gecko-dev/layout/tables/nsCellMap.cpp
flowejam 68f084fc8b Bug 1885693: Converted LogicalSide to an enum class, and renamed variables accordingly. r=TYLin
Values were static_casted where required. Some functions in WritingModes.h were
rewritten such that bitwise operations aren't being used. Added static_casts to
avoid (debug) build errors from debugging printfs in layout/tables/nsCellMap.cpp.

Differential Revision: https://phabricator.services.mozilla.com/D205510
2024-03-26 17:55:16 +00:00

2511 lines
85 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsCellMap.h"
#include "mozilla/PresShell.h"
#include "mozilla/StaticPtr.h"
#include "nsTArray.h"
#include "nsTableFrame.h"
#include "nsTableCellFrame.h"
#include "nsTableRowFrame.h"
#include "nsTableRowGroupFrame.h"
#include <algorithm>
using namespace mozilla;
static void SetDamageArea(int32_t aStartCol, int32_t aStartRow,
int32_t aColCount, int32_t aRowCount,
TableArea& aDamageArea) {
NS_ASSERTION(aStartCol >= 0, "negative col index");
NS_ASSERTION(aStartRow >= 0, "negative row index");
NS_ASSERTION(aColCount >= 0, "negative col count");
NS_ASSERTION(aRowCount >= 0, "negative row count");
aDamageArea.StartCol() = aStartCol;
aDamageArea.StartRow() = aStartRow;
aDamageArea.ColCount() = aColCount;
aDamageArea.RowCount() = aRowCount;
}
// Empty static array used for SafeElementAt() calls on mRows.
static StaticAutoPtr<nsCellMap::CellDataArray> sEmptyRow;
// CellData
CellData::CellData(nsTableCellFrame* aOrigCell) {
MOZ_COUNT_CTOR(CellData);
static_assert(sizeof(mOrigCell) == sizeof(mBits),
"mOrigCell and mBits must be the same size");
mOrigCell = aOrigCell;
}
CellData::~CellData() { MOZ_COUNT_DTOR(CellData); }
BCCellData::BCCellData(nsTableCellFrame* aOrigCell) : CellData(aOrigCell) {
MOZ_COUNT_CTOR(BCCellData);
}
BCCellData::~BCCellData() { MOZ_COUNT_DTOR(BCCellData); }
// nsTableCellMap
nsTableCellMap::nsTableCellMap(nsTableFrame& aTableFrame, bool aBorderCollapse)
: mTableFrame(aTableFrame), mFirstMap(nullptr), mBCInfo(nullptr) {
MOZ_COUNT_CTOR(nsTableCellMap);
nsTableFrame::RowGroupArray orderedRowGroups = aTableFrame.OrderedRowGroups();
nsTableRowGroupFrame* prior = nullptr;
for (uint32_t rgX = 0; rgX < orderedRowGroups.Length(); rgX++) {
nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgX];
InsertGroupCellMap(rgFrame, prior);
prior = rgFrame;
}
if (aBorderCollapse) {
mBCInfo = new BCInfo();
}
}
nsTableCellMap::~nsTableCellMap() {
MOZ_COUNT_DTOR(nsTableCellMap);
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
nsCellMap* next = cellMap->GetNextSibling();
delete cellMap;
cellMap = next;
}
if (mBCInfo) {
DeleteIEndBEndBorders();
delete mBCInfo;
}
}
// Get the bcData holding the border segments of the iEnd edge of the table
BCData* nsTableCellMap::GetIEndMostBorder(int32_t aRowIndex) {
if (!mBCInfo) ABORT1(nullptr);
int32_t numRows = mBCInfo->mIEndBorders.Length();
if (aRowIndex < numRows) {
return &mBCInfo->mIEndBorders.ElementAt(aRowIndex);
}
mBCInfo->mIEndBorders.SetLength(aRowIndex + 1);
return &mBCInfo->mIEndBorders.ElementAt(aRowIndex);
}
// Get the bcData holding the border segments of the bEnd edge of the table
BCData* nsTableCellMap::GetBEndMostBorder(int32_t aColIndex) {
if (!mBCInfo) ABORT1(nullptr);
int32_t numCols = mBCInfo->mBEndBorders.Length();
if (aColIndex < numCols) {
return &mBCInfo->mBEndBorders.ElementAt(aColIndex);
}
mBCInfo->mBEndBorders.SetLength(aColIndex + 1);
return &mBCInfo->mBEndBorders.ElementAt(aColIndex);
}
// delete the borders corresponding to the iEnd and bEnd edges of the table
void nsTableCellMap::DeleteIEndBEndBorders() {
if (mBCInfo) {
mBCInfo->mBEndBorders.Clear();
