_;
|
|
|
|
// Finally, add the completed RuleSet to the SecMap
|
|
if (curr_rules_.mLen > 0) {
|
|
|
|
// Futz with the rules for r4 .. r11 in the same way as happens
|
|
// with the CFI summariser:
|
|
/* Mark callee-saved registers (r4 .. r11) as unchanged, if there is
|
|
no other information about them. FIXME: do this just once, at
|
|
the point where the ruleset is committed. */
|
|
if (curr_rules_.mR7expr.mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR7expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R7, 0);
|
|
}
|
|
if (curr_rules_.mR11expr.mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR11expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R11, 0);
|
|
}
|
|
if (curr_rules_.mR12expr.mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR12expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R12, 0);
|
|
}
|
|
if (curr_rules_.mR14expr.mHow == LExpr::UNKNOWN) {
|
|
curr_rules_.mR14expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R14, 0);
|
|
}
|
|
|
|
// And add them
|
|
smap_->AddRuleSet(&curr_rules_);
|
|
|
|
if (0) {
|
|
curr_rules_.Print(log_);
|
|
}
|
|
if (0) {
|
|
char buf[100];
|
|
sprintf(buf, " SubmitStackFrame %llx .. %llx",
|
|
(uint64_t)curr_rules_.mAddr,
|
|
(uint64_t)(curr_rules_.mAddr + curr_rules_.mLen - 1));
|
|
log_(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#define ARM_EXIDX_CANT_UNWIND 0x00000001
|
|
#define ARM_EXIDX_COMPACT 0x80000000
|
|
#define ARM_EXTBL_OP_FINISH 0xb0
|
|
#define ARM_EXIDX_TABLE_LIMIT (255*4)
|
|
|
|
using lul::ARM_EXIDX_CMD_FINISH;
|
|
using lul::ARM_EXIDX_CMD_SUB_FROM_VSP;
|
|
using lul::ARM_EXIDX_CMD_ADD_TO_VSP;
|
|
using lul::ARM_EXIDX_CMD_REG_POP;
|
|
using lul::ARM_EXIDX_CMD_REG_TO_SP;
|
|
using lul::ARM_EXIDX_CMD_VFP_POP;
|
|
using lul::ARM_EXIDX_CMD_WREG_POP;
|
|
using lul::ARM_EXIDX_CMD_WCGR_POP;
|
|
using lul::ARM_EXIDX_CMD_RESERVED;
|
|
using lul::ARM_EXIDX_CMD_REFUSED;
|
|
using lul::exidx_entry;
|
|
using lul::ARM_EXIDX_VFP_SHIFT_16;
|
|
using lul::ARM_EXIDX_VFP_FSTMD;
|
|
using lul::MemoryRange;
|
|
|
|
|
|
static void* Prel31ToAddr(const void* addr)
|
|
{
|
|
uint32_t offset32 = *reinterpret_cast<const uint32_t*>(addr);
|
|
// sign extend offset32[30:0] to 64 bits -- copy bit 30 to positions
|
|
// 63:31 inclusive.
|
|
uint64_t offset64 = offset32;
|
|
if (offset64 & (1ULL << 30))
|
|
offset64 |= 0xFFFFFFFF80000000ULL;
|
|
else
|
|
offset64 &= 0x000000007FFFFFFFULL;
|
|
return ((char*)addr) + (uintptr_t)offset64;
|
|
}
|
|
|
|
|
|
// Extract unwind bytecode for the function denoted by |entry| into |buf|,
|
|
// and return the number of bytes of |buf| written, along with a code
|
|
// indicating the outcome.
|
|
|
|
ExceptionTableInfo::ExExtractResult
|
|
ExceptionTableInfo::ExtabEntryExtract(const struct exidx_entry* entry,
|
|
uint8_t* buf, size_t buf_size,
|
|
/*OUT*/size_t* buf_used)
|
|
{
|
|
MemoryRange mr_out(buf, buf_size);
|
|
|
|
*buf_used = 0;
|
|
|
|
# define PUT_BUF_U8(_byte) \
|
|
do { if (!mr_out.Covers(*buf_used, 1)) return ExOutBufOverflow; \
|
|
buf[(*buf_used)++] = (_byte); } while (0)
|
|
|
|
# define GET_EX_U32(_lval, _addr, _sec_mr) \
|
|
do { if (!(_sec_mr).Covers(reinterpret_cast<const uint8_t*>(_addr) \
|
|
- (_sec_mr).data(), 4)) \
|
|
return ExInBufOverflow; \
|
|
(_lval) = *(reinterpret_cast<const uint32_t*>(_addr)); } while (0)
|
|
|
|
# define GET_EXIDX_U32(_lval, _addr) \
|
|
GET_EX_U32(_lval, _addr, mr_exidx_)
|
|
# define GET_EXTAB_U32(_lval, _addr) \
|
|
GET_EX_U32(_lval, _addr, mr_extab_)
|
|
|
|
uint32_t data;
|
|
GET_EXIDX_U32(data, &entry->data);
|
|
|
|
// A function can be marked CANT_UNWIND if (eg) it is known to be
|
|
// at the bottom of the stack.
