6353 lines
207 KiB
C

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
** spacetrace.c
**
** SpaceTrace is meant to take the output of trace-malloc and present
** a picture of allocations over the run of the application.
*/
/*
** Required include files.
*/
#include "spacetrace.h"
#include <ctype.h>
#include <math.h>
#include <string.h>
#include <time.h>
#if defined(XP_WIN32)
#include <malloc.h> /* _heapMin */
#endif
#if defined(HAVE_BOUTELL_GD)
/*
** See http://www.boutell.com/gd for the GD graphics library.
** Ports for many platorms exist.
** Your box may already have the lib (mine did, redhat 7.1 workstation).
*/
#include <gd.h>
#include <gdfontt.h>
#include <gdfonts.h>
#include <gdfontmb.h>
#endif /* HAVE_BOUTELL_GD */
#include "nsQuickSort.h"
/*
** strcasecmp API please.
*/
#if defined(_MSC_VER)
#define strcasecmp _stricmp
#define strncasecmp _strnicmp
#endif
/*
** the globals variables. happy joy.
*/
STGlobals globals;
/*
** have the heap cleanup at opportune times, if possible.
*/
void
heapCompact(void)
{
#if defined(XP_WIN32)
_heapmin();
#endif
}
#define ST_CMD_OPTION_BOOL(option_name, option_genre, option_help) \
PR_fprintf(PR_STDOUT, "--%s\nDisabled by default.\n%s\n", #option_name, option_help);
#define ST_CMD_OPTION_STRING(option_name, option_genre, default_value, option_help) \
PR_fprintf(PR_STDOUT, "--%s=<value>\nDefault value is \"%s\".\n%s\n", #option_name, default_value, option_help);
#define ST_CMD_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
PR_fprintf(PR_STDOUT, "--%s=<value>\nUp to %u occurrences allowed.\n%s\n", #option_name, array_size, option_help);
#define ST_CMD_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) \
PR_fprintf(PR_STDOUT, "--%s=<value>\nUnlimited occurrences allowed.\n%s\n", #option_name, option_help);
#define ST_CMD_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
PR_fprintf(PR_STDOUT, "--%s=<value>\nDefault value is %u.\n%s\n", #option_name, default_value, option_help);
#define ST_CMD_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
PR_fprintf(PR_STDOUT, "--%s=<value>\nDefault value is %llu.\n%s\n", #option_name, default_value, option_help);
/*
** showHelp
**
** Give simple command line help.
** Returns !0 if the help was showed.
*/
int
showHelp(void)
{
int retval = 0;
if (PR_FALSE != globals.mCommandLineOptions.mHelp) {
PR_fprintf(PR_STDOUT, "Usage:\t%s [OPTION]... [-|filename]\n\n",
globals.mProgramName);
#include "stoptions.h"
/*
** Showed something.
*/
retval = __LINE__;
}
return retval;
}
/*
** ticks2xsec
**
** Convert platform specific ticks to second units
** Returns 0 on success.
*/
uint32_t
ticks2xsec(tmreader * aReader, uint32_t aTicks, uint32_t aResolution)
{
return (uint32_t)((aResolution * aTicks)/aReader->ticksPerSec);
}
#define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000)
#define ticks2usec(reader, ticks) ticks2xsec((reader), (ticks), 1000000)
/*
** initOptions
**
** Determine global settings for the application.
** Returns 0 on success.
*/
int
initOptions(int aArgCount, char **aArgArray)
{
int retval = 0;
int traverse = 0;
/*
** Set the initial global default options.
*/
#define ST_CMD_OPTION_BOOL(option_name, option_genre, option_help) globals.mCommandLineOptions.m##option_name = PR_FALSE;
#define ST_CMD_OPTION_STRING(option_name, option_genre, default_value, option_help) PR_snprintf(globals.mCommandLineOptions.m##option_name, sizeof(globals.mCommandLineOptions.m##option_name), "%s", default_value);
#define ST_CMD_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) { int loop; for(loop = 0; loop < array_size; loop++) { globals.mCommandLineOptions.m##option_name[loop][0] = '\0'; } }
#define ST_CMD_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) globals.mCommandLineOptions.m##option_name = NULL; globals.mCommandLineOptions.m##option_name##Count = 0;
#define ST_CMD_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) globals.mCommandLineOptions.m##option_name = default_value * multiplier;
#define ST_CMD_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) { uint64_t def64 = default_value; uint64_t mul64 = multiplier; globals.mCommandLineOptions.m##option_name##64 = def64 * mul64; }
#include "stoptions.h"
/*
** Go through all arguments.
** Two dashes lead off an option.
** Any single dash leads off help, unless it is a lone dash (stdin).
** Anything else will be attempted as a file to be processed.
*/
for (traverse = 1; traverse < aArgCount; traverse++) {
if ('-' == aArgArray[traverse][0] && '-' == aArgArray[traverse][1]) {
const char *option = &aArgArray[traverse][2];
/*
** Initial if(0) needed to make "else if"s valid.
*/
if (0) {
}
#define ST_CMD_OPTION_BOOL(option_name, option_genre, option_help) \
else if(0 == strcasecmp(option, #option_name)) \
{ \
globals.mCommandLineOptions.m##option_name = PR_TRUE; \
}
#define ST_CMD_OPTION_STRING(option_name, option_genre, default_value, option_help) \
else if(0 == strncasecmp(option, #option_name "=", strlen(#option_name "="))) \
{ \
PR_snprintf(globals.mCommandLineOptions.m##option_name, sizeof(globals.mCommandLineOptions.m##option_name), "%s", option + strlen(#option_name "=")); \
}
#define ST_CMD_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
else if(0 == strncasecmp(option, #option_name "=", strlen(#option_name "="))) \
{ \
int arrLoop = 0; \
\
for(arrLoop = 0; arrLoop < array_size; arrLoop++) \
{ \
if('\0' == globals.mCommandLineOptions.m##option_name[arrLoop][0]) \
{ \
break; \
} \
}\
\
if(arrLoop != array_size) \
{ \
PR_snprintf(globals.mCommandLineOptions.m##option_name[arrLoop], sizeof(globals.mCommandLineOptions.m##option_name[arrLoop]), "%s", option + strlen(#option_name "=")); \
} \
else \
{ \
REPORT_ERROR_MSG(__LINE__, option); \
retval = __LINE__; \
globals.mCommandLineOptions.mHelp = PR_TRUE; \
} \
}
#define ST_CMD_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) \
else if(0 == strncasecmp(option, #option_name "=", strlen(#option_name "="))) \
{ \
const char** expand = NULL; \
\
expand = (const char**)realloc((void*)globals.mCommandLineOptions.m##option_name, sizeof(const char*) * (globals.mCommandLineOptions.m##option_name##Count + 1)); \
if(NULL != expand) \
{ \
globals.mCommandLineOptions.m##option_name = expand; \
globals.mCommandLineOptions.m##option_name[globals.mCommandLineOptions.m##option_name##Count] = option + strlen(#option_name "="); \
globals.mCommandLineOptions.m##option_name##Count++; \
} \
else \
{ \
retval = __LINE__; \
globals.mCommandLineOptions.mHelp = PR_TRUE; \
} \
}
#define ST_CMD_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
else if(0 == strncasecmp(option, #option_name "=", strlen(#option_name "="))) \
{ \
int32_t scanRes = 0; \
\
scanRes = PR_sscanf(option + strlen(#option_name "="), "%u", &globals.mCommandLineOptions.m##option_name); \
if(1 != scanRes) \
{ \
REPORT_ERROR_MSG(__LINE__, option); \
retval = __LINE__; \
globals.mCommandLineOptions.mHelp = PR_TRUE; \
} \
}
#define ST_CMD_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
else if(0 == strncasecmp(option, #option_name "=", strlen(#option_name "="))) \
{ \
int32_t scanRes = 0; \
\
scanRes = PR_sscanf(option + strlen(#option_name "="), "%llu", &globals.mCommandLineOptions.m##option_name##64); \
if(1 != scanRes) \
{ \
REPORT_ERROR_MSG(__LINE__, option); \
retval = __LINE__; \
globals.mCommandLineOptions.mHelp = PR_TRUE; \
} \
}
#include "stoptions.h"
/*
** If no match on options, this else will get hit.
*/
else {
REPORT_ERROR_MSG(__LINE__, option);
retval = __LINE__;
globals.mCommandLineOptions.mHelp = PR_TRUE;
}
}
else if ('-' == aArgArray[traverse][0]
&& '\0' != aArgArray[traverse][1]) {
/*
** Show help, bad/legacy option.
*/
REPORT_ERROR_MSG(__LINE__, aArgArray[traverse]);
retval = __LINE__;
globals.mCommandLineOptions.mHelp = PR_TRUE;
}
else {
/*
** Default is same as FileName option, the file to process.
*/
PR_snprintf(globals.mCommandLineOptions.mFileName,
sizeof(globals.mCommandLineOptions.mFileName), "%s",
aArgArray[traverse]);
}
}
/*
** initialize the categories
*/
initCategories(&globals);
return retval;
}
#if ST_WANT_GRAPHS
/*
** createGraph
**
** Create a GD image with the common properties of a graph.
** Upon return, you normally allocate legend colors,
** draw your graph inside the region
** STGD_MARGIN,STGD_MARGIN,STGD_WIDTH-STGD_MARGIN,STGD_HEIGH-STGD_MARGIN,
** and then call drawGraph to format the surrounding information.
**
** You should use the normal GD image release function, gdImageDestroy
** when done with it.
**
** Image attributes:
** STGD_WIDTHxSTGD_HEIGHT
** trasparent (white) background
** incremental display
*/
gdImagePtr
createGraph(int *aTransparencyColor)
{
gdImagePtr retval = NULL;
if (NULL != aTransparencyColor) {
*aTransparencyColor = -1;
retval = gdImageCreate(STGD_WIDTH, STGD_HEIGHT);
if (NULL != retval) {
/*
** Background color (first one).
*/
*aTransparencyColor = gdImageColorAllocate(retval, 255, 255, 255);
if (-1 != *aTransparencyColor) {
/*
** As transparency.
*/
gdImageColorTransparent(retval, *aTransparencyColor);
}
/*
** And to set interlacing.
*/
gdImageInterlace(retval, 1);
}
else {
REPORT_ERROR(__LINE__, gdImageCreate);
}
}
else {
REPORT_ERROR(__LINE__, createGraph);
}
return retval;
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
/*
** drawGraph
**
** This function mainly exists to simplify putitng all the pretty lace
** around a home made graph.
*/
void
drawGraph(gdImagePtr aImage, int aColor,
const char *aGraphTitle,
const char *aXAxisTitle,
const char *aYAxisTitle,
uint32_t aXMarkCount,
uint32_t * aXMarkPercents,
const char **aXMarkTexts,
uint32_t aYMarkCount,
uint32_t * aYMarkPercents,
const char **aYMarkTexts,
uint32_t aLegendCount,
int *aLegendColors, const char **aLegendTexts)
{
if (NULL != aImage && NULL != aGraphTitle &&
NULL != aXAxisTitle && NULL != aYAxisTitle &&
(0 == aXMarkCount || (NULL != aXMarkPercents && NULL != aXMarkTexts))
&& (0 == aYMarkCount
|| (NULL != aYMarkPercents && NULL != aYMarkTexts))
&& (0 == aLegendCount
|| (NULL != aLegendColors && NULL != aLegendTexts))) {
int margin = 1;
uint32_t traverse = 0;
uint32_t target = 0;
const int markSize = 2;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
time_t theTimeT = time(NULL);
char *theTime = ctime(&theTimeT);
const char *logo = "SpaceTrace";
gdFontPtr titleFont = gdFontMediumBold;
gdFontPtr markFont = gdFontTiny;
gdFontPtr dateFont = gdFontTiny;
gdFontPtr axisFont = gdFontSmall;
gdFontPtr legendFont = gdFontTiny;
gdFontPtr logoFont = gdFontTiny;
/*
** Fixup the color.
** Black by default.
*/
if (-1 == aColor) {
aColor = gdImageColorAllocate(aImage, 0, 0, 0);
}
if (-1 == aColor) {
aColor = gdImageColorClosest(aImage, 0, 0, 0);
}
/*
** Output the box.
*/
x1 = STGD_MARGIN - margin;
y1 = STGD_MARGIN - margin;
x2 = STGD_WIDTH - x1;
y2 = STGD_HEIGHT - y1;
gdImageRectangle(aImage, x1, y1, x2, y2, aColor);
margin++;
/*
** Need to make small markings on the graph to indicate where the
** labels line up exactly.
** While we're at it, draw the label text.
*/
for (traverse = 0; traverse < aXMarkCount; traverse++) {
target =
((STGD_WIDTH -
(STGD_MARGIN * 2)) * aXMarkPercents[traverse]) / 100;
x1 = STGD_MARGIN + target;
y1 = STGD_MARGIN - margin;
x2 = x1;
y2 = y1 - markSize;
gdImageLine(aImage, x1, y1, x2, y2, aColor);
y1 = STGD_HEIGHT - y1;
y2 = STGD_HEIGHT - y2;
gdImageLine(aImage, x1, y1, x2, y2, aColor);
if (NULL != aXMarkTexts[traverse]) {
x1 = STGD_MARGIN + target - (markFont->h / 2);
y1 = STGD_HEIGHT - STGD_MARGIN + margin + markSize +
(strlen(aXMarkTexts[traverse]) * markFont->w);
gdImageStringUp(aImage, markFont, x1, y1,
(unsigned char *) aXMarkTexts[traverse],
aColor);
}
}
for (traverse = 0; traverse < aYMarkCount; traverse++) {
target =
((STGD_HEIGHT - (STGD_MARGIN * 2)) * (100 -
aYMarkPercents
[traverse])) / 100;
x1 = STGD_MARGIN - margin;
y1 = STGD_MARGIN + target;
x2 = x1 - markSize;
y2 = y1;
gdImageLine(aImage, x1, y1, x2, y2, aColor);
x1 = STGD_WIDTH - x1;
x2 = STGD_WIDTH - x2;
gdImageLine(aImage, x1, y1, x2, y2, aColor);
if (NULL != aYMarkTexts[traverse]) {
x1 = STGD_MARGIN - margin - markSize -
(strlen(aYMarkTexts[traverse]) * markFont->w);
y1 = STGD_MARGIN + target - (markFont->h / 2);
gdImageString(aImage, markFont, x1, y1,
(unsigned char *) aYMarkTexts[traverse],
aColor);
}
}
margin += markSize;
/*
** Title will be centered above the image.
*/
x1 = (STGD_WIDTH / 2) - ((strlen(aGraphTitle) * titleFont->w) / 2);
y1 = ((STGD_MARGIN - margin) / 2) - (titleFont->h / 2);
gdImageString(aImage, titleFont, x1, y1,
(unsigned char *) aGraphTitle, aColor);
/*
** Upper left will be the date.
*/
x1 = 0;
y1 = 0;
traverse = strlen(theTime) - 1;
if (isspace(theTime[traverse])) {
theTime[traverse] = '\0';
}
gdImageString(aImage, dateFont, x1, y1, (unsigned char *) theTime,
aColor);
/*
** Lower right will be the logo.
*/
x1 = STGD_WIDTH - (strlen(logo) * logoFont->w);
y1 = STGD_HEIGHT - logoFont->h;
gdImageString(aImage, logoFont, x1, y1, (unsigned char *) logo,
aColor);
/*
** X and Y axis titles
*/
x1 = (STGD_WIDTH / 2) - ((strlen(aXAxisTitle) * axisFont->w) / 2);
y1 = STGD_HEIGHT - axisFont->h;
gdImageString(aImage, axisFont, x1, y1, (unsigned char *) aXAxisTitle,
aColor);
x1 = 0;
y1 = (STGD_HEIGHT / 2) + ((strlen(aYAxisTitle) * axisFont->w) / 2);
gdImageStringUp(aImage, axisFont, x1, y1,
(unsigned char *) aYAxisTitle, aColor);
/*
** The legend.
** Centered on the right hand side, going up.
*/
x1 = STGD_WIDTH - STGD_MARGIN + margin +
(aLegendCount * legendFont->h) / 2;
x2 = STGD_WIDTH - (aLegendCount * legendFont->h);
if (x1 > x2) {
x1 = x2;
}
y1 = 0;
for (traverse = 0; traverse < aLegendCount; traverse++) {
y2 = (STGD_HEIGHT / 2) +
((strlen(aLegendTexts[traverse]) * legendFont->w) / 2);
if (y2 > y1) {
y1 = y2;
}
}
for (traverse = 0; traverse < aLegendCount; traverse++) {
gdImageStringUp(aImage, legendFont, x1, y1,
(unsigned char *) aLegendTexts[traverse],
aLegendColors[traverse]);
x1 += legendFont->h;
}
}
}
#endif /* ST_WANT_GRAPHS */
#if defined(HAVE_BOUTELL_GD)
/*
** pngSink
**
** GD callback, used to write out the png.
*/
int
pngSink(void *aContext, const char *aBuffer, int aLen)
{
return PR_Write((PRFileDesc *) aContext, aBuffer, aLen);
}
#endif /* HAVE_BOUTELL_GD */
/*
** FormatNumber
**
** Formats a number with thousands separator. Don't free the result. Returns
** static data.
*/
char *
FormatNumber(int32_t num)
{
static char buf[64];
char tmpbuf[64];
int len = 0;
int bufindex = sizeof(buf) - 1;
int mod3;
PR_snprintf(tmpbuf, sizeof(tmpbuf), "%d", num);
/* now insert the thousands separator */
mod3 = 0;
len = strlen(tmpbuf);
while (len >= 0) {
if (tmpbuf[len] >= '0' && tmpbuf[len] <= '9') {
if (mod3 == 3) {
buf[bufindex--] = ',';
mod3 = 0;
}
mod3++;
}
buf[bufindex--] = tmpbuf[len--];
}
return buf + bufindex + 1;
}
/*
** actualByteSize
**
** Apply alignment and overhead to size to figure out actual byte size
*/
uint32_t
actualByteSize(STOptions * inOptions, uint32_t retval)
{
/*
** Need to bump the result by our alignment and overhead.
** The idea here is that an allocation actually costs you more than you
** thought.
**
** The msvcrt malloc has an alignment of 16 with an overhead of 8.
** The win32 HeapAlloc has an alignment of 8 with an overhead of 8.
*/
if (0 != retval) {
uint32_t eval = 0;
uint32_t over = 0;
eval = retval - 1;
if (0 != inOptions->mAlignBy) {
over = eval % inOptions->mAlignBy;
}
retval = eval + inOptions->mOverhead + inOptions->mAlignBy - over;
}
return retval;
}
/*
** byteSize
**
** Figuring the byte size of an allocation.
** Might expand in the future to report size at a given time.
** For now, just use last relevant event.
*/
uint32_t
byteSize(STOptions * inOptions, STAllocation * aAlloc)
{
uint32_t retval = 0;
if (NULL != aAlloc && 0 != aAlloc->mEventCount) {
uint32_t index = aAlloc->mEventCount;
/*
** Generally, the size is the last event's size.
*/
do {
index--;
retval = aAlloc->mEvents[index].mHeapSize;
}
while (0 == retval && 0 != index);
}
return actualByteSize(inOptions, retval);
}
/*
** recalculateAllocationCost
**
** Given an allocation, does a recalculation of Cost - weight, heapcount etc.
** and does the right thing to propagate the cost upwards.
*/
int
recalculateAllocationCost(STOptions * inOptions, STContext * inContext,
STRun * aRun, STAllocation * aAllocation,
PRBool updateParent)
{
/*
** Now, see if they desire a callsite update.
** As mentioned previously, we decide if the run desires us to
** manipulate the callsite data only if its stamp is set.
** We change all callsites and parent callsites to have that
** stamp as well, so as to mark them as being relevant to
** the current run in question.
*/
if (NULL != inContext && 0 != aRun->mStats[inContext->mIndex].mStamp) {
uint32_t timeval =
aAllocation->mMaxTimeval - aAllocation->mMinTimeval;
uint32_t size = byteSize(inOptions, aAllocation);
uint32_t heapCost = aAllocation->mHeapRuntimeCost;
uint64_t timeval64 = timeval;
uint64_t size64 = size;
uint64_t weight64 = timeval64 * size64;