mBCInfo->mIEndBorders.Clear();
}
}
void nsTableCellMap::InsertGroupCellMap(nsCellMap* aPrevMap,
nsCellMap& aNewMap) {
nsCellMap* next;
if (aPrevMap) {
next = aPrevMap->GetNextSibling();
aPrevMap->SetNextSibling(&aNewMap);
} else {
next = mFirstMap;
mFirstMap = &aNewMap;
}
aNewMap.SetNextSibling(next);
}
void nsTableCellMap::InsertGroupCellMap(nsTableRowGroupFrame* aNewGroup,
nsTableRowGroupFrame*& aPrevGroup) {
nsCellMap* newMap = new nsCellMap(aNewGroup, mBCInfo != nullptr);
nsCellMap* prevMap = nullptr;
nsCellMap* lastMap = mFirstMap;
if (aPrevGroup) {
nsCellMap* map = mFirstMap;
while (map) {
lastMap = map;
if (map->GetRowGroup() == aPrevGroup) {
prevMap = map;
break;
}
map = map->GetNextSibling();
}
}
if (!prevMap) {
if (aPrevGroup) {
prevMap = lastMap;
aPrevGroup = (prevMap) ? prevMap->GetRowGroup() : nullptr;
} else {
aPrevGroup = nullptr;
}
}
InsertGroupCellMap(prevMap, *newMap);
}
void nsTableCellMap::RemoveGroupCellMap(nsTableRowGroupFrame* aGroup) {
nsCellMap* map = mFirstMap;
nsCellMap* prior = nullptr;
while (map) {
if (map->GetRowGroup() == aGroup) {
nsCellMap* next = map->GetNextSibling();
if (mFirstMap == map) {
mFirstMap = next;
} else {
prior->SetNextSibling(next);
}
delete map;
break;
}
prior = map;
map = map->GetNextSibling();
}
}
static nsCellMap* FindMapFor(const nsTableRowGroupFrame* aRowGroup,
nsCellMap* aStart, const nsCellMap* aEnd) {
for (nsCellMap* map = aStart; map != aEnd; map = map->GetNextSibling()) {
if (aRowGroup == map->GetRowGroup()) {
return map;
}
}
return nullptr;
}
nsCellMap* nsTableCellMap::GetMapFor(const nsTableRowGroupFrame* aRowGroup,
nsCellMap* aStartHint) const {
MOZ_ASSERT(aRowGroup, "Must have a rowgroup");
NS_ASSERTION(!aRowGroup->GetPrevInFlow(),
"GetMapFor called with continuation");
if (aStartHint) {
nsCellMap* map = FindMapFor(aRowGroup, aStartHint, nullptr);
if (map) {
return map;
}
}
nsCellMap* map = FindMapFor(aRowGroup, mFirstMap, aStartHint);
if (map) {
return map;
}
// If aRowGroup is a repeated header or footer find the header or footer it
// was repeated from.
// Bug 1442018: we also need this search for header/footer frames that are
// not marked as _repeatable_ because they have a next-in-flow, as they may
// nevertheless have been _repeated_ from an earlier fragment.
auto isTableHeaderFooterGroup = [](const nsTableRowGroupFrame* aRG) -> bool {
const auto display = aRG->StyleDisplay()->mDisplay;
return display == StyleDisplay::TableHeaderGroup ||
display == StyleDisplay::TableFooterGroup;
};
if (aRowGroup->IsRepeatable() ||
(aRowGroup->GetNextInFlow() && isTableHeaderFooterGroup(aRowGroup))) {
auto findOtherRowGroupOfType =
[aRowGroup](nsTableFrame* aTable) -> nsTableRowGroupFrame* {
const auto display = aRowGroup->StyleDisplay()->mDisplay;
auto* table = aTable->FirstContinuation();
for (; table; table = table->GetNextContinuation()) {
for (auto* child : table->PrincipalChildList()) {
if (child->StyleDisplay()->mDisplay == display &&
child != aRowGroup) {
return static_cast<nsTableRowGroupFrame*>(child);
}
}
}
return nullptr;
};
if (auto* rgOrig = findOtherRowGroupOfType(&mTableFrame)) {
return GetMapFor(rgOrig, aStartHint);
}
MOZ_ASSERT_UNREACHABLE(
"A repeated header/footer should always have an "
"original header/footer it was repeated from");
}
return nullptr;
}
void nsTableCellMap::Synchronize(nsTableFrame* aTableFrame) {
AutoTArray<nsCellMap*, 8> maps;
nsTableFrame::RowGroupArray orderedRowGroups =
aTableFrame->OrderedRowGroups();
if (!orderedRowGroups.Length()) {
return;
}
// XXXbz this fails if orderedRowGroups is missing some row groups
// (due to OOM when appending to the array, e.g. -- we leak maps in
// that case).