|
|
if (data == ARM_EXIDX_CANT_UNWIND)
|
|
return ExCantUnwind;
|
|
|
|
uint32_t pers; // personality number
|
|
uint32_t extra; // number of extra data words required
|
|
uint32_t extra_allowed; // number of extra data words allowed
|
|
uint32_t* extbl_data; // the handler entry, if not inlined
|
|
|
|
if (data & ARM_EXIDX_COMPACT) {
|
|
// The handler table entry has been inlined into the index table entry.
|
|
// In this case it can only be an ARM-defined compact model, since
|
|
// bit 31 is 1. Only personalities 0, 1 and 2 are defined for the
|
|
// ARM compact model, but 1 and 2 are "Long format" and may require
|
|
// extra data words. Hence the allowable personalities here are:
|
|
// personality 0, in which case 'extra' has no meaning
|
|
// personality 1, with zero extra words
|
|
// personality 2, with zero extra words
|
|
extbl_data = nullptr;
|
|
pers = (data >> 24) & 0x0F;
|
|
extra = (data >> 16) & 0xFF;
|
|
extra_allowed = 0;
|
|
}
|
|
else {
|
|
// The index table entry is a pointer to the handler entry. Note
|
|
// that Prel31ToAddr will read the given address, but we already
|
|
// range-checked above.
|
|
extbl_data = reinterpret_cast<uint32_t*>(Prel31ToAddr(&entry->data));
|
|
GET_EXTAB_U32(data, extbl_data);
|
|
if (!(data & ARM_EXIDX_COMPACT)) {
|
|
// This denotes a "generic model" handler. That will involve
|
|
// executing arbitary machine code, which is something we
|
|
// can't represent here; hence reject it.
|
|
return ExCantRepresent;
|
|
}
|
|
// So we have a compact model representation. Again, 3 possible
|
|
// personalities, but this time up to 255 allowable extra words.
|
|
pers = (data >> 24) & 0x0F;
|
|
extra = (data >> 16) & 0xFF;
|
|
extra_allowed = 255;
|
|
extbl_data++;
|
|
}
|
|
|
|
// Now look at the the handler table entry. The first word is
|
|
// |data| and subsequent words start at |*extbl_data|. The number
|
|
// of extra words to use is |extra|, provided that the personality
|
|
// allows extra words. Even if it does, none may be available --
|
|
// extra_allowed is the maximum number of extra words allowed. */
|
|
if (pers == 0) {
|
|
// "Su16" in the documentation -- 3 unwinding insn bytes
|
|
// |extra| has no meaning here; instead that byte is an unwind-info byte
|
|
PUT_BUF_U8(data >> 16);
|
|
PUT_BUF_U8(data >> 8);
|
|
PUT_BUF_U8(data);
|
|
}
|
|
else if ((pers == 1 || pers == 2) && extra <= extra_allowed) {
|
|
// "Lu16" or "Lu32" respectively -- 2 unwinding insn bytes,
|
|
// and up to 255 extra words.
|
|
PUT_BUF_U8(data >> 8);
|
|
PUT_BUF_U8(data);
|
|
for (uint32_t j = 0; j < extra; j++) {
|
|
GET_EXTAB_U32(data, extbl_data);
|
|
extbl_data++;
|
|
PUT_BUF_U8(data >> 24);
|
|
PUT_BUF_U8(data >> 16);
|
|
PUT_BUF_U8(data >> 8);
|
|
PUT_BUF_U8(data >> 0);
|
|
}
|
|
}
|
|
else {
|
|
// The entry is invalid.