/*
** First, update this run.
*/
aRun->mStats[inContext->mIndex].mCompositeCount++;
aRun->mStats[inContext->mIndex].mHeapRuntimeCost += heapCost;
aRun->mStats[inContext->mIndex].mSize += size;
aRun->mStats[inContext->mIndex].mTimeval64 += timeval64;
aRun->mStats[inContext->mIndex].mWeight64 += weight64;
/*
** Use the first event of the allocation to update the parent
** callsites.
** This has positive effect of not updating realloc callsites
** with the same data over and over again.
*/
if (updateParent && 0 < aAllocation->mEventCount) {
tmcallsite *callsite = aAllocation->mEvents[0].mCallsite;
STRun *callsiteRun = NULL;
/*
** Go up parents till we drop.
*/
while (NULL != callsite && NULL != callsite->method) {
callsiteRun = CALLSITE_RUN(callsite);
if (NULL != callsiteRun) {
/*
** Do we init it?
*/
if (callsiteRun->mStats[inContext->mIndex].mStamp !=
aRun->mStats[inContext->mIndex].mStamp) {
memset(&callsiteRun->mStats[inContext->mIndex], 0,
sizeof(STCallsiteStats));
callsiteRun->mStats[inContext->mIndex].mStamp =
aRun->mStats[inContext->mIndex].mStamp;
}
/*
** Add the values.
** Note that if the allocation was ever realloced,
** we are actually recording the final size.
** Also, the composite count does not include
** calls to realloc (or free for that matter),
** but rather is simply a count of actual heap
** allocation objects, from which someone will
** draw conclusions regarding number of malloc
** and free calls.
** It is possible to generate the exact number
** of calls to free/malloc/realloc should the
** absolute need arise to count them individually,
** but I fear it will take mucho memory and this
** is perhaps good enough for now.
*/
callsiteRun->mStats[inContext->mIndex].mCompositeCount++;
callsiteRun->mStats[inContext->mIndex].mHeapRuntimeCost +=
heapCost;
callsiteRun->mStats[inContext->mIndex].mSize += size;
callsiteRun->mStats[inContext->mIndex].mTimeval64 +=
timeval64;
callsiteRun->mStats[inContext->mIndex].mWeight64 +=
weight64;
}
callsite = callsite->parent;
}
}
}
return 0;
}
/*
** appendAllocation
**
** Given a run, append the allocation to it.
** No DUP checks are done.
** Also, we might want to update the parent callsites with stats.
** We decide to do this heavy duty work only if the run we are appending
** to has a non ZERO mStats[].mStamp, meaning that it is asking to track
** such information when it was created.
** Returns !0 on success.
*/
int
appendAllocation(STOptions * inOptions, STContext * inContext,
STRun * aRun, STAllocation * aAllocation)
{
int retval = 0;
if (NULL != aRun && NULL != aAllocation && NULL != inOptions) {
STAllocation **expand = NULL;
/*
** Expand the size of the array if needed.
*/
expand = (STAllocation **) realloc(aRun->mAllocations,
sizeof(STAllocation *) *
(aRun->mAllocationCount + 1));
if (NULL != expand) {
/*
** Reassign in case of pointer move.
*/
aRun->mAllocations = expand;
/*
** Stick the allocation in.
*/
aRun->mAllocations[aRun->mAllocationCount] = aAllocation;
/*
** If this is the global run, we need to let the allocation
** track the index back to us.
*/
if (&globals.mRun == aRun) {
aAllocation->mRunIndex = aRun->mAllocationCount;
}
/*
** Increase the count.
*/
aRun->mAllocationCount++;
/*
** We're good.
*/
retval = __LINE__;
/*
** update allocation cost
*/
recalculateAllocationCost(inOptions, inContext, aRun, aAllocation,
PR_TRUE);
}
else {
REPORT_ERROR(__LINE__, appendAllocation);
}
}
else {
REPORT_ERROR(__LINE__, appendAllocation);
}
return retval;
}
/*
** hasCallsiteMatch
**
** Determine if the callsite or the other callsites has the matching text.
**
** Returns 0 if there is no match.
*/
int
hasCallsiteMatch(tmcallsite * aCallsite, const char *aMatch, int aDirection)
{
int retval = 0;
if (NULL != aCallsite && NULL != aCallsite->method &&
NULL != aMatch && '\0' != *aMatch) {
const char *methodName = NULL;
do {
methodName = tmmethodnode_name(aCallsite->method);
if (NULL != methodName && NULL != strstr(methodName, aMatch)) {
/*
** Contains the text.
*/
retval = __LINE__;
break;
}
else {
switch (aDirection) {
case ST_FOLLOW_SIBLINGS:
aCallsite = aCallsite->siblings;
break;
case ST_FOLLOW_PARENTS:
aCallsite = aCallsite->parent;
break;
default:
aCallsite = NULL;
REPORT_ERROR(__LINE__, hasCallsiteMatch);
break;
}
}
}
while (NULL != aCallsite && NULL != aCallsite->method);
}
else {
REPORT_ERROR(__LINE__, hasCallsiteMatch);
}
return retval;
}
/*
** harvestRun
**
** Provide a simply way to go over a run, and yield the relevant allocations.
** The restrictions are easily set via the options page or the command
** line switches.
**
** On any match, add the allocation to the provided run.
**
** This makes it much easier for all the code to respect the options in
** force.
**
** Returns !0 on error, though aOutRun may contain a partial data set.
*/
int
harvestRun(const STRun * aInRun, STRun * aOutRun,
STOptions * aOptions, STContext * inContext)
{
int retval = 0;
#if defined(DEBUG_dp)
PRIntervalTime start = PR_IntervalNow();
fprintf(stderr, "DEBUG: harvesting run...\n");
#endif
if (NULL != aInRun && NULL != aOutRun && aInRun != aOutRun
&& NULL != aOptions && NULL != inContext) {
uint32_t traverse = 0;
STAllocation *current = NULL;
for (traverse = 0;
0 == retval && traverse < aInRun->mAllocationCount; traverse++) {
current = aInRun->mAllocations[traverse];
if (NULL != current) {
uint32_t lifetime = 0;
uint32_t bytesize = 0;
uint64_t weight64 = 0;
uint64_t bytesize64 = 0;
uint64_t lifetime64 = 0;
int appendRes = 0;
int looper = 0;
PRBool matched = PR_FALSE;
/*
** Use this as an opportune time to fixup a memory
** leaked timeval, so as to not completely skew
** the weights.
*/
if (ST_TIMEVAL_MAX == current->mMaxTimeval) {
current->mMaxTimeval = globals.mMaxTimeval;
}
/*
** Check allocation timeval restrictions.
** We have to slide the recorded timevals to be zero
** based, so that the comparisons make sense.
*/
if ((aOptions->mAllocationTimevalMin >
(current->mMinTimeval - globals.mMinTimeval)) ||
(aOptions->mAllocationTimevalMax <
(current->mMinTimeval - globals.mMinTimeval))) {
continue;
}
/*
** Check timeval restrictions.
** We have to slide the recorded timevals to be zero
** based, so that the comparisons make sense.
*/
if ((aOptions->mTimevalMin >
(current->mMinTimeval - globals.mMinTimeval)) ||
(aOptions->mTimevalMax <
(current->mMinTimeval - globals.mMinTimeval))) {
continue;
}
/*
** Check lifetime restrictions.
*/
lifetime = current->mMaxTimeval - current->mMinTimeval;
if ((lifetime < aOptions->mLifetimeMin) ||
(lifetime > aOptions->mLifetimeMax)) {
continue;
}
/*
** Check byte size restrictions.
*/
bytesize = byteSize(aOptions, current);
if ((bytesize < aOptions->mSizeMin) ||
(bytesize > aOptions->mSizeMax)) {
continue;
}
/*
** Check weight restrictions.
*/
weight64 = (uint64_t)(bytesize * lifetime);
if (weight64 < aOptions->mWeightMin64 ||
weight64 > aOptions->mWeightMax64) {
continue;
}
/*
** Possibly restrict the callsite by text.
** Do this last, as it is a heavier check.
**
** One day, we may need to expand the logic to check for
** events beyond the initial allocation event.
*/
for (looper = 0; ST_SUBSTRING_MATCH_MAX > looper; looper++) {
if ('\0' != aOptions->mRestrictText[looper][0]) {
if (0 ==
hasCallsiteMatch(current->mEvents[0].mCallsite,
aOptions->mRestrictText[looper],
ST_FOLLOW_PARENTS)) {
break;
}
}
else {
matched = PR_TRUE;
break;
}
}
if (ST_SUBSTRING_MATCH_MAX == looper) {
matched = PR_TRUE;
}
if (PR_FALSE == matched) {
continue;
}
/*
** You get here, we add to the run.
*/
appendRes =
appendAllocation(aOptions, inContext, aOutRun, current);
if (0 == appendRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, appendAllocation);
}
}
}
}
#if defined(DEBUG_dp)
fprintf(stderr, "DEBUG: harvesting ends: %dms [%d allocations]\n",
PR_IntervalToMilliseconds(PR_IntervalNow() - start),
aInRun->mAllocationCount);
#endif
return retval;
}
/*
** recalculateRunCost
**
** Goes over all allocations of a run and recalculates and propagates
** the allocation costs - weight, heapcount, size
*/
int
recalculateRunCost(STOptions * inOptions, STContext * inContext, STRun * aRun)
{
uint32_t traverse = 0;
STAllocation *current = NULL;
#if defined(DEBUG_dp)
PRIntervalTime start = PR_IntervalNow();
fprintf(stderr, "DEBUG: recalculateRunCost...\n");
#endif
if (NULL == aRun)
return -1;
/* reset stats of this run to 0 to begin recalculation */
memset(&aRun->mStats[inContext->mIndex], 0, sizeof(STCallsiteStats));
/* reset timestamp to force propogation of cost */
aRun->mStats[inContext->mIndex].mStamp = PR_IntervalNow();
for (traverse = 0; traverse < aRun->mAllocationCount; traverse++) {
current = aRun->mAllocations[traverse];
if (NULL != current) {
recalculateAllocationCost(inOptions, inContext, aRun, current,
PR_TRUE);
}
}
#if defined(DEBUG_dp)
fprintf(stderr, "DEBUG: recalculateRunCost ends: %dms [%d allocations]\n",
PR_IntervalToMilliseconds(PR_IntervalNow() - start),
aRun->mAllocationCount);
#endif
return 0;
}
/*
** compareAllocations
**
** qsort callback.
** Compare the allocations as specified by the options.
*/
int
compareAllocations(const void *aAlloc1, const void *aAlloc2, void *aContext)
{
int retval = 0;
STOptions *inOptions = (STOptions *) aContext;
if (NULL != aAlloc1 && NULL != aAlloc2 && NULL != inOptions) {
STAllocation *alloc1 = *((STAllocation **) aAlloc1);
STAllocation *alloc2 = *((STAllocation **) aAlloc2);
if (NULL != alloc1 && NULL != alloc2) {
/*
** Logic determined by pref/option.
*/
switch (inOptions->mOrderBy) {
case ST_COUNT:
/*
** "By count" on a single allocation means nothing,
** fall through to weight.
*/
case ST_WEIGHT:
{
uint64_t weight164 = 0;
uint64_t weight264 = 0;
uint64_t bytesize164 = 0;
uint64_t bytesize264 = 0;
uint64_t timeval164 = 0;
uint64_t timeval264 = 0;
bytesize164 = byteSize(inOptions, alloc1);
timeval164 = alloc1->mMaxTimeval - alloc1->mMinTimeval;
weight164 = bytesize164 * timeval164;
bytesize264 = byteSize(inOptions, alloc2);
timeval264 = alloc2->mMaxTimeval - alloc2->mMinTimeval;
weight264 = bytesize264 * timeval264;
if (weight164 < weight264) {
retval = __LINE__;
}
else if (weight164 > weight264) {
retval = -__LINE__;
}
}
break;
case ST_SIZE:
{
uint32_t size1 = byteSize(inOptions, alloc1);
uint32_t size2 = byteSize(inOptions, alloc2);
if (size1 < size2) {
retval = __LINE__;
}
else if (size1 > size2) {
retval = -__LINE__;
}
}
break;
case ST_TIMEVAL:
{
uint32_t timeval1 =
(alloc1->mMaxTimeval - alloc1->mMinTimeval);
uint32_t timeval2 =
(alloc2->mMaxTimeval - alloc2->mMinTimeval);
if (timeval1 < timeval2) {
retval = __LINE__;
}
else if (timeval1 > timeval2) {
retval = -__LINE__;
}
}
break;
case ST_HEAPCOST:
{
uint32_t cost1 = alloc1->mHeapRuntimeCost;
uint32_t cost2 = alloc2->mHeapRuntimeCost;
if (cost1 < cost2) {
retval = __LINE__;
}
else if (cost1 > cost2) {
retval = -__LINE__;
}
}
break;
default:
{
REPORT_ERROR(__LINE__, compareAllocations);
}
break;
}
}
}
return retval;
}
/*
** sortRun
**
** Given a run, sort it in the manner specified by the options.
** Returns !0 on failure.
*/
int
sortRun(STOptions * inOptions, STRun * aRun)
{
int retval = 0;
if (NULL != aRun && NULL != inOptions) {
if (NULL != aRun->mAllocations && 0 < aRun->mAllocationCount) {
NS_QuickSort(aRun->mAllocations, aRun->mAllocationCount,
sizeof(STAllocation *), compareAllocations,
inOptions);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, sortRun);
}
return retval;
}
/*
** createRun
**
** Returns a newly allocated run, properly initialized.
** Must call freeRun() with the new STRun.
**
** ONLY PASS IN A NON_ZERO STAMP IF YOU KNOW WHAT YOU ARE DOING!!!
** A non zero stamp in a run has side effects all over the
** callsites of the allocations added to the run and their
** parents.
**
** Returns NULL on failure.
*/
STRun *
createRun(STContext * inContext, uint32_t aStamp)
{
STRun *retval = NULL;
retval = (STRun *) calloc(1, sizeof(STRun));
if (NULL != retval) {
retval->mStats =
(STCallsiteStats *) calloc(globals.mCommandLineOptions.mContexts,
sizeof(STCallsiteStats));
if (NULL != retval->mStats) {
if (NULL != inContext) {
retval->mStats[inContext->mIndex].mStamp = aStamp;
}
}
else {
free(retval);
retval = NULL;
}
}
return retval;
}
/*
** freeRun
**
** Free off the run and the associated data.
*/
void
freeRun(STRun * aRun)
{
if (NULL != aRun) {
if (NULL != aRun->mAllocations) {
/*
** We do not free the allocations themselves.
** They are likely pointed to by at least 2 other existing
** runs.
*/
free(aRun->mAllocations);
aRun->mAllocations = NULL;
}
if (NULL != aRun->mStats) {
free(aRun->mStats);
aRun->mStats = NULL;
}
free(aRun);
aRun = NULL;
}
}
/*
** createRunFromGlobal
**
** Harvest the global run, then sort it.
** Returns NULL on failure.
** Must call freeRun() with the new STRun.
*/
STRun *
createRunFromGlobal(STOptions * inOptions, STContext * inContext)
{
STRun *retval = NULL;
if (NULL != inOptions && NULL != inContext) {
/*
** We stamp the run.
** As things are appended to it, it realizes that it should stamp the
** callsite backtrace with the information as well.
** In this manner, we can provide meaningful callsite data.
*/
retval = createRun(inContext, PR_IntervalNow());
if (NULL != retval) {
STCategoryNode *node = NULL;
int failure = 0;
int harvestRes =
harvestRun(&globals.mRun, retval, inOptions, inContext);
if (0 == harvestRes) {
int sortRes = sortRun(inOptions, retval);
if (0 != sortRes) {
failure = __LINE__;
}
}
else {
failure = __LINE__;
}
if (0 != failure) {
freeRun(retval);
retval = NULL;
REPORT_ERROR(failure, createRunFromGlobal);
}
/*
** Categorize the run.
*/
failure = categorizeRun(inOptions, inContext, retval, &globals);
if (0 != failure) {
REPORT_ERROR(__LINE__, categorizeRun);
}
/*
** if we are focussing on a category, return that run instead of
** the harvested run. Make sure to recalculate cost.
*/
node = findCategoryNode(inOptions->mCategoryName, &globals);
if (node) {
/* Recalculate cost of run */
recalculateRunCost(inOptions, inContext,
node->runs[inContext->mIndex]);
retval = node->runs[inContext->mIndex];
}
}
}
else {
REPORT_ERROR(__LINE__, createRunFromGlobal);
}
return retval;
}
/*
** getLiveAllocationByHeapID
**
** Go through a run and find the right heap ID.
** At the time of the call to this function, the allocation must be LIVE,
** meaning that it can not be freed.
** Go through the run backwards, in hopes of finding it near the end.
**
** Returns the allocation on success, otherwise NULL.
*/
STAllocation *
getLiveAllocationByHeapID(STRun * aRun, uint32_t aHeapID)
{
STAllocation *retval = NULL;
if (NULL != aRun && 0 != aHeapID) {
uint32_t traverse = aRun->mAllocationCount;
STAllocation *eval = NULL;
/*
** Go through in reverse order.
** Stop when we have a return value.
*/
while (0 < traverse && NULL == retval) {
/*
** Back up one to align with zero based index.
*/
traverse--;
/*
** Take the pointer math out of further operations.
*/
eval = aRun->mAllocations[traverse];
/*
** Take a look at the events in reverse order.
** Basically the last event must NOT be a free.
** The last event must NOT be a realloc of size zero (free).
** Otherwise, try to match up the heapID of the event.
*/
if (0 != eval->mEventCount) {
STAllocEvent *event = eval->mEvents + (eval->mEventCount - 1);
switch (event->mEventType) {
case TM_EVENT_FREE:
{
/*
** No freed allocation can match.
*/
}
break;
case TM_EVENT_REALLOC:
case TM_EVENT_CALLOC:
case TM_EVENT_MALLOC:
{
/*
** Heap IDs must match.
*/
if (aHeapID == event->mHeapID) {
retval = eval;
}
}
break;
default:
{
REPORT_ERROR(__LINE__, getAllocationByHeapID);
}
break;
}
}
}
}
else {
REPORT_ERROR(__LINE__, getAllocationByHeapID);
}
return retval;
}
/*
** appendEvent
**
** Given an allocation, append a new event to its lifetime.
** Returns the new event on success, otherwise NULL.
*/
STAllocEvent *
appendEvent(STAllocation * aAllocation, uint32_t aTimeval, char aEventType,
uint32_t aHeapID, uint32_t aHeapSize, tmcallsite * aCallsite)
{
STAllocEvent *retval = NULL;
if (NULL != aAllocation && NULL != aCallsite) {
STAllocEvent *expand = NULL;
/*
** Expand the allocation's event array.
*/
expand =
(STAllocEvent *) realloc(aAllocation->mEvents,
sizeof(STAllocEvent) *
(aAllocation->mEventCount + 1));
if (NULL != expand) {
/*
** Reassign in case of pointer move.
*/
aAllocation->mEvents = expand;
/*
** Remove the pointer math from rest of code.
*/
retval = aAllocation->mEvents + aAllocation->mEventCount;
/*
** Increase event array count.
*/
aAllocation->mEventCount++;
/*
** Fill in the event.
*/
retval->mTimeval = aTimeval;
retval->mEventType = aEventType;
retval->mHeapID = aHeapID;
retval->mHeapSize = aHeapSize;
retval->mCallsite = aCallsite;
/*
** Allocation may need to update idea of lifetime.
** See allocationTracker to see mMinTimeval inited to ST_TIMEVAL_MAX.
*/
if (aAllocation->mMinTimeval > aTimeval) {
aAllocation->mMinTimeval = aTimeval;
}
/*
** This a free event?
** Can only set max timeval on a free.
** Otherwise, mMaxTimeval remains ST_TIMEVAL_MAX.
** Set in allocationTracker.
*/
if (TM_EVENT_FREE == aEventType) {
aAllocation->mMaxTimeval = aTimeval;
}
}
else {
REPORT_ERROR(__LINE__, appendEvent);
}
}
else {
REPORT_ERROR(__LINE__, appendEvent);
}
return retval;
}
/*
** hasAllocation
**
** Determine if a given run has an allocation.
** This is really nothing more than a pointer comparison loop.
** Returns !0 if the run has the allocation.
*/
int
hasAllocation(STRun * aRun, STAllocation * aTestFor)
{
int retval = 0;
if (NULL != aRun && NULL != aTestFor) {
uint32_t traverse = aRun->mAllocationCount;
