gecko-dev/gfx/layers/d3d11/CompositorD3D11.fx

269 lines
7.5 KiB
HLSL

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
typedef float4 rect;
float4x4 mLayerTransform : register(vs, c0);
float4x4 mProjection : register(vs, c4);
float4 vRenderTargetOffset : register(vs, c8);
rect vTextureCoords : register(vs, c9);
rect vLayerQuad : register(vs, c10);
rect vMaskQuad : register(vs, c11);
float4 fLayerColor : register(ps, c0);
float fLayerOpacity : register(ps, c1);
sampler sSampler : register(ps, s0);
Texture2D tRGB;
Texture2D tY;
Texture2D tCb;
Texture2D tCr;
Texture2D tRGBWhite;
// Always bind this to slot 3 since this is always available!
Texture2D tMask : register(ps, t3);
struct VS_INPUT {
float2 vPosition : POSITION;
};
struct VS_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
};
struct VS_MASK_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
float2 vMaskCoords : TEXCOORD1;
};
struct VS_MASK_3D_OUTPUT {
float4 vPosition : SV_Position;
float2 vTexCoords : TEXCOORD0;
float3 vMaskCoords : TEXCOORD1;
};
struct PS_OUTPUT {
float4 vSrc;
float4 vAlpha;
};
float2 TexCoords(const float2 aPosition)
{
float2 result;
const float2 size = vTextureCoords.zw;
result.x = vTextureCoords.x + aPosition.x * size.x;
result.y = vTextureCoords.y + aPosition.y * size.y;
return result;
}
SamplerState LayerTextureSamplerLinear
{
Filter = MIN_MAG_MIP_LINEAR;
AddressU = Clamp;
AddressV = Clamp;
};
float4 TransformedPosition(float2 aInPosition)
{
// the current vertex's position on the quad
float4 position = float4(0, 0, 0, 1);
// We use 4 component floats to uniquely describe a rectangle, by the structure
// of x, y, width, height. This allows us to easily generate the 4 corners
// of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
// stream source for our LayerQuad vertex shader. We do this by doing:
// Xout = x + Xin * width
// Yout = y + Yin * height
float2 size = vLayerQuad.zw;
position.x = vLayerQuad.x + aInPosition.x * size.x;
position.y = vLayerQuad.y + aInPosition.y * size.y;
position = mul(mLayerTransform, position);
return position;
}
float4 VertexPosition(float4 aTransformedPosition)
{
float4 result;
result.w = aTransformedPosition.w;
result.xyz = aTransformedPosition.xyz / aTransformedPosition.w;
result -= vRenderTargetOffset;
result.xyz *= result.w;
result = mul(mProjection, result);
return result;
}
VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex)
{
VS_OUTPUT outp;
float4 position = TransformedPosition(aVertex.vPosition);
outp.vPosition = VertexPosition(position);
outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
return outp;
}
VS_MASK_OUTPUT LayerQuadMaskVS(const VS_INPUT aVertex)
{
VS_MASK_OUTPUT outp;
float4 position = TransformedPosition(aVertex.vPosition);
outp.vPosition = VertexPosition(position);
// calculate the position on the mask texture
outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
return outp;
}
VS_MASK_3D_OUTPUT LayerQuadMask3DVS(const VS_INPUT aVertex)
{
VS_MASK_3D_OUTPUT outp;
float4 position = TransformedPosition(aVertex.vPosition);
outp.vPosition = VertexPosition(position);
// calculate the position on the mask texture
position.xyz /= position.w;
outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
// We use the w coord to do non-perspective correct interpolation:
// the quad might be transformed in 3D, in which case it will have some
// perspective. The graphics card will do perspective-correct interpolation
// of the texture, but our mask is already transformed and so we require
// linear interpolation. Therefore, we must correct the interpolation
// ourselves, we do this by multiplying all coords by w here, and dividing by
// w in the pixel shader (post-interpolation), we pass w in outp.vMaskCoords.z.
// See http://en.wikipedia.org/wiki/Texture_mapping#Perspective_correctness
outp.vMaskCoords.z = 1;
outp.vMaskCoords *= position.w;
outp.vTexCoords = TexCoords(aVertex.vPosition.xy);
return outp;
}
float4 RGBAShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords;
float mask = tMask.Sample(sSampler, maskCoords).a;
return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask;
}
float4 RGBAShaderMask3D(const VS_MASK_3D_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tMask.Sample(LayerTextureSamplerLinear, maskCoords).a;
return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask;
}
float4 RGBShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float4 result;
result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
result.a = fLayerOpacity;
float2 maskCoords = aVertex.vMaskCoords;
float mask = tMask.Sample(sSampler, maskCoords).a;
return result * mask;
}
float4 CalculateYCbCrColor(const float2 aTexCoords)
{
float4 yuv;
float4 color;
yuv.r = tCr.Sample(sSampler, aTexCoords).a - 0.5;
yuv.g = tY.Sample(sSampler, aTexCoords).a - 0.0625;
yuv.b = tCb.Sample(sSampler, aTexCoords).a - 0.5;
color.r = yuv.g * 1.164 + yuv.r * 1.596;
color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b;
color.b = yuv.g * 1.164 + yuv.b * 2.018;
color.a = 1.0f;
return color;
}
float4 YCbCrShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords;
float mask = tMask.Sample(sSampler, maskCoords).a;
return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity * mask;
}
PS_OUTPUT ComponentAlphaShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
PS_OUTPUT result;
result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
result.vSrc.a = result.vAlpha.g;
float2 maskCoords = aVertex.vMaskCoords;
float mask = tMask.Sample(sSampler, maskCoords).a;
result.vSrc *= fLayerOpacity * mask;
result.vAlpha *= fLayerOpacity * mask;
return result;
}
float4 SolidColorShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target
{
float2 maskCoords = aVertex.vMaskCoords;
float mask = tMask.Sample(sSampler, maskCoords).a;
return fLayerColor * mask;
}
/*
* Un-masked versions
*************************************************************
*/
float4 RGBAShader(const VS_OUTPUT aVertex) : SV_Target
{
return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
}
float4 RGBShader(const VS_OUTPUT aVertex) : SV_Target
{
float4 result;
result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity;
result.a = fLayerOpacity;
return result;
}
float4 YCbCrShader(const VS_OUTPUT aVertex) : SV_Target
{
return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity;
}
PS_OUTPUT ComponentAlphaShader(const VS_OUTPUT aVertex) : SV_Target
{
PS_OUTPUT result;
result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords);
result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc;
result.vSrc.a = result.vAlpha.g;
result.vSrc *= fLayerOpacity;
result.vAlpha *= fLayerOpacity;
return result;
}
float4 SolidColorShader(const VS_OUTPUT aVertex) : SV_Target
{
return fLayerColor;
}