gecko-dev/tools/profiler/LulCommonExt.h

574 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006, 2010, 2012, 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// module.h: Define google_breakpad::Module. A Module holds debugging
// information, and can write that information out as a Breakpad
// symbol file.
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/scoped_ptr.htm for documentation.
//
// This file is derived from the following files in
// toolkit/crashreporter/google-breakpad:
// src/common/unique_string.h
// src/common/scoped_ptr.h
// src/common/module.h
// External interface for the "Common" component of LUL.
#ifndef LulCommonExt_h
#define LulCommonExt_h
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string>
#include <map>
#include <vector>
#include <cstddef> // for std::ptrdiff_t
#include "mozilla/Assertions.h"
#include "mozilla/NullPtr.h"
namespace lul {
////////////////////////////////////////////////////////////////
// UniqueString
//
// Abstract type
class UniqueString;
// Unique-ify a string. |ToUniqueString| can never return nullptr.
const UniqueString* ToUniqueString(std::string);
// Get the contained C string (debugging only)
const char* const FromUniqueString(const UniqueString*);
// Some handy pre-uniqified strings. Z is an escape character:
// ZS '$'
// ZD '.'
// Zeq '='
// Zplus '+'
// Zstar '*'
// Zslash '/'
// Zpercent '%'
// Zat '@'
// Zcaret '^'
// Note that ustr__empty and (UniqueString*)nullptr are considered
// to be different.
//
// Unfortunately these have to be written as functions so as to
// make them safe to use in static initialisers.
// ""
inline static const UniqueString* ustr__empty() {
static const UniqueString* us = nullptr;
if (!us) us = ToUniqueString("");
return us;
}
// ".cfa"
inline static const UniqueString* ustr__ZDcfa() {
static const UniqueString* us = nullptr;
if (!us) us = ToUniqueString(".cfa");
return us;
}
// ".ra"
inline static const UniqueString* ustr__ZDra() {
static const UniqueString* us = nullptr;
if (!us) us = ToUniqueString(".ra");
return us;
}
////////////////////////////////////////////////////////////////
// GUID
//
typedef struct {
uint32_t data1;
uint16_t data2;
uint16_t data3;
uint8_t data4[8];
} MDGUID; // GUID
typedef MDGUID GUID;
////////////////////////////////////////////////////////////////
// scoped_ptr
//
// scoped_ptr mimics a built-in pointer except that it guarantees deletion
// of the object pointed to, either on destruction of the scoped_ptr or via
// an explicit reset(). scoped_ptr is a simple solution for simple needs;
// use shared_ptr or std::auto_ptr if your needs are more complex.
// *** NOTE ***
// If your scoped_ptr is a class member of class FOO pointing to a
// forward declared type BAR (as shown below), then you MUST use a non-inlined
// version of the destructor. The destructor of a scoped_ptr (called from
// FOO's destructor) must have a complete definition of BAR in order to
// destroy it. Example:
//
// -- foo.h --
// class BAR;
//
// class FOO {
// public:
// FOO();
// ~FOO(); // Required for sources that instantiate class FOO to compile!
//
// private:
// scoped_ptr<BAR> bar_;
// };
//
// -- foo.cc --
// #include "foo.h"
// FOO::~FOO() {} // Empty, but must be non-inlined to FOO's class definition.
// scoped_ptr_malloc added by Google
// When one of these goes out of scope, instead of doing a delete or
// delete[], it calls free(). scoped_ptr_malloc<char> is likely to see
// much more use than any other specializations.