/*
** Go through reverse, in the hopes it exists nearer the end.
*/
while (0 < traverse) {
/*
** Back up.
*/
traverse--;
if (aTestFor == aRun->mAllocations[traverse]) {
retval = __LINE__;
break;
}
}
}
else {
REPORT_ERROR(__LINE__, hasAllocation);
}
return retval;
}
/*
** allocationTracker
**
** Important to keep track of all allocations unique so as to determine
** their lifetimes.
**
** Returns a pointer to the allocation on success.
** Return NULL on failure.
*/
STAllocation *
allocationTracker(uint32_t aTimeval, char aType, uint32_t aHeapRuntimeCost,
tmcallsite * aCallsite, uint32_t aHeapID, uint32_t aSize,
tmcallsite * aOldCallsite, uint32_t aOldHeapID,
uint32_t aOldSize)
{
STAllocation *retval = NULL;
static int compactor = 1;
const int frequency = 10000;
uint32_t actualSize, actualOldSize = 0;
actualSize = actualByteSize(&globals.mCommandLineOptions, aSize);
if (aOldSize)
actualOldSize =
actualByteSize(&globals.mCommandLineOptions, aOldSize);
if (NULL != aCallsite) {
int newAllocation = 0;
tmcallsite *searchCallsite = NULL;
uint32_t searchHeapID = 0;
STAllocation *allocation = NULL;
/*
** Global operation ID increases.
*/
globals.mOperationCount++;
/*
** Fix up the timevals if needed.
*/
if (aTimeval < globals.mMinTimeval) {
globals.mMinTimeval = aTimeval;
}
if (aTimeval > globals.mMaxTimeval) {
globals.mMaxTimeval = aTimeval;
}
switch (aType) {
case TM_EVENT_FREE:
{
/*
** Update the global counter.
*/
globals.mFreeCount++;
/*
** Update our peak memory used counter
*/
globals.mMemoryUsed -= actualSize;
/*
** Not a new allocation, will need to search passed in site
** for the original allocation.
*/
searchCallsite = aCallsite;
searchHeapID = aHeapID;
}
break;
case TM_EVENT_MALLOC:
{
/*
** Update the global counter.
*/
globals.mMallocCount++;
/*
** Update our peak memory used counter
*/
globals.mMemoryUsed += actualSize;
if (globals.mMemoryUsed > globals.mPeakMemoryUsed) {
globals.mPeakMemoryUsed = globals.mMemoryUsed;
}
/*
** This will be a new allocation.
*/
newAllocation = __LINE__;
}
break;
case TM_EVENT_CALLOC:
{
/*
** Update the global counter.
*/
globals.mCallocCount++;
/*
** Update our peak memory used counter
*/
globals.mMemoryUsed += actualSize;
if (globals.mMemoryUsed > globals.mPeakMemoryUsed) {
globals.mPeakMemoryUsed = globals.mMemoryUsed;
}
/*
** This will be a new allocation.
*/
newAllocation = __LINE__;
}
break;
case TM_EVENT_REALLOC:
{
/*
** Update the global counter.
*/
globals.mReallocCount++;
/*
** Update our peak memory used counter
*/
globals.mMemoryUsed += actualSize - actualOldSize;
if (globals.mMemoryUsed > globals.mPeakMemoryUsed) {
globals.mPeakMemoryUsed = globals.mMemoryUsed;
}
/*
** This might be a new allocation.
*/
if (NULL == aOldCallsite) {
newAllocation = __LINE__;
}
else {
/*
** Need to search for the original callsite for the
** index to the allocation.
*/
searchCallsite = aOldCallsite;
searchHeapID = aOldHeapID;
}
}
break;
default:
{
REPORT_ERROR(__LINE__, allocationTracker);
}
break;
}
/*
** We are either modifying an existing allocation or we are creating
** a new one.
*/
if (0 != newAllocation) {
allocation = (STAllocation *) calloc(1, sizeof(STAllocation));
if (NULL != allocation) {
/*
** Fixup the min timeval so if logic later will just work.
*/
allocation->mMinTimeval = ST_TIMEVAL_MAX;
allocation->mMaxTimeval = ST_TIMEVAL_MAX;
}
}
else if (NULL != searchCallsite
&& NULL != CALLSITE_RUN(searchCallsite)
&& 0 != searchHeapID) {
/*
** We know what to search for, and we reduce what we search
** by only looking for those allocations at a known callsite.
*/
allocation =
getLiveAllocationByHeapID(CALLSITE_RUN(searchCallsite),
searchHeapID);
}
else {
REPORT_ERROR(__LINE__, allocationTracker);
}
if (NULL != allocation) {
STAllocEvent *appendResult = NULL;
/*
** Record the amount of time this allocation event took.
*/
allocation->mHeapRuntimeCost += aHeapRuntimeCost;
/*
** Now that we have an allocation, we need to make sure it has
** the proper event.
*/
appendResult =
appendEvent(allocation, aTimeval, aType, aHeapID, aSize,
aCallsite);
if (NULL != appendResult) {
if (0 != newAllocation) {
int runAppendResult = 0;
int callsiteAppendResult = 0;
/*
** A new allocation needs to be added to the global run.
** A new allocation needs to be added to the callsite.
*/
runAppendResult =
appendAllocation(&globals.mCommandLineOptions, NULL,
&globals.mRun, allocation);
callsiteAppendResult =
appendAllocation(&globals.mCommandLineOptions, NULL,
CALLSITE_RUN(aCallsite), allocation);
if (0 != runAppendResult && 0 != callsiteAppendResult) {
/*
** Success.
*/
retval = allocation;
}
else {
REPORT_ERROR(__LINE__, appendAllocation);
}
}
else {
/*
** An existing allocation, if a realloc situation,
** may need to be added to the new callsite.
** This can only occur if the new and old callsites
** differ.
** Even then, a brute force check will need to be made
** to ensure the allocation was not added twice;
** consider a realloc scenario where two different
** call stacks bump the allocation back and forth.
*/
if (aCallsite != searchCallsite) {
int found = 0;
found =
hasAllocation(CALLSITE_RUN(aCallsite),
allocation);
if (0 == found) {
int appendResult = 0;
appendResult =
appendAllocation(&globals.mCommandLineOptions,
NULL,
CALLSITE_RUN(aCallsite),
allocation);
if (0 != appendResult) {
/*
** Success.
*/
retval = allocation;
}
else {
REPORT_ERROR(__LINE__, appendAllocation);
}
}
else {
/*
** Already there.
*/
retval = allocation;
}
}
else {
/*
** Success.
*/
retval = allocation;
}
}
}
else {
REPORT_ERROR(__LINE__, appendEvent);
}
}
else {
REPORT_ERROR(__LINE__, allocationTracker);
}
}
else {
REPORT_ERROR(__LINE__, allocationTracker);
}
/*
** Compact the heap a bit if you can.
*/
compactor++;
if (0 == (compactor % frequency)) {
heapCompact();
}
return retval;
}
/*
** trackEvent
**
** An allocation event has dropped in on us.
** We need to do the right thing and track it.
*/
void
trackEvent(uint32_t aTimeval, char aType, uint32_t aHeapRuntimeCost,
tmcallsite * aCallsite, uint32_t aHeapID, uint32_t aSize,
tmcallsite * aOldCallsite, uint32_t aOldHeapID, uint32_t aOldSize)
{
if (NULL != aCallsite) {
/*
** Verify the old callsite just in case.
*/
if (NULL != CALLSITE_RUN(aCallsite)
&& (NULL == aOldCallsite || NULL != CALLSITE_RUN(aOldCallsite))) {
STAllocation *allocation = NULL;
/*
** Add to the allocation tracking code.
*/
allocation =
allocationTracker(aTimeval, aType, aHeapRuntimeCost,
aCallsite, aHeapID, aSize, aOldCallsite,
aOldHeapID, aOldSize);
if (NULL == allocation) {
REPORT_ERROR(__LINE__, allocationTracker);
}
}
else {
REPORT_ERROR(__LINE__, trackEvent);
}
}
else {
REPORT_ERROR(__LINE__, trackEvent);
}
}
/*
** tmEventHandler
**
** Callback from the tmreader_eventloop function.
** Simply tries to sort out what we desire to know.
*/
static const char spinner_chars[] = { '/', '-', '\\', '|' };
#define SPINNER_UPDATE_FREQUENCY 4096
#define SPINNER_CHAR_COUNT (sizeof(spinner_chars) / sizeof(spinner_chars[0]))
#define SPINNER_CHAR(_x) spinner_chars[(_x / SPINNER_UPDATE_FREQUENCY) % SPINNER_CHAR_COUNT]
void
tmEventHandler(tmreader * aReader, tmevent * aEvent)
{
static int event_count = 0; /* for spinner */
if ((event_count++ % SPINNER_UPDATE_FREQUENCY) == 0)
printf("\rReading... %c", SPINNER_CHAR(event_count));
if (NULL != aReader && NULL != aEvent) {
switch (aEvent->type) {
/*
** Events we ignore.
*/
case TM_EVENT_LIBRARY:
case TM_EVENT_METHOD:
case TM_EVENT_STATS:
case TM_EVENT_TIMESTAMP:
case TM_EVENT_FILENAME:
break;
/*
** Allocation events need to be tracked.
*/
case TM_EVENT_MALLOC:
case TM_EVENT_CALLOC:
case TM_EVENT_REALLOC:
case TM_EVENT_FREE:
{
uint32_t oldptr = 0;
uint32_t oldsize = 0;
tmcallsite *callsite = NULL;
tmcallsite *oldcallsite = NULL;
if (TM_EVENT_REALLOC == aEvent->type) {
/*
** Only care about old arguments if there were any.
*/
if (0 != aEvent->u.alloc.oldserial) {
oldptr = aEvent->u.alloc.oldptr;
oldsize = aEvent->u.alloc.oldsize;
oldcallsite =
tmreader_callsite(aReader,
aEvent->u.alloc.oldserial);
if (NULL == oldcallsite) {
REPORT_ERROR(__LINE__, tmreader_callsite);
}
}
}
callsite = tmreader_callsite(aReader, aEvent->serial);
if (NULL != callsite) {
/*
** Verify a callsite run is there.
** If not, we are ignoring this callsite.
*/
if (NULL != CALLSITE_RUN(callsite)) {
char eventType = aEvent->type;
uint32_t eventSize = aEvent->u.alloc.size;
/*
** Play a nasty trick on reallocs of size zero.
** They are to become free events, adjust the size accordingly.
** This allows me to avoid all types of special case code.
*/
if (0 == aEvent->u.alloc.size
&& TM_EVENT_REALLOC == aEvent->type) {
eventType = TM_EVENT_FREE;
if (0 != aEvent->u.alloc.oldserial) {
eventSize = aEvent->u.alloc.oldsize;
}
}
trackEvent(ticks2msec
(aReader, aEvent->u.alloc.interval),
eventType, ticks2usec(aReader,
aEvent->u.alloc.
cost), callsite,
aEvent->u.alloc.ptr, eventSize,
oldcallsite, oldptr, oldsize);
}
}
else {
REPORT_ERROR(__LINE__, tmreader_callsite);
}
}
break;
/*
** Callsite, set up the callsite run if it does not exist.
*/
case TM_EVENT_CALLSITE:
{
tmcallsite *callsite =
tmreader_callsite(aReader, aEvent->serial);
if (NULL != callsite) {
if (NULL == CALLSITE_RUN(callsite)) {
int createrun = __LINE__;
#if defined(MOZILLA_CLIENT)
/*
** For a mozilla spacetrace, ignore this particular
** callsite as it is just noise, and causes us to
** use a lot of memory.
**
** This callsite is present on the linux build,
** not sure if the other platforms have it.
*/
if (0 !=
hasCallsiteMatch(callsite, "g_main_is_running",
ST_FOLLOW_PARENTS)) {
createrun = 0;
}
#endif /* MOZILLA_CLIENT */
if (0 != createrun) {
callsite->data = createRun(NULL, 0);
}
}
}
else {
REPORT_ERROR(__LINE__, tmreader_callsite);
}
}
break;
/*
** Unhandled events should not be allowed.
*/
default:
{
REPORT_ERROR(__LINE__, tmEventHandler);
}
break;
}
}
}
/*
** optionGetDataOut
**
** Output option get data.
*/
void
optionGetDataOut(PRFileDesc * inFD, STOptions * inOptions)
{
if (NULL != inFD && NULL != inOptions) {
int mark = 0;
#define ST_WEB_OPTION_BOOL(option_name, option_genre, option_help) \
PR_fprintf(inFD, "%s%s=%d", (0 == mark++) ? "?" : "&", #option_name, inOptions->m##option_name);
#define ST_WEB_OPTION_STRING(option_name, option_genre, default_value, option_help) \
PR_fprintf(inFD, "%s%s=%s", (0 == mark++) ? "?" : "&", #option_name, inOptions->m##option_name);
#define ST_WEB_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
{ \
uint32_t loop = 0; \
\
for(loop = 0; loop < array_size; loop++) \
{ \
PR_fprintf(inFD, "%s%s=%s", (0 == mark++) ? "?" : "&", #option_name, inOptions->m##option_name[loop]); \
} \
}
#define ST_WEB_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) /* no implementation */
#define ST_WEB_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
PR_fprintf(inFD, "%s%s=%u", (0 == mark++) ? "?" : "&", #option_name, inOptions->m##option_name / multiplier);
#define ST_WEB_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
{ \
uint64_t def64 = default_value; \
uint64_t mul64 = multiplier; \
uint64_t div64; \
\
div64 = inOptions->m##option_name##64 / mul64; \
PR_fprintf(inFD, "%s%s=%llu", (0 == mark++) ? "?" : "&", #option_name, div64); \
}
#include "stoptions.h"
}
}
/*
** htmlAnchor
**
** Output an HTML anchor, or just the text depending on the mode.
*/
void
htmlAnchor(STRequest * inRequest,
const char *aHref,
const char *aText,
const char *aTarget, const char *aClass, STOptions * inOptions)
{
if (NULL != aHref && '\0' != *aHref && NULL != aText && '\0' != *aText) {
int anchorLive = 1;
/*
** In batch mode, we need to verify the anchor is live.
*/
if (0 != inRequest->mOptions.mBatchRequestCount) {
uint32_t loop = 0;
int comparison = 1;
for (loop = 0; loop < inRequest->mOptions.mBatchRequestCount;
loop++) {
comparison =
strcmp(aHref, inRequest->mOptions.mBatchRequest[loop]);
if (0 == comparison) {
break;
}
}
/*
** Did we find it?
*/
if (0 == comparison) {
anchorLive = 0;
}
}
/*
** In any mode, don't make an href to the current page.
*/
if (0 != anchorLive && NULL != inRequest->mGetFileName) {
if (0 == strcmp(aHref, inRequest->mGetFileName)) {
anchorLive = 0;
}
}
/*
** Do the right thing.
*/
if (0 != anchorLive) {
PR_fprintf(inRequest->mFD, "<a class=\"%s\" ", aClass);
if (NULL != aTarget && '\0' != *aTarget) {
PR_fprintf(inRequest->mFD, "target=\"%s\" ", aTarget);
}
PR_fprintf(inRequest->mFD, "href=\"./%s", aHref);
/*
** The options, if desired, get appended as form data.
*/
optionGetDataOut(inRequest->mFD, inOptions);
PR_fprintf(inRequest->mFD, "\">%s</a>\n", aText);
}
else {
PR_fprintf(inRequest->mFD, "<span class=\"%s\">%s</span>\n",
aClass, aText);
}
}
else {
REPORT_ERROR(__LINE__, htmlAnchor);
}
}
/*
** htmlAllocationAnchor
**
** Output an html achor that will resolve to the allocation in question.
*/
void
htmlAllocationAnchor(STRequest * inRequest, STAllocation * aAllocation,
const char *aText)
{
if (NULL != aAllocation && NULL != aText && '\0' != *aText) {
char buffer[128];
/*
** This is a total hack.
** The filename contains the index of the allocation in globals.mRun.
** Safer than using the raw pointer value....
*/
PR_snprintf(buffer, sizeof(buffer), "allocation_%u.html",
aAllocation->mRunIndex);
htmlAnchor(inRequest, buffer, aText, NULL, "allocation",
&inRequest->mOptions);
}
else {
REPORT_ERROR(__LINE__, htmlAllocationAnchor);
}
}
/*
** resolveSourceFile
**
** Easy way to get a readable/short name.
** NULL if not present, not resolvable.
*/
const char *
resolveSourceFile(tmmethodnode * aMethod)
{
const char *retval = NULL;
if (NULL != aMethod) {
const char *methodSays = NULL;
methodSays = aMethod->sourcefile;
if (NULL != methodSays && '\0' != methodSays[0]
&& 0 != strcmp("noname", methodSays)) {
retval = strrchr(methodSays, '/');
if (NULL != retval) {
retval++;
}
else {
retval = methodSays;
}
}
}
return retval;
}
/*
** htmlCallsiteAnchor
**
** Output an html anchor that will resolve to the callsite in question.
** If no text is provided, we provide our own.
**
** RealName determines whether or not we crawl our parents until the point
** we no longer match stats.
*/
void
htmlCallsiteAnchor(STRequest * inRequest, tmcallsite * aCallsite,
const char *aText, int aRealName)
{
if (NULL != aCallsite) {
char textBuf[512];
char hrefBuf[128];
tmcallsite *namesite = aCallsite;
/*
** Should we use a different name?
*/
if (0 == aRealName && NULL != namesite->parent
&& NULL != namesite->parent->method) {
STRun *myRun = NULL;
STRun *upRun = NULL;
do {
myRun = CALLSITE_RUN(namesite);
upRun = CALLSITE_RUN(namesite->parent);
if (0 !=
memcmp(&myRun->mStats[inRequest->mContext->mIndex],
&upRun->mStats[inRequest->mContext->mIndex],
sizeof(STCallsiteStats))) {
/*
** Doesn't match, stop.
*/
break;
}
else {
/*
** Matches, keep going up.
*/
namesite = namesite->parent;
}
}
while (NULL != namesite->parent
&& NULL != namesite->parent->method);
}
/*
** If no text, provide our own.
*/
if (NULL == aText || '\0' == *aText) {
const char *methodName = NULL;
const char *sourceFile = NULL;
if (NULL != namesite->method) {
methodName = tmmethodnode_name(namesite->method);
}
else {
methodName = "==NONAME==";
}
/*
** Decide which format to use to identify the callsite.
** If we can detect availability, hook up the filename with lxr information.
*/
sourceFile = resolveSourceFile(namesite->method);
if (NULL != sourceFile
&& 0 == strncmp("mozilla/", namesite->method->sourcefile,
8)) {
char lxrHREFBuf[512];
PR_snprintf(lxrHREFBuf, sizeof(lxrHREFBuf),
" [<a href=\"http://lxr.mozilla.org/mozilla/source/%s#%u\" class=\"lxr\" target=\"_st_lxr\">%s:%u</a>]",
namesite->method->sourcefile + 8,
namesite->method->linenumber, sourceFile,
namesite->method->linenumber);
PR_snprintf(textBuf, sizeof(textBuf),
"<span class=\"source mozilla-source\">%s</span>%s",
methodName, lxrHREFBuf);
}
else if (NULL != sourceFile) {
PR_snprintf(textBuf, sizeof(textBuf),
"<span class=\"source external-source\">%s [<span class=\"source-extra\">%s:%u</span>]</span>",
methodName, sourceFile,
namesite->method->linenumber);
}
else {
PR_snprintf(textBuf, sizeof(textBuf),
"<span class=\"source binary-source\">%s [<span class=\"source-extra\">+%u(%u)</span>]</span>",
methodName, namesite->offset,
(uint32_t) namesite->entry.key);
}
aText = textBuf;
}
PR_snprintf(hrefBuf, sizeof(hrefBuf), "callsite_%u.html",
(uint32_t) aCallsite->entry.key);
htmlAnchor(inRequest, hrefBuf, aText, NULL, "callsite",
&inRequest->mOptions);
}
else {
REPORT_ERROR(__LINE__, htmlCallsiteAnchor);