|
|
return ExInvalid;
|
|
}
|
|
|
|
// Make sure the entry is terminated with "FINISH"
|
|
if (*buf_used > 0 && buf[(*buf_used) - 1] != ARM_EXTBL_OP_FINISH)
|
|
PUT_BUF_U8(ARM_EXTBL_OP_FINISH);
|
|
|
|
return ExSuccess;
|
|
|
|
# undef GET_EXTAB_U32
|
|
# undef GET_EXIDX_U32
|
|
# undef GET_U32
|
|
# undef PUT_BUF_U8
|
|
}
|
|
|
|
|
|
// Take the unwind information extracted by ExtabEntryExtract
|
|
// and parse it into frame-unwind instructions. These are as
|
|
// specified in "Table 4, ARM-defined frame-unwinding instructions"
|
|
// in the specification document detailed in comments at the top
|
|
// of this file.
|
|
//
|
|
// This reads from |buf[0, +data_size)|. It checks for overruns of
|
|
// the input buffer and returns a negative value if that happens, or
|
|
// for any other failure cases. It returns zero in case of success.
|
|
int ExceptionTableInfo::ExtabEntryDecode(const uint8_t* buf, size_t buf_size)
|
|
{
|
|
if (buf == nullptr || buf_size == 0)
|
|
return -1;
|
|
|
|
MemoryRange mr_in(buf, buf_size);
|
|
const uint8_t* buf_initially = buf;
|
|
|
|
# define GET_BUF_U8(_lval) \
|
|
do { if (!mr_in.Covers(buf - buf_initially, 1)) return -1; \
|
|
(_lval) = *(buf++); } while (0)
|
|
|
|
const uint8_t* end = buf + buf_size;
|
|
|
|
while (buf < end) {
|
|
struct lul::extab_data edata;
|
|
memset(&edata, 0, sizeof(edata));
|
|
|
|
uint8_t op;
|
|
GET_BUF_U8(op);
|
|
if ((op & 0xc0) == 0x00) {
|
|
// vsp = vsp + (xxxxxx << 2) + 4
|
|
edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP;
|
|
edata.data = (((int)op & 0x3f) << 2) + 4;
|
|
}
|
|
else if ((op & 0xc0) == 0x40) {
|
|
// vsp = vsp - (xxxxxx << 2) - 4
|
|
edata.cmd = ARM_EXIDX_CMD_SUB_FROM_VSP;
|
|
edata.data = (((int)op & 0x3f) << 2) + 4;
|
|
}
|
|
else if ((op & 0xf0) == 0x80) {
|
|
uint8_t op2;
|
|
GET_BUF_U8(op2);
|
|
if (op == 0x80 && op2 == 0x00) {
|
|
// Refuse to unwind
|
|
edata.cmd = ARM_EXIDX_CMD_REFUSED;
|
|
} else {
|
|
// Pop up to 12 integer registers under masks {r15-r12},{r11-r4}
|
|
edata.cmd = ARM_EXIDX_CMD_REG_POP;
|
|
edata.data = ((op & 0xf) << 8) | op2;
|
|
edata.data = edata.data << 4;
|
|
}
|
|
}
|
|
else if ((op & 0xf0) == 0x90) {
|
|
if (op == 0x9d || op == 0x9f) {
|
|
// 9d: Reserved as prefix for ARM register to register moves
|
|
// 9f: Reserved as perfix for Intel Wireless MMX reg to reg moves
|
|
edata.cmd = ARM_EXIDX_CMD_RESERVED;
|
|
} else {
|
|
// Set vsp = r[nnnn]
|
|
edata.cmd = ARM_EXIDX_CMD_REG_TO_SP;
|
|
edata.data = op & 0x0f;
|
|
}
|
|
}
|
|
else if ((op & 0xf0) == 0xa0) {
|
|
// Pop r4 to r[4+nnn], or
|
|
// Pop r4 to r[4+nnn] and r14 or
|
|
unsigned end = (op & 0x07);
|
|
edata.data = (1 << (end + 1)) - 1;
|
|
edata.data = edata.data << 4;
|
|
if (op & 0x08) edata.data |= 1 << 14;
|
|
edata.cmd = ARM_EXIDX_CMD_REG_POP;
|
|
}
|
|
else if (op == ARM_EXTBL_OP_FINISH) {
|
|
// Finish
|
|
edata.cmd = ARM_EXIDX_CMD_FINISH;
|
|
buf = end;
|
|
}
|
|
else if (op == 0xb1) {
|
|
uint8_t op2;
|
|
GET_BUF_U8(op2);
|
|
if (op2 == 0 || (op2 & 0xf0)) {