// release() added by Google
// Use this to conditionally transfer ownership of a heap-allocated object
// to the caller, usually on method success.
template <typename T>
class scoped_ptr {
private:
T* ptr;
scoped_ptr(scoped_ptr const &);
scoped_ptr & operator=(scoped_ptr const &);
public:
typedef T element_type;
explicit scoped_ptr(T* p = 0): ptr(p) {}
~scoped_ptr() {
delete ptr;
}
void reset(T* p = 0) {
if (ptr != p) {
delete ptr;
ptr = p;
}
}
T& operator*() const {
MOZ_ASSERT(ptr != 0);
return *ptr;
}
T* operator->() const {
MOZ_ASSERT(ptr != 0);
return ptr;
}
bool operator==(T* p) const {
return ptr == p;
}
bool operator!=(T* p) const {
return ptr != p;
}
T* get() const {
return ptr;
}
void swap(scoped_ptr & b) {
T* tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
T* release() {
T* tmp = ptr;
ptr = 0;
return tmp;
}
private:
// no reason to use these: each scoped_ptr should have its own object
template <typename U> bool operator==(scoped_ptr<U> const& p) const;
template <typename U> bool operator!=(scoped_ptr<U> const& p) const;
};
template<typename T> inline
void swap(scoped_ptr<T>& a, scoped_ptr<T>& b) {
a.swap(b);
}
template<typename T> inline
bool operator==(T* p, const scoped_ptr<T>& b) {
return p == b.get();
}
template<typename T> inline
bool operator!=(T* p, const scoped_ptr<T>& b) {
return p != b.get();
}
// scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
// is guaranteed, either on destruction of the scoped_array or via an explicit
// reset(). Use shared_array or std::vector if your needs are more complex.
template<typename T>
class scoped_array {
private:
T* ptr;
scoped_array(scoped_array const &);
scoped_array & operator=(scoped_array const &);
public:
typedef T element_type;
explicit scoped_array(T* p = 0) : ptr(p) {}
~scoped_array() {
delete[] ptr;
}
void reset(T* p = 0) {
if (ptr != p) {
delete [] ptr;
ptr = p;
}
}
T& operator[](std::ptrdiff_t i) const {
MOZ_ASSERT(ptr != 0);
MOZ_ASSERT(i >= 0);
return ptr[i];
}
bool operator==(T* p) const {
return ptr == p;
}
bool operator!=(T* p) const {
return ptr != p;
}
T* get() const {
return ptr;
}
void swap(scoped_array & b) {
T* tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
T* release() {
T* tmp = ptr;
ptr = 0;
return tmp;
}
private:
// no reason to use these: each scoped_array should have its own object
template <typename U> bool operator==(scoped_array<U> const& p) const;
template <typename U> bool operator!=(scoped_array<U> const& p) const;
};
template<class T> inline
void swap(scoped_array<T>& a, scoped_array<T>& b) {
a.swap(b);
}
template<typename T> inline
bool operator==(T* p, const scoped_array<T>& b) {
return p == b.get();
}
template<typename T> inline
bool operator!=(T* p, const scoped_array<T>& b) {
return p != b.get();
}
// This class wraps the c library function free() in a class that can be
// passed as a template argument to scoped_ptr_malloc below.
class ScopedPtrMallocFree {
public:
inline void operator()(void* x) const {
free(x);
}
};
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
// second template argument, the functor used to free the object.
template<typename T, typename FreeProc = ScopedPtrMallocFree>
class scoped_ptr_malloc {
private:
T* ptr;
scoped_ptr_malloc(scoped_ptr_malloc const &);
scoped_ptr_malloc & operator=(scoped_ptr_malloc const &);
public:
typedef T element_type;
explicit scoped_ptr_malloc(T* p = 0): ptr(p) {}
~scoped_ptr_malloc() {
free_((void*) ptr);
}
void reset(T* p = 0) {
if (ptr != p) {
free_((void*) ptr);
ptr = p;
}
}
T& operator*() const {
MOZ_ASSERT(ptr != 0);
return *ptr;
}
T* operator->() const {
MOZ_ASSERT(ptr != 0);
return ptr;
}
bool operator==(T* p) const {
return ptr == p;
}
bool operator!=(T* p) const {
return ptr != p;
}
T* get() const {
return ptr;
}
void swap(scoped_ptr_malloc & b) {
T* tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
T* release() {
T* tmp = ptr;
ptr = 0;
return tmp;
}
private:
// no reason to use these: each scoped_ptr_malloc should have its own object
template <typename U, typename GP>
bool operator==(scoped_ptr_malloc<U, GP> const& p) const;
template <typename U, typename GP>
bool operator!=(scoped_ptr_malloc<U, GP> const& p) const;
static FreeProc const free_;
};
template<typename T, typename FP>
FP const scoped_ptr_malloc<T,FP>::free_ = FP();
template<typename T, typename FP> inline
void swap(scoped_ptr_malloc<T,FP>& a, scoped_ptr_malloc<T,FP>& b) {
a.swap(b);
}
template<typename T, typename FP> inline
bool operator==(T* p, const scoped_ptr_malloc<T,FP>& b) {
return p == b.get();
}
template<typename T, typename FP> inline
bool operator!=(T* p, const scoped_ptr_malloc<T,FP>& b) {
return p != b.get();
}
////////////////////////////////////////////////////////////////
// Module
//
// A Module represents the contents of a module, and supports methods
// for adding information produced by parsing STABS or DWARF data
// --- possibly both from the same file --- and then writing out the
// unified contents as a Breakpad-format symbol file.