}
}
/*
** htmlHeader
**
** Output a standard header in the report files.
*/
void
htmlHeader(STRequest * inRequest, const char *aTitle)
{
PR_fprintf(inRequest->mFD,
"<html>\n"
"<head>\n"
"<title>%s</title>\n"
"<link rel=\"stylesheet\" href=\"spacetrace.css\" type=\"text/css\""
"</head>\n"
"<body>\n"
"<div class=spacetrace-header>\n"
"<span class=spacetrace-title>Spacetrace</span>"
"<span class=navigate>\n"
"<span class=\"category-title header-text\">Category:</span>\n"
"<span class=\"current-category\">%s</span>\n",
aTitle, inRequest->mOptions.mCategoryName);
PR_fprintf(inRequest->mFD, "<span class=\"header-item\">");
htmlAnchor(inRequest, "index.html", "Index", NULL, "header-menuitem",
&inRequest->mOptions);
PR_fprintf(inRequest->mFD, "</span>\n");
PR_fprintf(inRequest->mFD, "<span class=\"header-item\">");
htmlAnchor(inRequest, "options.html", "Options", NULL, "header-menuitem",
&inRequest->mOptions);
PR_fprintf(inRequest->mFD, "</span>\n");
PR_fprintf(inRequest->mFD, "</span>\n"); /* class=navigate */
PR_fprintf(inRequest->mFD,
"</div>\n\n<div class=\"header-separator\"></div>\n\n");
}
/*
** htmlFooter
**
** Output a standard footer in the report file.
*/
void
htmlFooter(STRequest * inRequest)
{
PR_fprintf(inRequest->mFD,
"<div class=\"footer-separator\"></div>\n\n"
"<div class=\"footer\">\n"
"<span class=\"footer-text\">SpaceTrace</span>\n"
"</div>\n\n" "</body>\n" "</html>\n");
}
/*
** htmlNotFound
**
** Not found message.
*/
void
htmlNotFound(STRequest * inRequest)
{
htmlHeader(inRequest, "File Not Found");
PR_fprintf(inRequest->mFD, "File Not Found\n");
htmlFooter(inRequest);
}
void
htmlStartTable(STRequest* inRequest,
const char* table_class,
const char* id,
const char* caption,
const char * const headers[], uint32_t header_length)
{
uint32_t i;
PR_fprintf(inRequest->mFD,
"<div id=\"%s\"><table class=\"data %s\">\n"
" <caption>%s</caption>"
" <thead>\n"
" <tr class=\"row-header\">\n", id,
table_class ? table_class : "",
caption);
for (i=0; i< header_length; i++)
PR_fprintf(inRequest->mFD,
" <th>%s</th>\n", headers[i]);
PR_fprintf(inRequest->mFD, " </tr> </thead> <tbody>\n");
}
/*
** callsiteArrayFromCallsite
**
** Simply return an array of the callsites divulged from the site passed in,
** including the site passed in.
** Do not worry about dups, or the order of the items.
**
** Returns the number of items in the array.
** If the same as aExistingCount, then nothing happened.
*/
uint32_t
callsiteArrayFromCallsite(tmcallsite *** aArray, uint32_t aExistingCount,
tmcallsite * aSite, int aFollow)
{
uint32_t retval = 0;
if (NULL != aArray && NULL != aSite) {
tmcallsite **expand = NULL;
/*
** If we have an existing count, we just keep expanding this.
*/
retval = aExistingCount;
/*
** Go through every allocation.
*/
do {
/*
** expand the array.
*/
expand =
(tmcallsite **) realloc(*aArray,
sizeof(tmcallsite *) * (retval + 1));
if (NULL != expand) {
/*
** Set the callsite in case of pointer move.
*/
*aArray = expand;
/*
** Assign the value.
*/
(*aArray)[retval] = aSite;
retval++;
}
else {
REPORT_ERROR(__LINE__, realloc);
break;
}
/*
** What do we follow?
*/
switch (aFollow) {
case ST_FOLLOW_SIBLINGS:
aSite = aSite->siblings;
break;
case ST_FOLLOW_PARENTS:
aSite = aSite->parent;
break;
default:
aSite = NULL;
REPORT_ERROR(__LINE__, callsiteArrayFromCallsite);
break;
}
}
while (NULL != aSite && NULL != aSite->method);
}
return retval;
}
/*
** callsiteArrayFromRun
**
** Simply return an array of the callsites from the run allocations.
** We only pay attention to callsites that were not free callsites.
** Do not worry about dups, or the order of the items.
**
** Returns the number of items in the array.
** If the same as aExistingCount, then nothing happened.
*/
uint32_t
callsiteArrayFromRun(tmcallsite *** aArray, uint32_t aExistingCount,
STRun * aRun)
{
uint32_t retval = 0;
if (NULL != aArray && NULL != aRun && 0 < aRun->mAllocationCount) {
uint32_t allocLoop = 0;
uint32_t eventLoop = 0;
int stopLoops = 0;
/*
** If we have an existing count, we just keep expanding this.
*/
retval = aExistingCount;
/*
** Go through every allocation.
*/
for (allocLoop = 0;
0 == stopLoops && allocLoop < aRun->mAllocationCount;
allocLoop++) {
/*
** Go through every event.
*/
for (eventLoop = 0;
0 == stopLoops
&& eventLoop < aRun->mAllocations[allocLoop]->mEventCount;
eventLoop++) {
/*
** Skip the free events.
*/
if (TM_EVENT_FREE !=
aRun->mAllocations[allocLoop]->mEvents[eventLoop].
mEventType) {
tmcallsite **expand = NULL;
/*
** expand the array.
*/
expand =
(tmcallsite **) realloc(*aArray,
sizeof(tmcallsite *) *
(retval + 1));
if (NULL != expand) {
/*
** Set the callsite in case of pointer move.
*/
*aArray = expand;
/*
** Assign the value.
*/
(*aArray)[retval] =
aRun->mAllocations[allocLoop]->mEvents[eventLoop].
mCallsite;
retval++;
}
else {
REPORT_ERROR(__LINE__, realloc);
stopLoops = __LINE__;
}
}
}
}
}
return retval;
}
/*
** getDataPRUint*
**
** Helper to avoid cut and paste code.
** Failure to find aCheckFor does not mean failure.
** In case of dups, specify an index on non "1" to get others.
** Do not touch storage space unless a find is made.
** Returns !0 on failure.
*/
int
getDataPRUint32Base(const FormData * aGetData, const char *aCheckFor,
int inIndex, void *aStoreResult, uint32_t aBits)
{
int retval = 0;
if (NULL != aGetData && NULL != aCheckFor && 0 != inIndex
&& NULL != aStoreResult) {
unsigned finder = 0;
/*
** Loop over the names, looking for an exact string match.
** Skip over initial finds, decrementing inIndex, until "1".
*/
for (finder = 0; finder < aGetData->mNVCount; finder++) {
if (0 == strcmp(aCheckFor, aGetData->mNArray[finder])) {
inIndex--;
if (0 == inIndex) {
int32_t scanRes = 0;
if (64 == aBits) {
scanRes =
PR_sscanf(aGetData->mVArray[finder], "%llu",
aStoreResult);
}
else {
scanRes =
PR_sscanf(aGetData->mVArray[finder], "%u",
aStoreResult);
}
if (1 != scanRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_sscanf);
}
break;
}
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, getDataPRUint32Base);
}
return retval;
}
int
getDataPRUint32(const FormData * aGetData, const char *aCheckFor, int inIndex,
uint32_t * aStoreResult, uint32_t aConversion)
{
int retval = 0;
retval =
getDataPRUint32Base(aGetData, aCheckFor, inIndex, aStoreResult, 32);
*aStoreResult *= aConversion;
return retval;
}
int
getDataPRUint64(const FormData * aGetData, const char *aCheckFor, int inIndex,
uint64_t * aStoreResult64, uint64_t aConversion64)
{
int retval = 0;
uint64_t value64 = 0;
retval = getDataPRUint32Base(aGetData, aCheckFor, inIndex, &value64, 64);
*aStoreResult64 = value64 * aConversion64;
return retval;
}
/*
** getDataString
**
** Pull out the string data, if specified.
** In case of dups, specify an index on non "1" to get others.
** Do not touch storage space unless a find is made.
** Return !0 on failure.
*/
int
getDataString(const FormData * aGetData, const char *aCheckFor, int inIndex,
char *aStoreResult, int inStoreResultLength)
{
int retval = 0;
if (NULL != aGetData && NULL != aCheckFor && 0 != inIndex
&& NULL != aStoreResult && 0 != inStoreResultLength) {
unsigned finder = 0;
/*
** Loop over the names, looking for an exact string match.
** Skip over initial finds, decrementing inIndex, until "1".
*/
for (finder = 0; finder < aGetData->mNVCount; finder++) {
if (0 == strcmp(aCheckFor, aGetData->mNArray[finder])) {
inIndex--;
if (0 == inIndex) {
PR_snprintf(aStoreResult, inStoreResultLength, "%s",
aGetData->mVArray[finder]);
break;
}
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, getDataPRUint32);
}
return retval;
}
/*
** displayTopAllocations
**
** Present the top allocations.
** The run must be passed in, and it must be pre-sorted.
**
** Returns !0 on failure.
*/
int
displayTopAllocations(STRequest * inRequest, STRun * aRun,
const char* id,
const char* caption,
int aWantCallsite)
{
int retval = 0;
if (NULL != aRun) {
if (0 < aRun->mAllocationCount) {
uint32_t loop = 0;
STAllocation *current = NULL;
static const char* const headers[] = {
"Rank", "Index", "Byte Size", "Lifespan (sec)",
"Weight", "Heap Op (sec)"
};
static const char* const headers_callsite[] = {
"Rank", "Index", "Byte Size", "Lifespan (sec)",
"Weight", "Heap Op (sec)", "Origin Callsite"
};
if (aWantCallsite)
htmlStartTable(inRequest, NULL, id,
caption,
headers_callsite,
sizeof(headers_callsite) / sizeof(headers_callsite[0]));
else
htmlStartTable(inRequest, NULL, id, caption,
headers,
sizeof(headers) / sizeof(headers[0]));
/*
** Loop over the items, up to some limit or until the end.
*/
for (loop = 0;
loop < inRequest->mOptions.mListItemMax
&& loop < aRun->mAllocationCount; loop++) {
current = aRun->mAllocations[loop];
if (NULL != current) {
uint32_t lifespan =
current->mMaxTimeval - current->mMinTimeval;
uint32_t size = byteSize(&inRequest->mOptions, current);
uint32_t heapCost = current->mHeapRuntimeCost;
uint64_t weight64 = 0;
char buffer[32];
weight64 =(uint64_t)(size * lifespan);
PR_fprintf(inRequest->mFD, "<tr>\n");
/*
** Rank.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%u</td>\n",
loop + 1);
/*
** Index.
*/
PR_snprintf(buffer, sizeof(buffer), "%u",
current->mRunIndex);
PR_fprintf(inRequest->mFD, "<td align=right>\n");
htmlAllocationAnchor(inRequest, current, buffer);
PR_fprintf(inRequest->mFD, "</td>\n");
/*
** Byte Size.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%u</td>\n",
size);
/*
** Lifespan.
*/
PR_fprintf(inRequest->mFD,
"<td align=right>" ST_TIMEVAL_FORMAT "</td>\n",
ST_TIMEVAL_PRINTABLE(lifespan));
/*
** Weight.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%llu</td>\n",
weight64);
/*
** Heap operation cost.
*/
PR_fprintf(inRequest->mFD,
"<td align=right>" ST_MICROVAL_FORMAT
"</td>\n", ST_MICROVAL_PRINTABLE(heapCost));
if (0 != aWantCallsite) {
/*
** Callsite.
*/
PR_fprintf(inRequest->mFD, "<td>");
htmlCallsiteAnchor(inRequest,
current->mEvents[0].mCallsite,
NULL, 0);
PR_fprintf(inRequest->mFD, "</td>\n");
}
PR_fprintf(inRequest->mFD, "</tr>\n");
}
}
PR_fprintf(inRequest->mFD, "</tbody>\n</table></div>\n\n");
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopAllocations);
}
return retval;
}
/*
** displayMemoryLeaks
**
** Present the top memory leaks.
** The run must be passed in, and it must be pre-sorted.
**
** Returns !0 on failure.
*/
int
displayMemoryLeaks(STRequest * inRequest, STRun * aRun)
{
int retval = 0;
if (NULL != aRun) {
uint32_t loop = 0;
uint32_t displayed = 0;
STAllocation *current = NULL;
static const char * headers[] = {
"Rank", "Index", "Byte Size", "Lifespan (sec)",
"Weight", "Heap Op (sec)", "Origin Callsite"
};
htmlStartTable(inRequest, NULL, "memory-leaks", "Memory Leaks", headers,
sizeof(headers) / sizeof(headers[0]));
/*
** Loop over all of the items, or until we've displayed enough.
*/
for (loop = 0;
displayed < inRequest->mOptions.mListItemMax
&& loop < aRun->mAllocationCount; loop++) {
current = aRun->mAllocations[loop];
if (NULL != current && 0 != current->mEventCount) {
/*
** In order to be a leak, the last event of its life must
** NOT be a free operation.
**
** A free operation is just that, a free.
*/
if (TM_EVENT_FREE !=
current->mEvents[current->mEventCount - 1].mEventType) {
uint32_t lifespan =
current->mMaxTimeval - current->mMinTimeval;
uint32_t size = byteSize(&inRequest->mOptions, current);
uint32_t heapCost = current->mHeapRuntimeCost;
uint64_t weight64 = 0;
char buffer[32];
weight64 =(uint64_t)(size * lifespan);
/*
** One more shown.
*/
displayed++;
PR_fprintf(inRequest->mFD, "<tr>\n");
/*
** Rank.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%u</td>\n",
displayed);
/*
** Index.
*/
PR_snprintf(buffer, sizeof(buffer), "%u",
current->mRunIndex);
PR_fprintf(inRequest->mFD, "<td align=right>\n");
htmlAllocationAnchor(inRequest, current, buffer);
PR_fprintf(inRequest->mFD, "</td>\n");
/*
** Byte Size.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%u</td>\n",
size);
/*
** Lifespan.
*/
PR_fprintf(inRequest->mFD,
"<td align=right>" ST_TIMEVAL_FORMAT "</td>\n",
ST_TIMEVAL_PRINTABLE(lifespan));
/*
** Weight.
*/
PR_fprintf(inRequest->mFD, "<td align=right>%llu</td>\n",
weight64);
/*
** Heap Operation Seconds.
*/
PR_fprintf(inRequest->mFD,
"<td align=right>" ST_MICROVAL_FORMAT
"</td>\n", ST_MICROVAL_PRINTABLE(heapCost));
/*
** Callsite.
*/
PR_fprintf(inRequest->mFD, "<td>");
htmlCallsiteAnchor(inRequest,
current->mEvents[0].mCallsite, NULL,
0);
PR_fprintf(inRequest->mFD, "</td>\n");
PR_fprintf(inRequest->mFD, "</tr>\n");
}
}
}
PR_fprintf(inRequest->mFD, "</tbody></table></div>\n\n");
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayMemoryLeaks);
}
return retval;
}
/*
** displayCallsites
**
** Display a table of callsites.
** If the stamp is non zero, then must match that stamp.
** If the stamp is zero, then must match the global sorted run stamp.
** Return !0 on error.
*/
int
displayCallsites(STRequest * inRequest, tmcallsite * aCallsite, int aFollow,
uint32_t aStamp,
const char* id,
const char* caption,
int aRealNames)
{
int retval = 0;
if (NULL != aCallsite && NULL != aCallsite->method) {
int headerDisplayed = 0;
STRun *run = NULL;
/*
** Correct the stamp if need be.
*/
if (0 == aStamp && NULL != inRequest->mContext->mSortedRun) {
aStamp =
inRequest->mContext->mSortedRun->mStats[inRequest->mContext->
mIndex].mStamp;
}
/*
** Loop over the callsites looking for a stamp match.
** A stamp guarantees there is something interesting to look at too.
** If found, output it.
*/
while (NULL != aCallsite && NULL != aCallsite->method) {
run = CALLSITE_RUN(aCallsite);
if (NULL != run) {
if (aStamp == run->mStats[inRequest->mContext->mIndex].mStamp) {
/*
** We got a header?
*/
if (0 == headerDisplayed) {
static const char* const headers[] = {
"Callsite",
"<abbr title=\"Composite Size\">C. Size</abbr>",
"<abbr title=\"Composite Seconds\">C. Seconds</abbr>",
"<abbr title=\"Composite Weight\">C. Weight</abbr>",
"<abbr title=\"Heap Object Count\">H.O. Count</abbr>",
"<abbr title=\"Composite Heap Operation Seconds\">C.H. Operation (sec)</abbr>"
};
headerDisplayed = __LINE__;
htmlStartTable(inRequest, NULL, id, caption, headers,
sizeof(headers)/sizeof(headers[0]));
}
/*
** Output the information.
*/
PR_fprintf(inRequest->mFD, "<tr>\n");
/*
** Method name.
*/
PR_fprintf(inRequest->mFD, "<td>");
htmlCallsiteAnchor(inRequest, aCallsite, NULL,
aRealNames);
PR_fprintf(inRequest->mFD, "</td>");
/*
** Byte Size.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>%u</td>\n",
run->mStats[inRequest->mContext->mIndex].
mSize);
/*
** Seconds.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>" ST_TIMEVAL_FORMAT
"</td>\n",
ST_TIMEVAL_PRINTABLE64(run->
mStats[inRequest->
mContext->
mIndex].
mTimeval64));
/*
** Weight.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>%llu</td>\n",
run->mStats[inRequest->mContext->mIndex].
mWeight64);
/*
** Allocation object count.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>%u</td>\n",
run->mStats[inRequest->mContext->mIndex].
mCompositeCount);
/*
** Heap Operation Seconds.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>"
ST_MICROVAL_FORMAT "</td>\n",
ST_MICROVAL_PRINTABLE(run->
mStats[inRequest->
mContext->mIndex].