|
|
// Spare
|
|
edata.cmd = ARM_EXIDX_CMD_RESERVED;
|
|
} else {
|
|
// Pop integer registers under mask {r3,r2,r1,r0}
|
|
edata.cmd = ARM_EXIDX_CMD_REG_POP;
|
|
edata.data = op2 & 0x0f;
|
|
}
|
|
}
|
|
else if (op == 0xb2) {
|
|
// vsp = vsp + 0x204 + (uleb128 << 2)
|
|
uint64_t offset = 0;
|
|
uint8_t byte, shift = 0;
|
|
do {
|
|
GET_BUF_U8(byte);
|
|
offset |= (byte & 0x7f) << shift;
|
|
shift += 7;
|
|
} while ((byte & 0x80) && buf < end);
|
|
edata.data = offset * 4 + 0x204;
|
|
edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP;
|
|
}
|
|
else if (op == 0xb3 || op == 0xc8 || op == 0xc9) {
|
|
// b3: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDX-ishly
|
|
// c8: Pop VFP regs D[16+ssss] to D[16+ssss+cccc], FSTMFDD-ishly
|
|
// c9: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDD-ishly
|
|
edata.cmd = ARM_EXIDX_CMD_VFP_POP;
|
|
GET_BUF_U8(edata.data);
|
|
if (op == 0xc8) edata.data |= ARM_EXIDX_VFP_SHIFT_16;
|
|
if (op != 0xb3) edata.data |= ARM_EXIDX_VFP_FSTMD;
|
|
}
|
|
else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0) {
|
|
// b8: Pop VFP regs D[8] to D[8+nnn], FSTMFDX-ishly
|
|
// d0: Pop VFP regs D[8] to D[8+nnn], FSTMFDD-ishly
|
|
edata.cmd = ARM_EXIDX_CMD_VFP_POP;
|
|
edata.data = 0x80 | (op & 0x07);
|
|
if ((op & 0xf8) == 0xd0) edata.data |= ARM_EXIDX_VFP_FSTMD;
|
|
}
|
|
else if (op >= 0xc0 && op <= 0xc5) {
|
|
// Intel Wireless MMX pop wR[10]-wr[10+nnn], nnn != 6,7
|
|
edata.cmd = ARM_EXIDX_CMD_WREG_POP;
|
|
edata.data = 0xa0 | (op & 0x07);
|
|
}
|
|
else if (op == 0xc6) {
|
|
// Intel Wireless MMX pop wR[ssss] to wR[ssss+cccc]
|
|
edata.cmd = ARM_EXIDX_CMD_WREG_POP;
|
|
GET_BUF_U8(edata.data);
|
|
}
|
|
else if (op == 0xc7) {
|
|
uint8_t op2;
|
|
GET_BUF_U8(op2);
|
|
if (op2 == 0 || (op2 & 0xf0)) {
|
|
// Spare
|
|
edata.cmd = ARM_EXIDX_CMD_RESERVED;
|
|
} else {
|
|
// Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}
|
|
edata.cmd = ARM_EXIDX_CMD_WCGR_POP;
|
|
edata.data = op2 & 0x0f;
|
|
}
|
|
}
|
|
else {
|
|
// Spare
|
|
edata.cmd = ARM_EXIDX_CMD_RESERVED;
|
|
}
|
|
|
|
int ret = handler_->ImproveStackFrame(&edata);
|
|
if (ret < 0) return ret;
|
|
}
|
|
return 0;
|
|
|
|
# undef GET_BUF_U8
|
|
}
|
|
|
|
void ExceptionTableInfo::Start()
|
|
{
|
|
const struct exidx_entry* start
|
|
= reinterpret_cast<const struct exidx_entry*>(mr_exidx_.data());
|
|
const struct exidx_entry* end
|
|
= reinterpret_cast<const struct exidx_entry*>(mr_exidx_.data()
|
|
+ mr_exidx_.length());
|
|
|
|
// Iterate over each of the EXIDX entries (pairs of 32-bit words).
|
|
// These occupy the entire .exidx section.
|
|
for (const struct exidx_entry* entry = start; entry < end; ++entry) {
|
|
|
|
// Figure out the code address range that this table entry is
|
|
// associated with.
|
|
//
|
|
// I don't claim to understand the biasing here. It appears that
|
|
// (Prel31ToAddr(&entry->addr))
|
|
// - mapping_addr_ + loading_addr_) & 0x7fffffff
|
|
// produces a SVMA. Adding the text_bias_ gives plausible AVMAs.