class Module {
public:
// The type of addresses and sizes in a symbol table.
typedef uint64_t Address;
// Representation of an expression. This can either be a postfix
// expression, in which case it is stored as a string, or a simple
// expression of the form (identifier + imm) or *(identifier + imm).
// It can also be invalid (denoting "no value").
enum ExprHow {
kExprInvalid = 1,
kExprPostfix,
kExprSimple,
kExprSimpleMem
};
struct Expr {
// Construct a simple-form expression
Expr(const UniqueString* ident, long offset, bool deref) {
if (ident == ustr__empty()) {
Expr();
} else {
postfix_ = "";
ident_ = ident;
offset_ = offset;
how_ = deref ? kExprSimpleMem : kExprSimple;
}
}
// Construct an invalid expression
Expr() {
postfix_ = "";
ident_ = nullptr;
offset_ = 0;
how_ = kExprInvalid;
}
// Return the postfix expression string, either directly,
// if this is a postfix expression, or by synthesising it
// for a simple expression.
std::string getExprPostfix() const {
switch (how_) {
case kExprPostfix:
return postfix_;
case kExprSimple:
case kExprSimpleMem: {
char buf[40];
sprintf(buf, " %ld %c%s", labs(offset_), offset_ < 0 ? '-' : '+',
how_ == kExprSimple ? "" : " ^");
return std::string(FromUniqueString(ident_)) + std::string(buf);
}
case kExprInvalid:
default:
MOZ_ASSERT(0 && "getExprPostfix: invalid Module::Expr type");
return "Expr::genExprPostfix: kExprInvalid";
}
}
// The identifier that gives the starting value for simple expressions.
const UniqueString* ident_;
// The offset to add for simple expressions.
long offset_;
// The Postfix expression string to evaluate for non-simple expressions.
std::string postfix_;
// The operation expressed by this expression.
ExprHow how_;
};
// A map from register names to expressions that recover
// their values. This can represent a complete set of rules to
// follow at some address, or a set of changes to be applied to an
// extant set of rules.
// NOTE! there are two completely different types called RuleMap. This
// is one of them.
typedef std::map<const UniqueString*, Expr> RuleMap;
// A map from addresses to RuleMaps, representing changes that take
// effect at given addresses.
typedef std::map<Address, RuleMap> RuleChangeMap;
// A range of 'STACK CFI' stack walking information. An instance of
// this structure corresponds to a 'STACK CFI INIT' record and the
// subsequent 'STACK CFI' records that fall within its range.
struct StackFrameEntry {
// The starting address and number of bytes of machine code this
// entry covers.
Address address, size;
// The initial register recovery rules, in force at the starting
// address.
RuleMap initial_rules;
// A map from addresses to rule changes. To find the rules in
// force at a given address, start with initial_rules, and then
// apply the changes given in this map for all addresses up to and
// including the address you're interested in.
RuleChangeMap rule_changes;
};
// Create a new module with the given name, operating system,
// architecture, and ID string.
Module(const std::string &name, const std::string &os,
const std::string &architecture, const std::string &id);
~Module();
private:
// Module header entries.
std::string name_, os_, architecture_, id_;
};
} // namespace lul
#endif // LulCommonExt_h