mHeapRuntimeCost));
PR_fprintf(inRequest->mFD, "</tr>\n");
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsites);
break;
}
/*
** What do we follow?
*/
switch (aFollow) {
case ST_FOLLOW_SIBLINGS:
aCallsite = aCallsite->siblings;
break;
case ST_FOLLOW_PARENTS:
aCallsite = aCallsite->parent;
break;
default:
aCallsite = NULL;
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsites);
break;
}
}
/*
** Terminate the table if we should.
*/
if (0 != headerDisplayed) {
PR_fprintf(inRequest->mFD, "</tbody></table></div>\n\n");
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsites);
}
return retval;
}
/*
** displayAllocationDetails
**
** Report what we know about the allocation.
**
** Returns !0 on error.
*/
int
displayAllocationDetails(STRequest * inRequest, STAllocation * aAllocation)
{
int retval = 0;
if (NULL != aAllocation) {
uint32_t traverse = 0;
uint32_t bytesize = byteSize(&inRequest->mOptions, aAllocation);
uint32_t timeval =
aAllocation->mMaxTimeval - aAllocation->mMinTimeval;
uint32_t heapCost = aAllocation->mHeapRuntimeCost;
uint64_t weight64 = 0;
uint32_t cacheval = 0;
int displayRes = 0;
weight64 = (uint64_t)(bytesize * timeval);
PR_fprintf(inRequest->mFD, "<p>Allocation %u Details:</p>\n",
aAllocation->mRunIndex);
PR_fprintf(inRequest->mFD, "<div id=\"allocation-details\"><table class=\"data summary\">\n");
PR_fprintf(inRequest->mFD,
"<tr><td align=left>Final Size:</td><td align=right>%u</td></tr>\n",
bytesize);
PR_fprintf(inRequest->mFD,
"<tr><td align=left>Lifespan Seconds:</td><td align=right>"
ST_TIMEVAL_FORMAT "</td></tr>\n",
ST_TIMEVAL_PRINTABLE(timeval));
PR_fprintf(inRequest->mFD,
"<tr><td align=left>Weight:</td><td align=right>%llu</td></tr>\n",
weight64);
PR_fprintf(inRequest->mFD,
"<tr><td align=left>Heap Operation Seconds:</td><td align=right>"
ST_MICROVAL_FORMAT "</td></tr>\n",
ST_MICROVAL_PRINTABLE(heapCost));
PR_fprintf(inRequest->mFD, "</table></div>\n");
/*
** The events.
*/
{
static const char* const headers[] = {
"Operation", "Size", "Seconds", ""
};
char caption[100];
PR_snprintf(caption, sizeof(caption), "%u Life Event(s)",
aAllocation->mEventCount);
htmlStartTable(inRequest, NULL, "allocation-details", caption, headers,
sizeof(headers) / sizeof(headers[0]));
}
for (traverse = 0;
traverse < aAllocation->mEventCount
&& traverse < inRequest->mOptions.mListItemMax; traverse++) {
PR_fprintf(inRequest->mFD, "<tr>\n");
/*
** count.
*/
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>%u.</td>\n", traverse + 1);
/*
** Operation.
*/
PR_fprintf(inRequest->mFD, "<td valign=top>");
switch (aAllocation->mEvents[traverse].mEventType) {
case TM_EVENT_CALLOC:
PR_fprintf(inRequest->mFD, "calloc");
break;
case TM_EVENT_FREE:
PR_fprintf(inRequest->mFD, "free");
break;
case TM_EVENT_MALLOC:
PR_fprintf(inRequest->mFD, "malloc");
break;
case TM_EVENT_REALLOC:
PR_fprintf(inRequest->mFD, "realloc");
break;
default:
retval = __LINE__;
REPORT_ERROR(__LINE__, displayAllocationDetails);
break;
}
PR_fprintf(inRequest->mFD, "</td>");
/*
** Size.
*/
PR_fprintf(inRequest->mFD, "<td valign=top align=right>%u</td>\n",
aAllocation->mEvents[traverse].mHeapSize);
/*
** Timeval.
*/
cacheval =
aAllocation->mEvents[traverse].mTimeval - globals.mMinTimeval;
PR_fprintf(inRequest->mFD,
"<td valign=top align=right>" ST_TIMEVAL_FORMAT
"</td>\n", ST_TIMEVAL_PRINTABLE(cacheval));
/*
** Callsite backtrace.
** Only relevant backtrace is for event 0 for now until
** trace-malloc outputs proper callsites for all others.
*/
PR_fprintf(inRequest->mFD, "<td valign=top>\n");
if (0 == traverse) {
displayRes =
displayCallsites(inRequest,
aAllocation->mEvents[traverse].mCallsite,
ST_FOLLOW_PARENTS, 0, "event-stack", "", __LINE__);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsite);
}
}
PR_fprintf(inRequest->mFD, "</td>\n");
PR_fprintf(inRequest->mFD, "</tr>\n");
}
PR_fprintf(inRequest->mFD, "</table></div>\n");
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayAllocationDetails);
}
return retval;
}
/*
** compareCallsites
**
** qsort callback.
** Compare the callsites as specified by the options.
** There must be NO equal callsites, unless they really are duplicates,
** this is so that a duplicate detector loop can
** simply skip sorted items until the callsite is different.
*/
int
compareCallsites(const void *aSite1, const void *aSite2, void *aContext)
{
int retval = 0;
STRequest *inRequest = (STRequest *) aContext;
if (NULL != aSite1 && NULL != aSite2) {
tmcallsite *site1 = *((tmcallsite **) aSite1);
tmcallsite *site2 = *((tmcallsite **) aSite2);
if (NULL != site1 && NULL != site2) {
STRun *run1 = CALLSITE_RUN(site1);
STRun *run2 = CALLSITE_RUN(site2);
if (NULL != run1 && NULL != run2) {
STCallsiteStats *stats1 =
&(run1->mStats[inRequest->mContext->mIndex]);
STCallsiteStats *stats2 =
&(run2->mStats[inRequest->mContext->mIndex]);
/*
** Logic determined by pref/option.
*/
switch (inRequest->mOptions.mOrderBy) {
case ST_WEIGHT:
{
uint64_t weight164 = stats1->mWeight64;
uint64_t weight264 = stats2->mWeight64;
if (weight164 < weight264) {
retval = __LINE__;
}
else if (weight164 > weight264) {
retval = -__LINE__;
}
}
break;
case ST_SIZE:
{
uint32_t size1 = stats1->mSize;
uint32_t size2 = stats2->mSize;
if (size1 < size2) {
retval = __LINE__;
}
else if (size1 > size2) {
retval = -__LINE__;
}
}
break;
case ST_TIMEVAL:
{
uint64_t timeval164 = stats1->mTimeval64;
uint64_t timeval264 = stats2->mTimeval64;
if (timeval164 < timeval264) {
retval = __LINE__;
}
else if (timeval164 > timeval264) {
retval = -__LINE__;
}
}
break;
case ST_COUNT:
{
uint32_t count1 = stats1->mCompositeCount;
uint32_t count2 = stats2->mCompositeCount;
if (count1 < count2) {
retval = __LINE__;
}
else if (count1 > count2) {
retval = -__LINE__;
}
}
break;
case ST_HEAPCOST:
{
uint32_t cost1 = stats1->mHeapRuntimeCost;
uint32_t cost2 = stats2->mHeapRuntimeCost;
if (cost1 < cost2) {
retval = __LINE__;
}
else if (cost1 > cost2) {
retval = -__LINE__;
}
}
break;
default:
{
REPORT_ERROR(__LINE__, compareAllocations);
}
break;
}
/*
** If the return value is still zero, do a pointer compare.
** This makes sure we return zero, only iff the same object.
*/
if (0 == retval) {
if (stats1 < stats2) {
retval = __LINE__;
}
else if (stats1 > stats2) {
retval = -__LINE__;
}
}
}
}
}
return retval;
}
/*
** displayTopCallsites
**
** Given a list of callsites, sort it, and output skipping dups.
** The passed in callsite array is side effected, as in that it will come
** back sorted. This function will not release the array.
**
** Note: If the stamp passed in is non zero, then all callsites must match.
** If the stamp is zero, all callsites must match global sorted run stamp.
**
** Returns !0 on error.
*/
int
displayTopCallsites(STRequest * inRequest, tmcallsite ** aCallsites,
uint32_t aCallsiteCount, uint32_t aStamp,
const char* id,
const char* caption,
int aRealName)
{
int retval = 0;
if (NULL != aCallsites && 0 < aCallsiteCount) {
uint32_t traverse = 0;
STRun *run = NULL;
tmcallsite *site = NULL;
int headerDisplayed = 0;
uint32_t displayed = 0;
/*
** Fixup the stamp.
*/
if (0 == aStamp && NULL != inRequest->mContext->mSortedRun) {
aStamp =
inRequest->mContext->mSortedRun->mStats[inRequest->mContext->
mIndex].mStamp;
}
/*
** Sort the things.
*/
NS_QuickSort(aCallsites, aCallsiteCount, sizeof(tmcallsite *),
compareCallsites, inRequest);
/*
** Time for output.
*/
for (traverse = 0;
traverse < aCallsiteCount
&& inRequest->mOptions.mListItemMax > displayed; traverse++) {
site = aCallsites[traverse];
run = CALLSITE_RUN(site);
/*
** Only if the same stamp....
*/
if (aStamp == run->mStats[inRequest->mContext->mIndex].mStamp) {
/*
** We got a header yet?
*/
if (0 == headerDisplayed) {
static const char* const headers[] = {
"Rank",
"Callsite",
"<abbr title=\"Composite Size\">Size</abbr>",
"<abbr title=\"Composite Seconds\">Seconds</abbr>",
"<abbr title=\"Composite Weight\">Weight</abbr>",
"<abbr title=\"Heap Object Count\">Object Count</abbr>",
"<abbr title=\"Composite Heap Operation Seconds\">C.H. Operation (sec)</abbr>"
};
headerDisplayed = __LINE__;
htmlStartTable(inRequest, NULL, id, caption, headers,
sizeof(headers) / sizeof(headers[0]));
}
displayed++;
PR_fprintf(inRequest->mFD, "<tr>\n");
/*
** Rank.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>%u</td>\n", displayed);
/*
** Method.
*/
PR_fprintf(inRequest->mFD, "<td>");
htmlCallsiteAnchor(inRequest, site, NULL, aRealName);
PR_fprintf(inRequest->mFD, "</td>\n");
/*
** Size.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>%u</td>\n",
run->mStats[inRequest->mContext->mIndex].mSize);
/*
** Timeval.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>" ST_TIMEVAL_FORMAT
"</td>\n",
ST_TIMEVAL_PRINTABLE64(run->
mStats[inRequest->mContext->
mIndex].mTimeval64));
/*
** Weight.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>%llu</td>\n",
run->mStats[inRequest->mContext->mIndex].
mWeight64);
/*
** Allocation object count.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>%u</td>\n",
run->mStats[inRequest->mContext->mIndex].
mCompositeCount);
/*
** Heap operation seconds.
*/
PR_fprintf(inRequest->mFD,
"<td align=right valign=top>" ST_MICROVAL_FORMAT
"</td>\n",
ST_MICROVAL_PRINTABLE(run->
mStats[inRequest->mContext->
mIndex].
mHeapRuntimeCost));
PR_fprintf(inRequest->mFD, "</tr>\n");
if (inRequest->mOptions.mListItemMax > displayed) {
/*
** Skip any dups.
*/
while (((traverse + 1) < aCallsiteCount)
&& (site == aCallsites[traverse + 1])) {
traverse++;
}
}
}
}
/*
** We need to terminate anything?
*/
if (0 != headerDisplayed) {
PR_fprintf(inRequest->mFD, "</table></div>\n");
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopCallsites);
}
return retval;
}
/*
** displayCallsiteDetails
**
** The callsite specific report.
** Try to report what we know.
** This one hits a little harder than the rest.
**
** Returns !0 on error.
*/
int
displayCallsiteDetails(STRequest * inRequest, tmcallsite * aCallsite)
{
int retval = 0;
if (NULL != aCallsite && NULL != aCallsite->method) {
STRun *sortedRun = NULL;
STRun *thisRun = CALLSITE_RUN(aCallsite);
const char *sourceFile = NULL;
sourceFile = resolveSourceFile(aCallsite->method);
PR_fprintf(inRequest->mFD, "<div class=\"callsite-header\">\n");
if (sourceFile) {
PR_fprintf(inRequest->mFD, "<b>%s</b>",
tmmethodnode_name(aCallsite->method));
PR_fprintf(inRequest->mFD,
" [<a href=\"http://lxr.mozilla.org/mozilla/source/%s#%u\" class=\"lxr\" target=\"_st_lxr\">%s:%u</a>]",
aCallsite->method->sourcefile,
aCallsite->method->linenumber, sourceFile,
aCallsite->method->linenumber);
}
else {
PR_fprintf(inRequest->mFD,
"<p><b>%s</b>+%u(%u) Callsite Details:</p>\n",
tmmethodnode_name(aCallsite->method),
aCallsite->offset, (uint32_t) aCallsite->entry.key);
}
PR_fprintf(inRequest->mFD, "</div>\n\n");
PR_fprintf(inRequest->mFD, "<div id=\"callsite-details\"><table class=\"data summary\">\n");
PR_fprintf(inRequest->mFD,
"<tr><td>Composite Byte Size:</td><td align=right>%u</td></tr>\n",
thisRun->mStats[inRequest->mContext->mIndex].mSize);
PR_fprintf(inRequest->mFD,
"<tr><td>Composite Seconds:</td><td align=right>"
ST_TIMEVAL_FORMAT "</td></tr>\n",
ST_TIMEVAL_PRINTABLE64(thisRun->
mStats[inRequest->mContext->mIndex].
mTimeval64));
PR_fprintf(inRequest->mFD,
"<tr><td>Composite Weight:</td><td align=right>%llu</td></tr>\n",
thisRun->mStats[inRequest->mContext->mIndex].mWeight64);
PR_fprintf(inRequest->mFD,
"<tr><td>Heap Object Count:</td><td align=right>%u</td></tr>\n",
thisRun->mStats[inRequest->mContext->mIndex].
mCompositeCount);
PR_fprintf(inRequest->mFD,
"<tr><td>Heap Operation Seconds:</td><td align=right>"
ST_MICROVAL_FORMAT "</td></tr>\n",
ST_MICROVAL_PRINTABLE(thisRun->
mStats[inRequest->mContext->mIndex].
mHeapRuntimeCost));
PR_fprintf(inRequest->mFD, "</table></div>\n\n");
/*
** Kids (callsites we call):
*/
if (NULL != aCallsite->kids && NULL != aCallsite->kids->method) {
int displayRes = 0;
uint32_t siteCount = 0;
tmcallsite **sites = NULL;
/*
** Collect the kid sibling callsites.
** Doing it this way sorts them for relevance.
*/
siteCount =
callsiteArrayFromCallsite(&sites, 0, aCallsite->kids,
ST_FOLLOW_SIBLINGS);
if (0 != siteCount && NULL != sites) {
/*
** Got something to show.
*/
displayRes =
displayTopCallsites(inRequest, sites, siteCount, 0,
"callsites",
"Children Callsites",
__LINE__);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopCallsites);
}
/*
** Done with array.
*/
free(sites);
sites = NULL;
}
}
/*
** Parents (those who call us):
*/
if (NULL != aCallsite->parent && NULL != aCallsite->parent->method) {
int displayRes = 0;
displayRes =
displayCallsites(inRequest, aCallsite->parent,
ST_FOLLOW_PARENTS, 0, "caller-stack", "Caller stack",
__LINE__);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsites);
}
}
/*
** Allocations we did.
** Simply harvest our own run.
*/
sortedRun = createRun(inRequest->mContext, 0);
if (NULL != sortedRun) {
int harvestRes = 0;
harvestRes =
harvestRun(CALLSITE_RUN(aCallsite), sortedRun,
&inRequest->mOptions, inRequest->mContext);
if (0 == harvestRes) {
if (0 != sortedRun->mAllocationCount) {
int sortRes = 0;
sortRes = sortRun(&inRequest->mOptions, sortedRun);
if (0 == sortRes) {
int displayRes = 0;
displayRes =
displayTopAllocations(inRequest, sortedRun,
"allocations",
"Allocations",
0);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopAllocations);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, sortRun);
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, harvestRun);
}
/*
** Done with the run.
*/
freeRun(sortedRun);
sortedRun = NULL;
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, createRun);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsiteDetails);
}
return retval;
}
#if ST_WANT_GRAPHS
/*
** graphFootprint
**
** Output a PNG graph of the memory usage of the run.
**
** Draw the graph within these boundaries.
** STGD_MARGIN,STGD_MARGIN,STGD_WIDTH-STGD_MARGIN,STGD_HEIGHT-STGD_MARGIN
**
** Returns !0 on failure.
*/
int
graphFootprint(STRequest * inRequest, STRun * aRun)
{
int retval = 0;
if (NULL != aRun) {
uint32_t *YData = NULL;
uint32_t YDataArray[STGD_SPACE_X];
uint32_t traverse = 0;
uint32_t timeval = 0;
uint32_t loop = 0;
PRBool underLock = PR_FALSE;
/*
** Decide if this is custom or we should use the cache.
*/
if (aRun == inRequest->mContext->mSortedRun) {
YData = inRequest->mContext->mFootprintYData;
underLock = PR_TRUE;
}
else {
YData = YDataArray;
}
/*
** Protect the shared data so that only one client has access to it
** at any given time.
*/
if (PR_FALSE != underLock) {
PR_Lock(inRequest->mContext->mImageLock);
}
/*
** Only do the computations if we aren't cached already.
*/
if (YData != inRequest->mContext->mFootprintYData
|| PR_FALSE == inRequest->mContext->mFootprintCached) {
memset(YData, 0, sizeof(uint32_t) * STGD_SPACE_X);
/*
** Initialize our Y data.
** Pretty brutal loop here....
*/
for (traverse = 0; 0 == retval && traverse < STGD_SPACE_X;
traverse++) {
/*
** Compute what timeval this Y data lands in.
*/
timeval =
((traverse *
(globals.mMaxTimeval -
globals.mMinTimeval)) / STGD_SPACE_X) +
globals.mMinTimeval;
/*
** Loop over the run.
** Should an allocation contain said Timeval, we're good.
*/
for (loop = 0; loop < aRun->mAllocationCount; loop++) {
if (timeval >= aRun->mAllocations[loop]->mMinTimeval
&& timeval <= aRun->mAllocations[loop]->mMaxTimeval) {
YData[traverse] +=
byteSize(&inRequest->mOptions,
aRun->mAllocations[loop]);
}
}
}
/*
** Did we cache this?
*/
if (YData == inRequest->mContext->mFootprintYData) {
inRequest->mContext->mFootprintCached = PR_TRUE;
}
}
/*
** Done with the lock.
*/
if (PR_FALSE != underLock) {
PR_Unlock(inRequest->mContext->mImageLock);
}
if (0 == retval) {
uint32_t minMemory = (uint32_t) - 1;
uint32_t maxMemory = 0;
int transparent = 0;
gdImagePtr graph = NULL;
/*
** Go through and find the minimum and maximum sizes.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
if (YData[traverse] < minMemory) {
minMemory = YData[traverse];
}
if (YData[traverse] > maxMemory) {
maxMemory = YData[traverse];
}
}
/*
** We can now draw the graph.
*/
graph = createGraph(&transparent);
if (NULL != graph) {
gdSink theSink;
int red = 0;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
uint32_t percents[11] =
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
char *timevals[11];
char *bytes[11];
char timevalSpace[11][32];
char byteSpace[11][32];
int legendColors[1];
const char *legends[1] = { "Memory in Use" };
uint32_t cached = 0;
/*
** Figure out what the labels will say.
*/
for (traverse = 0; traverse < 11; traverse++) {
timevals[traverse] = timevalSpace[traverse];
bytes[traverse] = byteSpace[traverse];
cached =
((globals.mMaxTimeval -
globals.mMinTimeval) * percents[traverse]) / 100;
PR_snprintf(timevals[traverse], 32, ST_TIMEVAL_FORMAT,
ST_TIMEVAL_PRINTABLE(cached));
PR_snprintf(bytes[traverse], 32, "%u",
((maxMemory -
minMemory) * percents[traverse]) / 100);
}
red = gdImageColorAllocate(graph, 255, 0, 0);
legendColors[0] = red;
drawGraph(graph, -1, "Memory Footprint Over Time", "Seconds",
"Bytes", 11, percents, (const char **) timevals, 11,
percents, (const char **) bytes, 1, legendColors,
legends);
if (maxMemory != minMemory) {
int64_t in64 = 0;
int64_t ydata64 = 0;
int64_t spacey64 = 0;
int64_t mem64 = 0;
int32_t in32 = 0;
/*
** Go through our Y data and mark it up.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
x1 = traverse + STGD_MARGIN;
y1 = STGD_HEIGHT - STGD_MARGIN;
/*
** Need to do this math in 64 bits.
*/
ydata64 = (int64_t)YData[traverse];
spacey64 = (int64_t)STGD_SPACE_Y;
mem64 = (int64_t)(maxMemory - minMemory);
in64 = ydata64 * spacey64;
in64 /= mem64;
in32 = int32_t(in64);
x2 = x1;
y2 = y1 - in32;
gdImageLine(graph, x1, y1, x2, y2, red);
}
}
theSink.context = inRequest->mFD;
theSink.sink = pngSink;
gdImagePngToSink(graph, &theSink);
gdImageDestroy(graph);
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, createGraph);
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphFootprint);
}
return retval;
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
/*
** graphTimeval
**
** Output a PNG graph of when the memory is allocated.
**
** Draw the graph within these boundaries.
** STGD_MARGIN,STGD_MARGIN,STGD_WIDTH-STGD_MARGIN,STGD_HEIGHT-STGD_MARGIN
**
** Returns !0 on failure.
*/
int
graphTimeval(STRequest * inRequest, STRun * aRun)
{
int retval = 0;
if (NULL != aRun) {
uint32_t *YData = NULL;
uint32_t YDataArray[STGD_SPACE_X];
uint32_t traverse = 0;
uint32_t timeval = globals.mMinTimeval;
uint32_t loop = 0;
PRBool underLock = PR_FALSE;
/*
** Decide if this is custom or we should use the global cache.
*/
if (aRun == inRequest->mContext->mSortedRun) {
YData = inRequest->mContext->mTimevalYData;
underLock = PR_TRUE;
}
else {
YData = YDataArray;
}
/*
** Protect the shared data so that only one client has access to it
** at any given time.
*/
if (PR_FALSE != underLock) {
PR_Lock(inRequest->mContext->mImageLock);
}
/*
** Only do the computations if we aren't cached already.
*/
if (YData != inRequest->mContext->mTimevalYData
|| PR_FALSE == inRequest->mContext->mTimevalCached) {
uint32_t prevTimeval = 0;
memset(YData, 0, sizeof(uint32_t) * STGD_SPACE_X);
/*
** Initialize our Y data.
** Pretty brutal loop here....
*/
for (traverse = 0; 0 == retval && traverse < STGD_SPACE_X;