|
|
uint32_t svma = (reinterpret_cast<char*>(Prel31ToAddr(&entry->addr))
|
|
- mapping_addr_ + loading_addr_) & 0x7fffffff;
|
|
uint32_t next_svma;
|
|
if (entry < end - 1) {
|
|
next_svma = (reinterpret_cast<char*>(Prel31ToAddr(&((entry + 1)->addr)))
|
|
- mapping_addr_ + loading_addr_) & 0x7fffffff;
|
|
} else {
|
|
// This is the last EXIDX entry in the sequence, so we don't
|
|
// have an address for the start of the next function, to limit
|
|
// this one. Instead use the address of the last byte of the
|
|
// text section associated with this .exidx section, that we
|
|
// have been given. So as to avoid junking up the CFI unwind
|
|
// tables with absurdly large address ranges in the case where
|
|
// text_last_svma_ is wrong, only use the value if it is nonzero
|
|
// and within one page of |svma|. Otherwise assume a length of 1.
|
|
//
|
|
// In some cases, gcc has been observed to finish the exidx
|
|
// section with an entry of length 1 marked CANT_UNWIND,
|
|
// presumably exactly for the purpose of giving a definite
|
|
// length for the last real entry, without having to look at
|
|
// text segment boundaries.
|
|
bool plausible = false;
|
|
next_svma = svma + 1;
|
|
if (text_last_svma_ != 0) {
|
|
uint32_t maybe_next_svma = text_last_svma_ + 1;
|
|
if (maybe_next_svma > svma && maybe_next_svma - svma <= 4096) {
|
|
next_svma = maybe_next_svma;
|
|
plausible = true;
|
|
}
|
|
}
|
|
if (!plausible) {
|
|
char buf[100];
|
|
snprintf(buf, sizeof(buf),
|
|
"ExceptionTableInfo: implausible EXIDX last entry size %d"
|
|
"; using 1 instead.", (int32_t)(text_last_svma_ - svma));
|
|
buf[sizeof(buf)-1] = 0;
|
|
log_(buf);
|
|
}
|
|
}
|
|
|
|
// Extract the unwind info into |buf|. This might fail for
|
|
// various reasons. It involves reading both the .exidx and
|
|
// .extab sections. All accesses to those sections are
|
|
// bounds-checked.
|
|
uint8_t buf[ARM_EXIDX_TABLE_LIMIT];
|
|
size_t buf_used = 0;
|
|
ExExtractResult res = ExtabEntryExtract(entry, buf, sizeof(buf), &buf_used);
|
|
if (res != ExSuccess) {
|
|
// Couldn't extract the unwind info, for some reason. Move on.
|
|
switch (res) {
|
|
case ExInBufOverflow:
|
|
log_("ExtabEntryExtract: .exidx/.extab section overrun");
|
|
break;
|
|
case ExOutBufOverflow:
|
|
log_("ExtabEntryExtract: bytecode buffer overflow");
|
|
break;
|
|
case ExCantUnwind:
|
|
log_("ExtabEntryExtract: function is marked CANT_UNWIND");
|
|
break;
|
|
case ExCantRepresent:
|
|
log_("ExtabEntryExtract: bytecode can't be represented");
|
|
break;
|
|
case ExInvalid:
|
|
log_("ExtabEntryExtract: index table entry is invalid");
|
|
break;
|
|
default: {
|
|
char buf[100];
|
|
snprintf(buf, sizeof(buf),
|
|
"ExtabEntryExtract: unknown error: %d", (int)res);
|
|
buf[sizeof(buf)-1] = 0;
|
|
log_(buf);
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Finally, work through the unwind instructions in |buf| and
|
|
// create CFI entries that Breakpad can use. This can also fail.
|
|
// First, add a new stack frame entry, into which ExtabEntryDecode
|
|
// will write the CFI entries.
|
|
handler_->AddStackFrame(svma + text_bias_, next_svma - svma);
|
|
int ret = ExtabEntryDecode(buf, buf_used);
|
|
if (ret < 0) {
|
|
handler_->DeleteStackFrame();
|
|
char buf[100];
|
|
snprintf(buf, sizeof(buf),
|
|
"ExtabEntryDecode: failed with error code: %d", ret);
|
|
buf[sizeof(buf)-1] = 0;
|
|
log_(buf);
|
|
continue;
|
|
}
|
|
handler_->SubmitStackFrame();
|
|
} /* iterating over .exidx */
|
|
}
|
|
|
|
} // namespace lul
|