traverse++) {
/*
** Compute what timeval this Y data lands in.
*/
prevTimeval = timeval;
timeval =
((traverse *
(globals.mMaxTimeval -
globals.mMinTimeval)) / STGD_SPACE_X) +
globals.mMinTimeval;
/*
** Loop over the run.
** Should an allocation have been allocated between
** prevTimeval and timeval....
*/
for (loop = 0; loop < aRun->mAllocationCount; loop++) {
if (prevTimeval < aRun->mAllocations[loop]->mMinTimeval
&& timeval >= aRun->mAllocations[loop]->mMinTimeval) {
YData[traverse] +=
byteSize(&inRequest->mOptions,
aRun->mAllocations[loop]);
}
}
}
/*
** Did we cache this?
*/
if (YData == inRequest->mContext->mTimevalYData) {
inRequest->mContext->mTimevalCached = PR_TRUE;
}
}
/*
** Done with the lock.
*/
if (PR_FALSE != underLock) {
PR_Unlock(inRequest->mContext->mImageLock);
}
if (0 == retval) {
uint32_t minMemory = (uint32_t) - 1;
uint32_t maxMemory = 0;
int transparent = 0;
gdImagePtr graph = NULL;
/*
** Go through and find the minimum and maximum sizes.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
if (YData[traverse] < minMemory) {
minMemory = YData[traverse];
}
if (YData[traverse] > maxMemory) {
maxMemory = YData[traverse];
}
}
/*
** We can now draw the graph.
*/
graph = createGraph(&transparent);
if (NULL != graph) {
gdSink theSink;
int red = 0;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
uint32_t percents[11] =
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
char *timevals[11];
char *bytes[11];
char timevalSpace[11][32];
char byteSpace[11][32];
int legendColors[1];
const char *legends[1] = { "Memory Allocated" };
uint32_t cached = 0;
/*
** Figure out what the labels will say.
*/
for (traverse = 0; traverse < 11; traverse++) {
timevals[traverse] = timevalSpace[traverse];
bytes[traverse] = byteSpace[traverse];
cached =
((globals.mMaxTimeval -
globals.mMinTimeval) * percents[traverse]) / 100;
PR_snprintf(timevals[traverse], 32, ST_TIMEVAL_FORMAT,
ST_TIMEVAL_PRINTABLE(cached));
PR_snprintf(bytes[traverse], 32, "%u",
((maxMemory -
minMemory) * percents[traverse]) / 100);
}
red = gdImageColorAllocate(graph, 255, 0, 0);
legendColors[0] = red;
drawGraph(graph, -1, "Allocation Times", "Seconds", "Bytes",
11, percents, (const char **) timevals, 11,
percents, (const char **) bytes, 1, legendColors,
legends);
if (maxMemory != minMemory) {
int64_t in64 = 0;
int64_t ydata64 = 0;
int64_t spacey64 = 0;
int64_t mem64 = 0;
int32_t in32 = 0;
/*
** Go through our Y data and mark it up.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
x1 = traverse + STGD_MARGIN;
y1 = STGD_HEIGHT - STGD_MARGIN;
/*
** Need to do this math in 64 bits.
*/
ydata64 = (int64_t)YData[traverse];
spacey64 = (int64_t)STGD_SPACE_Y;
mem64 = (int64_t)(maxMemory - minMemory);
in64 = ydata64 * spacey64;
in64 /= mem64;
in32 = int32_t(in64);
x2 = x1;
y2 = y1 - in32;
gdImageLine(graph, x1, y1, x2, y2, red);
}
}
theSink.context = inRequest->mFD;
theSink.sink = pngSink;
gdImagePngToSink(graph, &theSink);
gdImageDestroy(graph);
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, createGraph);
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphTimeval);
}
return retval;
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
/*
** graphLifespan
**
** Output a PNG graph of how long memory lived.
**
** Draw the graph within these boundaries.
** STGD_MARGIN,STGD_MARGIN,STGD_WIDTH-STGD_MARGIN,STGD_HEIGHT-STGD_MARGIN
**
** Returns !0 on failure.
*/
int
graphLifespan(STRequest * inRequest, STRun * aRun)
{
int retval = 0;
if (NULL != aRun) {
uint32_t *YData = NULL;
uint32_t YDataArray[STGD_SPACE_X];
uint32_t traverse = 0;
uint32_t timeval = 0;
uint32_t loop = 0;
PRBool underLock = PR_FALSE;
/*
** Decide if this is custom or we should use the global cache.
*/
if (aRun == inRequest->mContext->mSortedRun) {
YData = inRequest->mContext->mLifespanYData;
underLock = PR_TRUE;
}
else {
YData = YDataArray;
}
/*
** Protect the shared data so that only one client has access to it
** at any given time.
*/
if (PR_FALSE != underLock) {
PR_Lock(inRequest->mContext->mImageLock);
}
/*
** Only do the computations if we aren't cached already.
*/
if (YData != inRequest->mContext->mLifespanYData
|| PR_FALSE == inRequest->mContext->mLifespanCached) {
uint32_t prevTimeval = 0;
uint32_t lifespan = 0;
memset(YData, 0, sizeof(uint32_t) * STGD_SPACE_X);
/*
** Initialize our Y data.
** Pretty brutal loop here....
*/
for (traverse = 0; 0 == retval && traverse < STGD_SPACE_X;
traverse++) {
/*
** Compute what timeval this Y data lands in.
*/
prevTimeval = timeval;
timeval =
(traverse * (globals.mMaxTimeval - globals.mMinTimeval)) /
STGD_SPACE_X;
/*
** Loop over the run.
** Should an allocation have lived between
** prevTimeval and timeval....
*/
for (loop = 0; loop < aRun->mAllocationCount; loop++) {
lifespan =
aRun->mAllocations[loop]->mMaxTimeval -
aRun->mAllocations[loop]->mMinTimeval;
if (prevTimeval < lifespan && timeval >= lifespan) {
YData[traverse] +=
byteSize(&inRequest->mOptions,
aRun->mAllocations[loop]);
}
}
}
/*
** Did we cache this?
*/
if (YData == inRequest->mContext->mLifespanYData) {
inRequest->mContext->mLifespanCached = PR_TRUE;
}
}
/*
** Done with the lock.
*/
if (PR_FALSE != underLock) {
PR_Unlock(inRequest->mContext->mImageLock);
}
if (0 == retval) {
uint32_t minMemory = (uint32_t) - 1;
uint32_t maxMemory = 0;
int transparent = 0;
gdImagePtr graph = NULL;
/*
** Go through and find the minimum and maximum sizes.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
if (YData[traverse] < minMemory) {
minMemory = YData[traverse];
}
if (YData[traverse] > maxMemory) {
maxMemory = YData[traverse];
}
}
/*
** We can now draw the graph.
*/
graph = createGraph(&transparent);
if (NULL != graph) {
gdSink theSink;
int red = 0;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
uint32_t percents[11] =
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
char *timevals[11];
char *bytes[11];
char timevalSpace[11][32];
char byteSpace[11][32];
int legendColors[1];
const char *legends[1] = { "Live Memory" };
uint32_t cached = 0;
/*
** Figure out what the labels will say.
*/
for (traverse = 0; traverse < 11; traverse++) {
timevals[traverse] = timevalSpace[traverse];
bytes[traverse] = byteSpace[traverse];
cached =
((globals.mMaxTimeval -
globals.mMinTimeval) * percents[traverse]) / 100;
PR_snprintf(timevals[traverse], 32, ST_TIMEVAL_FORMAT,
ST_TIMEVAL_PRINTABLE(cached));
PR_snprintf(bytes[traverse], 32, "%u",
((maxMemory -
minMemory) * percents[traverse]) / 100);
}
red = gdImageColorAllocate(graph, 255, 0, 0);
legendColors[0] = red;
drawGraph(graph, -1, "Allocation Lifespans", "Lifespan",
"Bytes", 11, percents, (const char **) timevals, 11,
percents, (const char **) bytes, 1, legendColors,
legends);
if (maxMemory != minMemory) {
int64_t in64 = 0;
int64_t ydata64 = 0;
int64_t spacey64 = 0;
int64_t mem64 = 0;
int32_t in32 = 0;
/*
** Go through our Y data and mark it up.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
x1 = traverse + STGD_MARGIN;
y1 = STGD_HEIGHT - STGD_MARGIN;
/*
** Need to do this math in 64 bits.
*/
ydata64 = (int64_t)YData[traverse];
spacey64 = (int64_t)STGD_SPACE_Y;
mem64 = (int64_t)(maxMemory - minMemory);
in64 = ydata64 * spacey64;
in64 /= mem64;
in32 = int32_t(in64);
x2 = x1;
y2 = y1 - in32;
gdImageLine(graph, x1, y1, x2, y2, red);
}
}
theSink.context = inRequest->mFD;
theSink.sink = pngSink;
gdImagePngToSink(graph, &theSink);
gdImageDestroy(graph);
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, createGraph);
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphLifespan);
}
return retval;
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
/*
** graphWeight
**
** Output a PNG graph of Allocations by Weight
**
** Draw the graph within these boundaries.
** STGD_MARGIN,STGD_MARGIN,STGD_WIDTH-STGD_MARGIN,STGD_HEIGHT-STGD_MARGIN
**
** Returns !0 on failure.
*/
int
graphWeight(STRequest * inRequest, STRun * aRun)
{
int retval = 0;
if (NULL != aRun) {
uint64_t *YData64 = NULL;
uint64_t YDataArray64[STGD_SPACE_X];
uint32_t traverse = 0;
uint32_t timeval = globals.mMinTimeval;
uint32_t loop = 0;
PRBool underLock = PR_FALSE;
/*
** Decide if this is custom or we should use the global cache.
*/
if (aRun == inRequest->mContext->mSortedRun) {
YData64 = inRequest->mContext->mWeightYData64;
underLock = PR_TRUE;
}
else {
YData64 = YDataArray64;
}
/*
** Protect the shared data so that only one client has access to it
** at any given time.
*/
if (PR_FALSE != underLock) {
PR_Lock(inRequest->mContext->mImageLock);
}
/*
** Only do the computations if we aren't cached already.
*/
if (YData64 != inRequest->mContext->mWeightYData64
|| PR_FALSE == inRequest->mContext->mWeightCached) {
uint32_t prevTimeval = 0;
memset(YData64, 0, sizeof(uint64_t) * STGD_SPACE_X);
/*
** Initialize our Y data.
** Pretty brutal loop here....
*/
for (traverse = 0; 0 == retval && traverse < STGD_SPACE_X;
traverse++) {
/*
** Compute what timeval this Y data lands in.
*/
prevTimeval = timeval;
timeval =
((traverse *
(globals.mMaxTimeval -
globals.mMinTimeval)) / STGD_SPACE_X) +
globals.mMinTimeval;
/*
** Loop over the run.
** Should an allocation have been allocated between
** prevTimeval and timeval....
*/
for (loop = 0; loop < aRun->mAllocationCount; loop++) {
if (prevTimeval < aRun->mAllocations[loop]->mMinTimeval
&& timeval >= aRun->mAllocations[loop]->mMinTimeval) {
uint64_t size64 = 0;
uint64_t lifespan64 = 0;
uint64_t weight64 = 0;
size64 = byteSize(&inRequest->mOptions,
aRun->mAllocations[loop]);
lifespan64 = aRun->mAllocations[loop]->mMaxTimeval -
aRun->mAllocations[loop]->mMinTimeval;
weight64 = size64 * lifespan64;
YData64[traverse] += weight64;
}
}
}
/*
** Did we cache this?
*/
if (YData64 == inRequest->mContext->mWeightYData64) {
inRequest->mContext->mWeightCached = PR_TRUE;
}
}
/*
** Done with the lock.
*/
if (PR_FALSE != underLock) {
PR_Unlock(inRequest->mContext->mImageLock);
}
if (0 == retval) {
uint64_t minWeight64 = (0xFFFFFFFFLL << 32) + 0xFFFFFFFFLL;
uint64_t maxWeight64 = 0;
int transparent = 0;
gdImagePtr graph = NULL;
/*
** Go through and find the minimum and maximum weights.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
if (YData64[traverse] < minWeight64) {
minWeight64 = YData64[traverse];
}
if (YData64[traverse] > maxWeight64) {
maxWeight64 = YData64[traverse];
}
}
/*
** We can now draw the graph.
*/
graph = createGraph(&transparent);
if (NULL != graph) {
gdSink theSink;
int red = 0;
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
uint32_t percents[11] =
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
char *timevals[11];
char *bytes[11];
char timevalSpace[11][32];
char byteSpace[11][32];
int legendColors[1];
const char *legends[1] = { "Memory Weight" };
uint64_t percent64 = 0;
uint64_t result64 = 0;
uint32_t cached = 0;
uint64_t hundred64 = 100;
/*
** Figure out what the labels will say.
*/
for (traverse = 0; traverse < 11; traverse++) {
timevals[traverse] = timevalSpace[traverse];
bytes[traverse] = byteSpace[traverse];
cached =
((globals.mMaxTimeval -
globals.mMinTimeval) * percents[traverse]) / 100;
PR_snprintf(timevals[traverse], 32, ST_TIMEVAL_FORMAT,
ST_TIMEVAL_PRINTABLE(cached));
result64 = (maxWeight64 - minWeight64) * percents[traverse];
result64 /= hundred64;
PR_snprintf(bytes[traverse], 32, "%llu", result64);
}
red = gdImageColorAllocate(graph, 255, 0, 0);
legendColors[0] = red;
drawGraph(graph, -1, "Allocation Weights", "Seconds",
"Weight", 11, percents, (const char **) timevals,
11, percents, (const char **) bytes, 1,
legendColors, legends);
if (maxWeight64 != minWeight64) {
int64_t in64 = 0;
int64_t spacey64 = 0;
int64_t weight64 = 0;
int32_t in32 = 0;
/*
** Go through our Y data and mark it up.
*/
for (traverse = 0; traverse < STGD_SPACE_X; traverse++) {
x1 = traverse + STGD_MARGIN;
y1 = STGD_HEIGHT - STGD_MARGIN;
/*
** Need to do this math in 64 bits.
*/
spacey64 = (int64_t)STGD_SPACE_Y;
weight64 = maxWeight64 - minWeight64;
in64 = YData64[traverse] * spacey64;
in64 /= weight64;
in32 = int32_t(in64);
x2 = x1;
y2 = y1 - in32;
gdImageLine(graph, x1, y1, x2, y2, red);
}
}
theSink.context = inRequest->mFD;
theSink.sink = pngSink;
gdImagePngToSink(graph, &theSink);
gdImageDestroy(graph);
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, createGraph);
}
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphWeight);
}
return retval;
}
#endif /* ST_WANT_GRAPHS */
#define ST_WEB_OPTION_BOOL(option_name, option_genre, option_help) \
{ \
uint32_t convert = (uint32_t)outOptions->m##option_name; \
\
getDataPRUint32(inFormData, #option_name, 1, &convert, 1); \
outOptions->m##option_name = (PRBool)convert; \
}
#define ST_WEB_OPTION_STRING(option_name, option_genre, default_value, option_help) \
getDataString(inFormData, #option_name, 1, outOptions->m##option_name, sizeof(outOptions->m##option_name));
#define ST_WEB_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
{ \
uint32_t loop = 0; \
uint32_t found = 0; \
char buffer[ST_OPTION_STRING_MAX]; \
\
for(loop = 0; loop < array_size; loop++) \
{ \
buffer[0] = '\0'; \
getDataString(inFormData, #option_name, (loop + 1), buffer, sizeof(buffer)); \
\
if('\0' != buffer[0]) \
{ \
PR_snprintf(outOptions->m##option_name[found], sizeof(outOptions->m##option_name[found]), "%s", buffer); \
found++; \
} \
} \
\
for(; found < array_size; found++) \
{ \
outOptions->m##option_name[found][0] = '\0'; \
} \
}
#define ST_WEB_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) /* no implementation */
#define ST_WEB_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
getDataPRUint32(inFormData, #option_name, 1, &outOptions->m##option_name, multiplier);
#define ST_WEB_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
{ \
uint64_t mul64 = multiplier; \
\
getDataPRUint64(inFormData, #option_name, 1, &outOptions->m##option_name##64, mul64); \
}
/*
** fillOptions
**
** Given an appropriate hexcaped string, distill the option values
** and fill the given STOption struct.
**
** Note that the options passed in are not touched UNLESS there is
** a replacement found in the form data.
*/
void
fillOptions(STOptions * outOptions, const FormData * inFormData)
{
if (NULL != outOptions && NULL != inFormData) {
#include "stoptions.h"
/*
** Special sanity check here for some options that need data validation.
*/
if (!outOptions->mCategoryName[0]
|| !findCategoryNode(outOptions->mCategoryName, &globals)) {
PR_snprintf(outOptions->mCategoryName,
sizeof(outOptions->mCategoryName), "%s",
ST_ROOT_CATEGORY_NAME);
}
}
}
void
displayOptionString(STRequest * inRequest,
const char *option_name,
const char *option_genre,
const char *default_value,
const char *option_help, const char *value)
{
#if 0
PR_fprintf(inRequest->mFD, "<input type=submit value=%s>\n", option_name);
#endif
PR_fprintf(inRequest->mFD, "<div class=option-box>\n");
PR_fprintf(inRequest->mFD, "<p class=option-name>%s</p>\n", option_name);
PR_fprintf(inRequest->mFD,
"<input type=text name=\"%s\" value=\"%s\">\n",
option_name, value);
PR_fprintf(inRequest->mFD,
"<p class=option-default>Default value is \"%s\".</p>\n<p class=option-help>%s</p>\n",
default_value, option_help);
PR_fprintf(inRequest->mFD, "</div>\n");
}
static void
displayOptionStringArray(STRequest * inRequest,
const char *option_name,
const char *option_genre,
uint32_t array_size,
const char *option_help, const char values[5]
[ST_OPTION_STRING_MAX])
{
/* values should not be a fixed length! */
PR_ASSERT(array_size == 5);
#if 0
PR_fprintf(inRequest->mFD, "<input type=submit value=%s>\n", option_name);
#endif
PR_fprintf(inRequest->mFD, "<div class=\"option-box\">\n");
PR_fprintf(inRequest->mFD, "<p class=option-name>%s</p>\n", option_name); {
uint32_t loop = 0;
for (loop = 0; loop < array_size; loop++) {
PR_fprintf(inRequest->mFD,
"<input type=text name=\"%s\" value=\"%s\"><br>\n",
option_name, values[loop]);
}
}
PR_fprintf(inRequest->mFD,
"<p class=option-default>Up to %u occurrences allowed.</p>\n<p class=option-help>%s</p>\n",
array_size, option_help);
PR_fprintf(inRequest->mFD, "</div>\n");
}
static void
displayOptionInt(STRequest * inRequest,
const char *option_name,
const char *option_genre,
uint32_t default_value,
uint32_t multiplier, const char *option_help, uint32_t value)
{
#if 0
PR_fprintf(inRequest->mFD, "<input type=submit value=%s>\n", option_name);
#endif
PR_fprintf(inRequest->mFD, "<div class=\"option-box\">\n");
PR_fprintf(inRequest->mFD, "<p class=option-name>%s</p>\n", option_name);
PR_fprintf(inRequest->mFD,
"<input type=text name=%s value=%u>\n", option_name,
value / multiplier);
PR_fprintf(inRequest->mFD,
"<p class=option-default>Default value is %u.</p>\n<p class=option-help>%s</p>\n",
default_value, option_help);
PR_fprintf(inRequest->mFD, "</div>\n");
}
static void
displayOptionInt64(STRequest * inRequest,
const char *option_name,
const char *option_genre,
uint64_t default_value,
uint64_t multiplier,
const char *option_help, uint64_t value)
{
#if 0
PR_fprintf(inRequest->mFD, "<input type=submit value=%s>\n", option_name);
#endif
PR_fprintf(inRequest->mFD, "<div class=\"option-box\">\n");
PR_fprintf(inRequest->mFD, "<p class=option-name>%s</p>\n", option_name); {
uint64_t def64 = default_value;
uint64_t mul64 = multiplier;
uint64_t div64;
div64 = value / mul64;
PR_fprintf(inRequest->mFD,
"<input type=text name=%s value=%llu>\n",
option_name, div64);
PR_fprintf(inRequest->mFD,
"<p class=option-default>Default value is %llu.</p>\n<p class=option-help>%s</p>\n",
def64, option_help);
}
PR_fprintf(inRequest->mFD, "</div>\n");
}
/*
** displaySettings
**
** Present the settings for change during execution.
*/
void
displaySettings(STRequest * inRequest)
{
int applyRes = 0;
/*
** We've got a form to create.
*/
PR_fprintf(inRequest->mFD, "<form method=get action=\"./index.html\">\n");
/*
** Respect newlines in help text.
*/
#if 0
PR_fprintf(inRequest->mFD, "<pre>\n");
#endif
#define ST_WEB_OPTION_BOOL(option_name, option_genre, option_help) \
displayOptionBool(option_name, option_genre, option_help)
#define ST_WEB_OPTION_STRING(option_name, option_genre, default_value, option_help) \
displayOptionString(inRequest, #option_name, #option_genre, default_value, option_help, inRequest->mOptions.m##option_name);
#define ST_WEB_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
displayOptionStringArray(inRequest, #option_name, #option_genre, array_size, option_help, inRequest->mOptions.m##option_name);
#define ST_WEB_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) /* no implementation */
#define ST_WEB_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
displayOptionInt(inRequest, #option_name, #option_genre, default_value, multiplier, option_help, inRequest->mOptions.m##option_name);
#define ST_WEB_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
displayOptionInt64(inRequest, #option_name, #option_genre, default_value, multiplier, option_help, inRequest->mOptions.m##option_name##64);
#include "stoptions.h"
/*
** Give a submit/reset button, obligatory.
** Done respecting newlines in help text.
*/
PR_fprintf(inRequest->mFD,
"<input type=submit value=\"Save Options\"> <input type=reset>\n");
#if 0
PR_fprintf(inRequest->mFD, "</pre>\n");
#endif
/*
** Done with form.
*/
PR_fprintf(inRequest->mFD, "</form>\n");
}
int
handleLocalFile(STRequest * inRequest, const char *aFilename)
{
static const char *const local_files[] = {
"spacetrace.css",
};
static const size_t local_file_count =
sizeof(local_files) / sizeof(local_files[0]);
size_t i;
for (i = 0; i < local_file_count; i++) {
if (0 == strcmp(local_files[i], aFilename))
return 1;
}
return 0;
}
/*
** displayFile
**
** reads a file from disk, and streams it to the request
*/
int
displayFile(STRequest * inRequest, const char *aFilename)
{
PRFileDesc *inFd;
const char *filepath =
PR_smprintf("res%c%s", PR_GetDirectorySeparator(), aFilename);
char buffer[2048];
int32_t readRes;
inFd = PR_Open(filepath, PR_RDONLY, PR_IRUSR);
if (!inFd)
return -1;
while ((readRes = PR_Read(inFd, buffer, sizeof(buffer))) > 0) {
PR_Write(inRequest->mFD, buffer, readRes);
}
if (readRes != 0)
return -1;
PR_Close(inFd);
return 0;
}
/*
** displayIndex
**
** Present a list of the reports you can drill down into.
** Returns !0 on failure.
*/
int
displayIndex(STRequest * inRequest)
{
int retval = 0;
STOptions *options = &inRequest->mOptions;
/*
** Present reports in a list format.
*/
PR_fprintf(inRequest->mFD, "<ul>");
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "root_callsites.html", "Root Callsites",
NULL, "mainmenu", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "categories_summary.html",
"Categories Report", NULL, "mainmenu", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "top_callsites.html",
"Top Callsites Report", NULL, "mainmenu", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "top_allocations.html",
"Top Allocations Report", NULL, "mainmenu", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "memory_leaks.html",
"Memory Leak Report", NULL, "mainmenu", options);
#if ST_WANT_GRAPHS
PR_fprintf(inRequest->mFD, "\n<li>Graphs");
PR_fprintf(inRequest->mFD, "<ul>");
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "footprint_graph.html", "Footprint",
NULL, "mainmenu graph", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "lifespan_graph.html",
"Allocation Lifespans", NULL, "mainmenu graph", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "times_graph.html", "Allocation Times",
NULL, "mainmenu graph", options);
PR_fprintf(inRequest->mFD, "\n<li>");
htmlAnchor(inRequest, "weight_graph.html",
"Allocation Weights", NULL, "mainmenu graph", options);
PR_fprintf(inRequest->mFD, "\n</ul>\n");
#endif /* ST_WANT_GRAPHS */
PR_fprintf(inRequest->mFD, "\n</ul>\n");
return retval;
}
/*
** initRequestOptions
**
** Given the request, set the options that are specific to the request.
** These can generally be determined in the following manner:
** Copy over global options.
** If getData present, attempt to use options therein.
*/
void
initRequestOptions(STRequest * inRequest)
{
if (NULL != inRequest) {
/*
** Copy of global options.
*/
memcpy(&inRequest->mOptions, &globals.mCommandLineOptions,
sizeof(globals.mCommandLineOptions));
/*
** Decide what will override global options if anything.
*/
if (NULL != inRequest->mGetData) {
fillOptions(&inRequest->mOptions, inRequest->mGetData);
}
}
}
STContext *
contextLookup(STOptions * inOptions)
/*
** Lookup a context that matches the options.
** The lookup may block, especially if the context needs to be created.
** Callers of this API must eventually call contextRelease with the
** return value; failure to do so will cause this applications
** to eventually not work as advertised.
**
** inOptions The options determine which context is relevant.
** returns The fully completed context on success.
** The context is read only in practice, so please do not
** write to it or anything it points to.
** NULL on failure.
*/
{
STContext *retval = NULL;
STContextCache *inCache = &globals.mContextCache;
if (NULL != inOptions && NULL != inCache) {
uint32_t loop = 0;
STContext *categoryException = NULL;
PRBool newContext = PR_FALSE;
PRBool evictContext = PR_FALSE;
PRBool changeCategoryContext = PR_FALSE;
/*
** Own the context cache while we are in here.
*/
PR_Lock(inCache->mLock);
/*
** Loop until successful.
** Waiting on the condition variable makes sure we don't hog the
** lock below.
*/
while (1) {
/*
** Go over the cache items.
** At this point we are looking for a cache hit, with multiple
** readers.
*/
for (loop = 0; loop < inCache->mItemCount; loop++) {
/*
** Must be in use.
*/
if (PR_FALSE != inCache->mItems[loop].mInUse) {
int delta[(STOptionGenre) MaxGenres];
/*
** Compare the relevant options, figure out if different
** in any genre that we care about.
*/
memset(&delta, 0, sizeof(delta));
#define ST_WEB_OPTION_BOOL(option_name, option_genre, option_help) \
if(inOptions->m##option_name != inCache->mItems[loop].mOptions.m##option_name) \
{ \
delta[(STOptionGenre)option_genre]++; \
}
#define ST_WEB_OPTION_STRING(option_name, option_genre, default_value, option_help) \
if(0 != strcmp(inOptions->m##option_name, inCache->mItems[loop].mOptions.m##option_name)) \
{ \
delta[(STOptionGenre)option_genre]++; \
}
#define ST_WEB_OPTION_STRING_ARRAY(option_name, option_genre, array_size, option_help) \
{ \
uint32_t macro_loop = 0; \
\
for(macro_loop = 0; macro_loop < array_size; macro_loop++) \
{ \
if(0 != strcmp(inOptions->m##option_name[macro_loop], inCache->mItems[loop].mOptions.m##option_name[macro_loop])) \
{ \
break; \
} \
} \
\
if(macro_loop != array_size) \
{ \
delta[(STOptionGenre)option_genre]++; \
} \
}
#define ST_WEB_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) /* no implementation */
#define ST_WEB_OPTION_UINT32(option_name, option_genre, default_value, multiplier, option_help) \
if(inOptions->m##option_name != inCache->mItems[loop].mOptions.m##option_name) \
{ \
delta[(STOptionGenre)option_genre]++; \
}
#define ST_WEB_OPTION_UINT64(option_name, option_genre, default_value, multiplier, option_help) \
if(inOptions->m##option_name##64 != inCache->mItems[loop].mOptions.m##option_name##64) \
{ \
delta[(STOptionGenre)option_genre]++; \
}
#include "stoptions.h"
/*
** If there is no genre out of alignment, we accept this as the context.
*/
if (0 == delta[CategoryGenre] &&
0 == delta[DataSortGenre] &&
0 == delta[DataSetGenre] && 0 == delta[DataSizeGenre]
) {
retval = &inCache->mItems[loop].mContext;
break;
}
/*
** A special exception to the rule here.
** If all that is different is the category genre, and there
** is no one looking at the context (zero ref count),
** then there is some magic we can perform.
*/
if (NULL == retval &&
0 == inCache->mItems[loop].mReferenceCount &&
0 != delta[CategoryGenre] &&
0 == delta[DataSortGenre] &&
0 == delta[DataSetGenre] && 0 == delta[DataSizeGenre]
) {
categoryException = &inCache->mItems[loop].mContext;
}
}
}
/*
** Pick up our category exception if relevant.
*/
if (NULL == retval && NULL != categoryException) {
retval = categoryException;
categoryException = NULL;
changeCategoryContext = PR_TRUE;
}
/*
** If we don't have a cache hit, then we need to check for an empty
** spot to take over.
*/
if (NULL == retval) {
for (loop = 0; loop < inCache->mItemCount; loop++) {
/*
** Must NOT be in use, then it will be the context.
*/
if (PR_FALSE == inCache->mItems[loop].mInUse) {
retval = &inCache->mItems[loop].mContext;
newContext = PR_TRUE;
break;
}
}
}
/*
** If we still don't have a return value, then we need to see if
** there are any old items with zero ref counts that we
** can take over.
*/
if (NULL == retval) {
for (loop = 0; loop < inCache->mItemCount; loop++) {
/*
** Must be in use.
*/
if (PR_FALSE != inCache->mItems[loop].mInUse) {
/*
** Must have a ref count of zero.
*/
if (0 == inCache->mItems[loop].mReferenceCount) {
/*
** Must be older than any other we know of.
*/
if (NULL != retval) {
if (inCache->mItems[loop].mLastAccessed <
inCache->mItems[retval->mIndex].
mLastAccessed) {
retval = &inCache->mItems[loop].mContext;
}
}
else {
retval = &inCache->mItems[loop].mContext;
}
}
}
}
if (NULL != retval) {
evictContext = PR_TRUE;
}
}
/*
** If we still don't have a return value, then we can not avoid
** waiting around until someone gives us the chance.
** The chance, in specific, comes when a cache item reference
** count returns to zero, upon which we can try to take
** it over again.
*/
if (NULL == retval) {
/*
** This has the side effect of release the context lock.
** This is a good thing so that other clients can continue
** to connect and hopefully have cache hits.
** If they do not have cache hits, then we will end up
** with a bunch of waiters here....
*/
PR_WaitCondVar(inCache->mCacheMiss, PR_INTERVAL_NO_TIMEOUT);
}
/*
** If we have a return value, improve the reference count here.
*/
if (NULL != retval) {
/*
** Decide if there are any changes to be made.
** Do as little as possible, then fall through the context
** cache lock to finish up.
** This way, lengthy init operations will not block
** other clients, only matches to this context.
*/
if (PR_FALSE != newContext ||
PR_FALSE != evictContext ||
PR_FALSE != changeCategoryContext) {
/*
** Overwrite the prefs for this context.
** They are changing.
*/
memcpy(&inCache->mItems[retval->mIndex].mOptions,
inOptions,
sizeof(inCache->mItems[retval->mIndex].mOptions));
/*
** As we are going to be changing the context, we need to write lock it.
** This makes sure no readers are allowed while we are making our changes.
*/
PR_RWLock_Wlock(retval->mRWLock);
}
/*
** NOTE, ref count gets incremented here, inside content
** cache lock so it can not be flushed once lock
** released.
*/
inCache->mItems[retval->mIndex].mInUse = PR_TRUE;
inCache->mItems[retval->mIndex].mReferenceCount++;
/*
** That's all folks.
*/
break;
}
} /* while(1), try again */
/*
** Done with context cache.
*/
PR_Unlock(inCache->mLock);
/*
** Now that the context cached is free to continue accepting other
** requests, we have a little more work to do.
*/
if (NULL != retval) {
PRBool unlock = PR_FALSE;
/*
** If evicting, we need to free off the old stuff.
*/
if (PR_FALSE != evictContext) {
unlock = PR_TRUE;
/*
** We do not free the sorted run.
** The category code takes care of this.
*/
retval->mSortedRun = NULL;
#if ST_WANT_GRAPHS
/*
** There is no need to
** PR_Lock(retval->mImageLock)
** We are already under write lock for the entire structure.
*/
retval->mFootprintCached = PR_FALSE;
retval->mTimevalCached = PR_FALSE;
retval->mLifespanCached = PR_FALSE;
retval->mWeightCached = PR_FALSE;
#endif
}
/*
** If new or recently evicted, we need to fully init.
*/
if (PR_FALSE != newContext || PR_FALSE != evictContext) {
unlock = PR_TRUE;
retval->mSortedRun =
createRunFromGlobal(&inCache->mItems[retval->mIndex].
mOptions,
&inCache->mItems[retval->mIndex].
mContext);
}
/*
** If changing category, we need to do some sneaky stuff.
*/
if (PR_FALSE != changeCategoryContext) {
STCategoryNode *node = NULL;
unlock = PR_TRUE;
/*
** Just a category change. We don't need to harvest. Just find the
** right node and set the cache.mSortedRun. We need to recompute
** cost though. But that is cheap.
*/
node =
findCategoryNode(inCache->mItems[retval->mIndex].mOptions.
mCategoryName, &globals);
if (node) {
/* Recalculate cost of run */
recalculateRunCost(&inCache->mItems[retval->mIndex].
mOptions, retval,
node->runs[retval->mIndex]);
retval->mSortedRun = node->runs[retval->mIndex];
}
#if ST_WANT_GRAPHS
/*
** There is no need to
** PR_Lock(retval->mImageLock)
** We are already under write lock for the entire structure.
*/
retval->mFootprintCached = PR_FALSE;
retval->mTimevalCached = PR_FALSE;
retval->mLifespanCached = PR_FALSE;
retval->mWeightCached = PR_FALSE;
#endif
}
/*
** Release the write lock if we took one to make changes.
*/
if (PR_FALSE != unlock) {
PR_RWLock_Unlock(retval->mRWLock);
}
/*
** Last thing possible, take a read lock on our return value.
** This will cause us to block if the context is not fully
** initialized in another thread holding the write lock.
*/
PR_RWLock_Rlock(retval->mRWLock);
}
}
return retval;
}
void
contextRelease(STContext * inContext)
/*
** After a successful call to contextLookup, one should call this API when
** done with the context.
** This effectively removes the usage of the client on a cached item.
*/
{
STContextCache *inCache = &globals.mContextCache;
if (NULL != inContext && NULL != inCache) {
/*
** Own the context cache while in here.
*/
PR_Lock(inCache->mLock);
/*
** Give up the read lock on the context.
*/
PR_RWLock_Unlock(inContext->mRWLock);
/*
** Decrement the reference count on the context.
** If it was the last reference, notify that a new item is
** available for eviction.
** A waiting thread will wake up and eat it.
** Also set when it was last accessed so the oldest unused item
** can be targeted for eviction.
*/
inCache->mItems[inContext->mIndex].mReferenceCount--;
if (0 == inCache->mItems[inContext->mIndex].mReferenceCount) {
PR_NotifyCondVar(inCache->mCacheMiss);
inCache->mItems[inContext->mIndex].mLastAccessed =
PR_IntervalNow();
}
/*
** Done with context cache.
*/
PR_Unlock(inCache->mLock);
}
}
/*
** handleRequest
**
** Based on what file they are asking for, perform some processing.
** Output the results to aFD.
**
** Returns !0 on error.
*/
int
handleRequest(tmreader * aTMR, PRFileDesc * aFD,
const char *aFileName, const FormData * aGetData)
{
int retval = 0;
if (NULL != aTMR && NULL != aFD && NULL != aFileName
&& '\0' != *aFileName) {
STRequest request;
/*
** Init the request.
*/
memset(&request, 0, sizeof(request));
request.mFD = aFD;
request.mGetFileName = aFileName;
request.mGetData = aGetData;
/*
** Set local options for this request.
*/
initRequestOptions(&request);
/*
** Get our cached context for this client.
** Simply based on the options.
*/
request.mContext = contextLookup(&request.mOptions);
if (NULL != request.mContext) {
/*
** Attempt to find the file of interest.
*/
if (handleLocalFile(&request, aFileName)) {
displayFile(&request, aFileName);
}
else if (0 == strcmp("index.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Index");
displayRes = displayIndex(&request);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayIndex);
}
htmlFooter(&request);
}
else if (0 == strcmp("settings.html", aFileName) ||
0 == strcmp("options.html", aFileName)) {
htmlHeader(&request, "SpaceTrace Options");
displaySettings(&request);
htmlFooter(&request);
}
else if (0 == strcmp("top_allocations.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Top Allocations Report");
displayRes =
displayTopAllocations(&request,
request.mContext->mSortedRun,
"top-allocations",
"SpaceTrace Top Allocations Report",
1);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopAllocations);
}
htmlFooter(&request);
}
else if (0 == strcmp("top_callsites.html", aFileName)) {
int displayRes = 0;
tmcallsite **array = NULL;
uint32_t arrayCount = 0;
/*
** Display header after we figure out if we are going to focus
** on a category.
*/
htmlHeader(&request, "SpaceTrace Top Callsites Report");
if (NULL != request.mContext->mSortedRun
&& 0 < request.mContext->mSortedRun->mAllocationCount) {
arrayCount =
callsiteArrayFromRun(&array, 0,
request.mContext->mSortedRun);
if (0 != arrayCount && NULL != array) {
displayRes =
displayTopCallsites(&request, array, arrayCount,
0,
"top-callsites",
"Top Callsites Report",
0);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayTopCallsites);
}
/*
** Done with the array.
*/
free(array);
array = NULL;
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, handleRequest);
}
htmlFooter(&request);
}
else if (0 == strcmp("memory_leaks.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Memory Leaks Report");
displayRes =
displayMemoryLeaks(&request,
request.mContext->mSortedRun);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayMemoryLeaks);
}
htmlFooter(&request);
}
else if (0 == strncmp("allocation_", aFileName, 11)) {
int scanRes = 0;
uint32_t allocationIndex = 0;
/*
** Oh, what a hack....
** The index to the allocation structure in the global run
** is in the filename. Better than the pointer value....
*/
scanRes = PR_sscanf(aFileName + 11, "%u", &allocationIndex);
if (1 == scanRes
&& globals.mRun.mAllocationCount > allocationIndex
&& NULL != globals.mRun.mAllocations[allocationIndex]) {
STAllocation *allocation =
globals.mRun.mAllocations[allocationIndex];
char buffer[128];
int displayRes = 0;
PR_snprintf(buffer, sizeof(buffer),
"SpaceTrace Allocation %u Details Report",
allocationIndex);
htmlHeader(&request, buffer);
displayRes =
displayAllocationDetails(&request, allocation);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayAllocationDetails);
}
htmlFooter(&request);
}
else {
htmlNotFound(&request);
}
}
else if (0 == strncmp("callsite_", aFileName, 9)) {
int scanRes = 0;
uint32_t callsiteSerial = 0;
tmcallsite *resolved = NULL;
/*
** Oh, what a hack....
** The serial(key) to the callsite structure in the hash table
** is in the filename. Better than the pointer value....
*/
scanRes = PR_sscanf(aFileName + 9, "%u", &callsiteSerial);
if (1 == scanRes && 0 != callsiteSerial
&& NULL != (resolved =
tmreader_callsite(aTMR, callsiteSerial))) {
char buffer[128];
int displayRes = 0;
PR_snprintf(buffer, sizeof(buffer),
"SpaceTrace Callsite %u Details Report",
callsiteSerial);
htmlHeader(&request, buffer);
displayRes = displayCallsiteDetails(&request, resolved);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayAllocationDetails);
}
htmlFooter(&request);
}
else {
htmlNotFound(&request);
}
}
else if (0 == strcmp("root_callsites.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Root Callsites");
displayRes =
displayCallsites(&request, aTMR->calltree_root.kids,
ST_FOLLOW_SIBLINGS, 0,
"callsites-root",
"SpaceTrace Root Callsites",
__LINE__);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayCallsites);
}
htmlFooter(&request);
}
#if ST_WANT_GRAPHS
else if (0 == strcmp("footprint_graph.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Memory Footprint Report");
PR_fprintf(request.mFD, "<div align=center>\n");
PR_fprintf(request.mFD, "<img src=\"./footprint.png");
optionGetDataOut(request.mFD, &request.mOptions);
PR_fprintf(request.mFD, "\">\n");
PR_fprintf(request.mFD, "</div>\n");
htmlFooter(&request);
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("times_graph.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Allocation Times Report");
PR_fprintf(request.mFD, "<div align=center>\n");
PR_fprintf(request.mFD, "<img src=\"./times.png");
optionGetDataOut(request.mFD, &request.mOptions);
PR_fprintf(request.mFD, "\">\n");
PR_fprintf(request.mFD, "</div>\n");
htmlFooter(&request);
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("lifespan_graph.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request,
"SpaceTrace Allocation Lifespans Report");
PR_fprintf(request.mFD, "<div align=center>\n");
PR_fprintf(request.mFD, "<img src=\"./lifespan.png");
optionGetDataOut(request.mFD, &request.mOptions);
PR_fprintf(request.mFD, "\">\n");
PR_fprintf(request.mFD, "</div>\n");
htmlFooter(&request);
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("weight_graph.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "SpaceTrace Allocation Weights Report");
PR_fprintf(request.mFD, "<div align=center>\n");
PR_fprintf(request.mFD, "<img src=\"./weight.png");
optionGetDataOut(request.mFD, &request.mOptions);
PR_fprintf(request.mFD, "\">\n");
PR_fprintf(request.mFD, "</div>\n");
htmlFooter(&request);
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("footprint.png", aFileName)) {
int graphRes = 0;
graphRes =
graphFootprint(&request, request.mContext->mSortedRun);
if (0 != graphRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphFootprint);
}
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("times.png", aFileName)) {
int graphRes = 0;
graphRes =
graphTimeval(&request, request.mContext->mSortedRun);
if (0 != graphRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphTimeval);
}
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("lifespan.png", aFileName)) {
int graphRes = 0;
graphRes =
graphLifespan(&request, request.mContext->mSortedRun);
if (0 != graphRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphLifespan);
}
}
#endif /* ST_WANT_GRAPHS */
#if ST_WANT_GRAPHS
else if (0 == strcmp("weight.png", aFileName)) {
int graphRes = 0;
graphRes =
graphWeight(&request, request.mContext->mSortedRun);
if (0 != graphRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, graphWeight);
}
}
#endif /* ST_WANT_GRAPHS */
else if (0 == strcmp("categories_summary.html", aFileName)) {
int displayRes = 0;
htmlHeader(&request, "Category Report");
displayRes =
displayCategoryReport(&request, &globals.mCategoryRoot,
1);
if (0 != displayRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, displayMemoryLeaks);
}
htmlFooter(&request);
}
else {
htmlNotFound(&request);
}
/*
** Release the context we obtained earlier.
*/
contextRelease(request.mContext);
request.mContext = NULL;
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, contextObtain);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, handleRequest);
}
/*
** Compact a little if you can after each request.
*/
heapCompact();
return retval;
}
/*
** handleClient
**
** main() of the new client thread.
** Read the fd for the request.
** Output the results.
*/
void
handleClient(void *inArg)
{
PRFileDesc *aFD = NULL;
aFD = (PRFileDesc *) inArg;
if (NULL != aFD) {
PRStatus closeRes = PR_SUCCESS;
char aBuffer[2048];
int32_t readRes = 0;
readRes = PR_Read(aFD, aBuffer, sizeof(aBuffer));
if (0 <= readRes) {
const char *sanityCheck = "GET /";
if (0 == strncmp(sanityCheck, aBuffer, 5)) {
char *eourl = NULL;
char *start = &aBuffer[5];
char *getData = NULL;
int realFun = 0;
const char *crlf = "\015\012";
char *eoline = NULL;
FormData *fdGet = NULL;
/*
** Truncate the line if possible.
** Only want first one.
*/
eoline = strstr(aBuffer, crlf);
if (NULL != eoline) {
*eoline = '\0';
}
/*
** Find the whitespace.
** That is either end of line or the " HTTP/1.x" suffix.
** We do not care.
*/
for (eourl = start; 0 == isspace(*eourl) && '\0' != *eourl;
eourl++) {
/*
** No body.
*/
}
/*
** Cap it off.
** Convert empty '/' to index.html.
*/
*eourl = '\0';
if ('\0' == *start) {
strcpy(start, "index.html");
}
/*
** Have we got any GET form data?
*/
getData = strchr(start, '?');
if (NULL != getData) {
/*
** Whack it off.
*/
*getData = '\0';
getData++;
}
/*
** Convert get data into a more useful format.
*/
fdGet = FormData_Create(getData);
/*
** This is totally a hack, but oh well....
**
** Send that the request was OK, regardless.
**
** If we have any get data, then it is a set of options
** we attempt to apply.
**
** Other code will tell the user they were wrong or if
** there was an error.
** If the filename contains a ".png", then send the image
** mime type, otherwise, say it is text/html.
*/
PR_fprintf(aFD, "HTTP/1.1 200 OK%s", crlf);
PR_fprintf(aFD, "Server: %s%s",
"$Id: spacetrace.c,v 1.54 2006/11/01 23:02:17 timeless%mozdev.org Exp $",
crlf);
PR_fprintf(aFD, "Content-type: ");
if (NULL != strstr(start, ".png")) {
PR_fprintf(aFD, "image/png");
}
else if (NULL != strstr(start, ".jpg")) {
PR_fprintf(aFD, "image/jpeg");
}
else if (NULL != strstr(start, ".txt")) {
PR_fprintf(aFD, "text/plain");
}
else if (NULL != strstr(start, ".css")) {
PR_fprintf(aFD, "text/css");
}
else {
PR_fprintf(aFD, "text/html");
}
PR_fprintf(aFD, crlf);
/*
** One more to separate headers from content.
*/
PR_fprintf(aFD, crlf);
/*
** Ready for the real fun.
*/
realFun = handleRequest(globals.mTMR, aFD, start, fdGet);
if (0 != realFun) {
REPORT_ERROR(__LINE__, handleRequest);
}
/*
** Free off get data if around.
*/
FormData_Destroy(fdGet);
fdGet = NULL;
}
else {
REPORT_ERROR(__LINE__, handleClient);
}
}
else {
REPORT_ERROR(__LINE__, lineReader);
}
/*
** Done with the connection.
*/
closeRes = PR_Close(aFD);
if (PR_SUCCESS != closeRes) {
REPORT_ERROR(__LINE__, PR_Close);
}
}
else {
REPORT_ERROR(__LINE__, handleClient);
}
}
/*
** serverMode
**
** List on a port as a httpd.
** Output results interactively on demand.
**
** Returns !0 on error.
*/
int
serverMode(void)
{
int retval = 0;
PRFileDesc *socket = NULL;
/*
** Create a socket.
*/
socket = PR_NewTCPSocket();
if (NULL != socket) {
PRStatus closeRes = PR_SUCCESS;
PRNetAddr bindAddr;
PRStatus bindRes = PR_SUCCESS;
/*
** Bind it to an interface/port.
** Any interface.
*/
bindAddr.inet.family = PR_AF_INET;
bindAddr.inet.port =
PR_htons((uint16_t) globals.mCommandLineOptions.mHttpdPort);
bindAddr.inet.ip = PR_htonl(PR_INADDR_ANY);
bindRes = PR_Bind(socket, &bindAddr);
if (PR_SUCCESS == bindRes) {
PRStatus listenRes = PR_SUCCESS;
const int backlog = 0x20;
/*
** Start listening for clients.
** Give a decent backlog, some of our processing will take
** a bit.
*/
listenRes = PR_Listen(socket, backlog);
if (PR_SUCCESS == listenRes) {
PRFileDesc *connection = NULL;
int failureSum = 0;
char message[80];
/*
** Output a little message saying we are receiving.
*/
PR_snprintf(message, sizeof(message),
"server accepting connections at http://localhost:%u/",
globals.mCommandLineOptions.mHttpdPort);
REPORT_INFO(message);
PR_fprintf(PR_STDOUT, "Peak memory used: %s bytes\n",
FormatNumber(globals.mPeakMemoryUsed));
PR_fprintf(PR_STDOUT, "Allocations : %s total\n",
FormatNumber(globals.mMallocCount +
globals.mCallocCount +
globals.mReallocCount),
FormatNumber(globals.mFreeCount));
PR_fprintf(PR_STDOUT, "Breakdown : %s malloc\n",
FormatNumber(globals.mMallocCount));
PR_fprintf(PR_STDOUT, " %s calloc\n",
FormatNumber(globals.mCallocCount));
PR_fprintf(PR_STDOUT, " %s realloc\n",
FormatNumber(globals.mReallocCount));
PR_fprintf(PR_STDOUT, " %s free\n",
FormatNumber(globals.mFreeCount));
PR_fprintf(PR_STDOUT, "Leaks : %s\n",
FormatNumber((globals.mMallocCount +
globals.mCallocCount +
globals.mReallocCount) -
globals.mFreeCount));
/*
** Keep accepting until we know otherwise.
**
** We do a thread per connection.
** Up to the thread to close the connection when done.
**
** This is known by me to be suboptimal, and I would rather
** do a thread pool if it ever becomes a resource issue.
** Any issues would simply point to a need to get
** more machines or a beefier machine to handle the
** requests, as well as a need to do thread pooling and
** avoid thread creation overhead.
** The threads are not tracked, except possibly by NSPR
** itself and PR_Cleanup will wait on them all to exit as
** user threads so our shared data is valid.
*/
while (0 == retval) {
connection =
PR_Accept(socket, NULL, PR_INTERVAL_NO_TIMEOUT);
if (NULL != connection) {
PRThread *clientThread = NULL;
/*
** Thread per connection.
*/
clientThread = PR_CreateThread(PR_USER_THREAD, /* PR_Cleanup sync */
handleClient, (void *) connection, PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD, /* IO enabled */
PR_UNJOINABLE_THREAD,
0);
if (NULL == clientThread) {
PRStatus closeRes = PR_SUCCESS;
failureSum += __LINE__;
REPORT_ERROR(__LINE__, PR_Accept);
/*
** Close the connection as well, no service
*/
closeRes = PR_Close(connection);
if (PR_FAILURE == closeRes) {
REPORT_ERROR(__LINE__, PR_Close);
}
}
}
else {
failureSum += __LINE__;
REPORT_ERROR(__LINE__, PR_Accept);
}
}
if (0 != failureSum) {
retval = __LINE__;
}
/*
** Output a little message saying it is all over.
*/
REPORT_INFO("server no longer accepting connections....");
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_Listen);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_Bind);
}
/*
** Done with socket.
*/
closeRes = PR_Close(socket);
if (PR_SUCCESS != closeRes) {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_Close);
}
socket = NULL;
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_NewTCPSocket);
}
return retval;
}
/*
** batchMode
**
** Perform whatever batch requests we were asked to do.
*/
int
batchMode(void)
{
int retval = 0;
if (0 != globals.mCommandLineOptions.mBatchRequestCount) {
uint32_t loop = 0;
int failureSum = 0;
int handleRes = 0;
char aFileName[1024];
uint32_t sprintfRes = 0;
/*
** Go through and process the various files requested.
** We do not stop on failure, as it is too costly to rerun the
** batch job.
*/
for (loop = 0;
loop < globals.mCommandLineOptions.mBatchRequestCount; loop++) {
sprintfRes =
PR_snprintf(aFileName, sizeof(aFileName), "%s%c%s",
globals.mCommandLineOptions.mOutputDir,
PR_GetDirectorySeparator(),
globals.mCommandLineOptions.mBatchRequest[loop]);
if ((uint32_t) - 1 != sprintfRes) {
PRFileDesc *outFile = NULL;
outFile = PR_Open(aFileName, ST_FLAGS, ST_PERMS);
if (NULL != outFile) {
PRStatus closeRes = PR_SUCCESS;
handleRes =
handleRequest(globals.mTMR, outFile,
globals.mCommandLineOptions.
mBatchRequest[loop], NULL);
if (0 != handleRes) {
failureSum += __LINE__;
REPORT_ERROR(__LINE__, handleRequest);
}
closeRes = PR_Close(outFile);
if (PR_SUCCESS != closeRes) {
failureSum += __LINE__;
REPORT_ERROR(__LINE__, PR_Close);
}
}
else {
failureSum += __LINE__;
REPORT_ERROR(__LINE__, PR_Open);
}
}
else {
failureSum += __LINE__;
REPORT_ERROR(__LINE__, PR_snprintf);
}
}
if (0 != failureSum) {
retval = __LINE__;
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, outputReports);
}
return retval;
}
/*
** doRun
**
** Perform the actual processing this program requires.
** Returns !0 on failure.
*/
int
doRun(void)
{
int retval = 0;
/*
** Create the new trace-malloc reader.
*/
globals.mTMR = tmreader_new(globals.mProgramName, NULL);
if (NULL != globals.mTMR) {
int tmResult = 0;
int outputResult = 0;
#if defined(DEBUG_dp)
PRIntervalTime start = PR_IntervalNow();
fprintf(stderr, "DEBUG: reading tracemalloc data...\n");
#endif
tmResult =
tmreader_eventloop(globals.mTMR,
globals.mCommandLineOptions.mFileName,
tmEventHandler);
printf("\rReading... Done.\n");
#if defined(DEBUG_dp)
fprintf(stderr,
"DEBUG: reading tracemalloc data ends: %dms [%d allocations]\n",
PR_IntervalToMilliseconds(PR_IntervalNow() - start),
globals.mRun.mAllocationCount);
#endif
if (0 == tmResult) {
REPORT_ERROR(__LINE__, tmreader_eventloop);
retval = __LINE__;
}
if (0 == retval) {
/*
** Decide if we're going into batch mode or server mode.
*/
if (0 != globals.mCommandLineOptions.mBatchRequestCount) {
/*
** Output in one big step while everything still exists.
*/
outputResult = batchMode();
if (0 != outputResult) {
REPORT_ERROR(__LINE__, batchMode);
retval = __LINE__;
}
}
else {
int serverRes = 0;
/*
** httpd time.
*/
serverRes = serverMode();
if (0 != serverRes) {
REPORT_ERROR(__LINE__, serverMode);
retval = __LINE__;
}
}
/*
** Clear our categorization tree
*/
freeCategories(&globals);
}
}
else {
REPORT_ERROR(__LINE__, tmreader_new);
retval = __LINE__;
}
return retval;
}
int
initCaches(void)
/*
** Initialize the global caches.
** More involved since we have to allocated/create some objects.
**
** returns Zero if all is well.
** Non-zero on error.
*/
{
int retval = 0;
STContextCache *inCache = &globals.mContextCache;
if (NULL != inCache && 0 != globals.mCommandLineOptions.mContexts) {
inCache->mLock = PR_NewLock();
if (NULL != inCache->mLock) {
inCache->mCacheMiss = PR_NewCondVar(inCache->mLock);
if (NULL != inCache->mCacheMiss) {
inCache->mItems =
(STContextCacheItem *) calloc(globals.mCommandLineOptions.
mContexts,
sizeof(STContextCacheItem));
if (NULL != inCache->mItems) {
uint32_t loop = 0;
char buffer[64];
inCache->mItemCount =
globals.mCommandLineOptions.mContexts;
/*
** Init each item as needed.
*/
for (loop = 0; loop < inCache->mItemCount; loop++) {
inCache->mItems[loop].mContext.mIndex = loop;
PR_snprintf(buffer, sizeof(buffer),
"Context Item %d RW Lock", loop);
inCache->mItems[loop].mContext.mRWLock =
PR_NewRWLock(PR_RWLOCK_RANK_NONE, buffer);
if (NULL == inCache->mItems[loop].mContext.mRWLock) {
break;
}
#if ST_WANT_GRAPHS
inCache->mItems[loop].mContext.mImageLock =
PR_NewLock();
if (NULL == inCache->mItems[loop].mContext.mImageLock) {
break;
}
#endif
}
if (loop != inCache->mItemCount) {
retval = __LINE__;
REPORT_ERROR(__LINE__, initCaches);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, calloc);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_NewCondVar);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, PR_NewLock);
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, initCaches);
}
return retval;
}
int
destroyCaches(void)
/*
** Clean up any global caches we have laying around.
**
** returns Zero if all is well.
** Non-zero on error.
*/
{
int retval = 0;
STContextCache *inCache = &globals.mContextCache;
if (NULL != inCache) {
uint32_t loop = 0;
/*
** Uninit item data one by one.
*/
for (loop = 0; loop < inCache->mItemCount; loop++) {
if (NULL != inCache->mItems[loop].mContext.mRWLock) {
PR_DestroyRWLock(inCache->mItems[loop].mContext.mRWLock);
inCache->mItems[loop].mContext.mRWLock = NULL;
}
#if ST_WANT_GRAPHS
if (NULL != inCache->mItems[loop].mContext.mImageLock) {
PR_DestroyLock(inCache->mItems[loop].mContext.mImageLock);
inCache->mItems[loop].mContext.mImageLock = NULL;
}
#endif
}
inCache->mItemCount = 0;
if (NULL != inCache->mItems) {
free(inCache->mItems);
inCache->mItems = NULL;
}
if (NULL != inCache->mCacheMiss) {
PR_DestroyCondVar(inCache->mCacheMiss);
inCache->mCacheMiss = NULL;
}
if (NULL != inCache->mLock) {
PR_DestroyLock(inCache->mLock);
inCache->mLock = NULL;
}
}
else {
retval = __LINE__;
REPORT_ERROR(__LINE__, destroyCaches);
}
return retval;
}
/*
** main
**
** Process entry and exit.
*/
int
main(int aArgCount, char **aArgArray)
{
int retval = 0;
int optionsResult = 0;
PRStatus prResult = PR_SUCCESS;
int showedHelp = 0;
int looper = 0;
int cacheResult = 0;
/*
** NSPR init.
*/
PR_Init(PR_USER_THREAD, PR_PRIORITY_NORMAL, 0);
/*
** Initialize globals
*/
memset(&globals, 0, sizeof(globals));
/*
** Set the program name.
*/
globals.mProgramName = aArgArray[0];
/*
** Set the minimum timeval really high so other code
** that checks the timeval will get it right.
*/
globals.mMinTimeval = ST_TIMEVAL_MAX;
/*
** Handle initializing options.
*/
optionsResult = initOptions(aArgCount, aArgArray);
if (0 != optionsResult) {
REPORT_ERROR(optionsResult, initOptions);
retval = __LINE__;
}
/*
** Initialize our caches.
*/
cacheResult = initCaches();
if (0 != cacheResult) {
retval = __LINE__;
REPORT_ERROR(__LINE__, initCaches);
}
/*
** Small alloc code init.
*/
globals.mCategoryRoot.runs =
(STRun **) calloc(globals.mCommandLineOptions.mContexts,
sizeof(STRun *));
if (NULL == globals.mCategoryRoot.runs) {
retval = __LINE__;
REPORT_ERROR(__LINE__, calloc);
}
/*
** Show help on usage if need be.
*/
showedHelp = showHelp();
/*
** Only perform the run if everything is checking out.
*/
if (0 == showedHelp && 0 == retval) {
int runResult = 0;
runResult = doRun();
if (0 != runResult) {
REPORT_ERROR(runResult, doRun);
retval = __LINE__;
}
}
if (0 != retval) {
REPORT_ERROR(retval, main);
}
/*
** Have NSPR join all client threads we started.
*/
prResult = PR_Cleanup();
if (PR_SUCCESS != prResult) {
REPORT_ERROR(retval, PR_Cleanup);
retval = __LINE__;
}
/*
** All threads are joined/done by this line.
*/
/*
** Options allocated a little.
*/
#define ST_CMD_OPTION_STRING_PTR_ARRAY(option_name, option_genre, option_help) \
if(NULL != globals.mCommandLineOptions.m##option_name) \
{ \
free((void*)globals.mCommandLineOptions.m##option_name); \
globals.mCommandLineOptions.m##option_name = NULL; \
globals.mCommandLineOptions.m##option_name##Count = 0; \
}
#include "stoptions.h"
/*
** globals has a small modification to clear up.
*/
if (NULL != globals.mCategoryRoot.runs) {
free(globals.mCategoryRoot.runs);
globals.mCategoryRoot.runs = NULL;
}
/*
** Blow away our caches.
*/
cacheResult = destroyCaches();
if (0 != cacheResult) {
retval = __LINE__;
REPORT_ERROR(__LINE__, initCaches);
}
/*
** We are safe to kill our tmreader data.
*/
if (NULL != globals.mTMR) {
tmreader_destroy(globals.mTMR);
globals.mTMR = NULL;
}
return retval;
}