// Scope |map| outside the loop so we can use it as a hint.
nsCellMap* map = nullptr;
for (uint32_t rgX = 0; rgX < orderedRowGroups.Length(); rgX++) {
nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgX];
map = GetMapFor(static_cast<nsTableRowGroupFrame*>(rgFrame->FirstInFlow()),
map);
if (map) {
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier, or change the return type to void.
maps.AppendElement(map);
}
}
if (maps.IsEmpty()) {
MOZ_ASSERT(!mFirstMap);
return;
}
int32_t mapIndex = maps.Length() - 1; // Might end up -1
nsCellMap* nextMap = maps.ElementAt(mapIndex);
nextMap->SetNextSibling(nullptr);
for (mapIndex--; mapIndex >= 0; mapIndex--) {
nsCellMap* map = maps.ElementAt(mapIndex);
map->SetNextSibling(nextMap);
nextMap = map;
}
mFirstMap = nextMap;
}
bool nsTableCellMap::HasMoreThanOneCell(int32_t aRowIndex) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->HasMoreThanOneCell(rowIndex);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
return false;
}
int32_t nsTableCellMap::GetNumCellsOriginatingInRow(int32_t aRowIndex) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->GetNumCellsOriginatingInRow(rowIndex);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
return 0;
}
int32_t nsTableCellMap::GetEffectiveRowSpan(int32_t aRowIndex,
int32_t aColIndex) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->GetRowSpan(rowIndex, aColIndex, true);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
MOZ_ASSERT_UNREACHABLE("Bogus row index?");
return 0;
}
int32_t nsTableCellMap::GetEffectiveColSpan(int32_t aRowIndex,
int32_t aColIndex) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->GetEffectiveColSpan(*this, rowIndex, aColIndex);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
MOZ_ASSERT_UNREACHABLE("Bogus row index?");
return 0;
}
nsTableCellFrame* nsTableCellMap::GetCellFrame(int32_t aRowIndex,
int32_t aColIndex,
CellData& aData,
bool aUseRowIfOverlap) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->GetCellFrame(rowIndex, aColIndex, aData, aUseRowIfOverlap);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
return nullptr;
}
nsColInfo* nsTableCellMap::GetColInfoAt(int32_t aColIndex) {
int32_t numColsToAdd = aColIndex + 1 - mCols.Length();
if (numColsToAdd > 0) {
AddColsAtEnd(numColsToAdd); // XXX this could fail to add cols in theory
}
return &mCols.ElementAt(aColIndex);
}
int32_t nsTableCellMap::GetRowCount() const {
int32_t numRows = 0;
nsCellMap* map = mFirstMap;
while (map) {
numRows += map->GetRowCount();
map = map->GetNextSibling();
}
return numRows;
}
CellData* nsTableCellMap::GetDataAt(int32_t aRowIndex,
int32_t aColIndex) const {
int32_t rowIndex = aRowIndex;
nsCellMap* map = mFirstMap;
while (map) {
if (map->GetRowCount() > rowIndex) {
return map->GetDataAt(rowIndex, aColIndex);
}
rowIndex -= map->GetRowCount();
map = map->GetNextSibling();
}
return nullptr;
}
void nsTableCellMap::AddColsAtEnd(uint32_t aNumCols) {
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier.
mCols.AppendElements(aNumCols);
if (mBCInfo) {
// XXX(Bug 1631371) Check if this should use a fallible operation as it
// pretended earlier.
mBCInfo->mBEndBorders.AppendElements(aNumCols);
}
}
void nsTableCellMap::RemoveColsAtEnd() {
// Remove the cols at the end which don't have originating cells or cells
// spanning into them. Only do this if the col was created as
// eColAnonymousCell
int32_t numCols = GetColCount();
int32_t lastGoodColIndex = mTableFrame.GetIndexOfLastRealCol();
MOZ_ASSERT(lastGoodColIndex >= -1);
for (int32_t colX = numCols - 1; colX > lastGoodColIndex; colX--) {
nsColInfo& colInfo = mCols.ElementAt(colX);
if ((colInfo.mNumCellsOrig <= 0) && (colInfo.mNumCellsSpan <= 0)) {
mCols.RemoveElementAt(colX);
if (mBCInfo) {
int32_t count = mBCInfo->mBEndBorders.Length();
if (colX < count) {
mBCInfo->mBEndBorders.RemoveElementAt(colX);
}
}
} else
break; // only remove until we encounter the 1st valid one
}
}
void nsTableCellMap::ClearCols() {
mCols.Clear();
if (mBCInfo) mBCInfo->mBEndBorders.Clear();
}
void nsTableCellMap::InsertRows(nsTableRowGroupFrame* aParent,
nsTArray<nsTableRowFrame*>& aRows,
int32_t aFirstRowIndex, bool aConsiderSpans,
TableArea& aDamageArea) {
int32_t numNewRows = aRows.Length();
if ((numNewRows <= 0) || (aFirstRowIndex < 0)) ABORT0();
int32_t rowIndex = aFirstRowIndex;
int32_t rgStartRowIndex = 0;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
nsTableRowGroupFrame* rg = cellMap->GetRowGroup();
if (rg == aParent) {
cellMap->InsertRows(*this, aRows, rowIndex, aConsiderSpans,
rgStartRowIndex, aDamageArea);
#ifdef DEBUG_TABLE_CELLMAP
Dump("after InsertRows");
#endif
if (mBCInfo) {
int32_t count = mBCInfo->mIEndBorders.Length();
if (aFirstRowIndex < count) {
for (int32_t rowX = aFirstRowIndex;
rowX < aFirstRowIndex + numNewRows; rowX++) {
mBCInfo->mIEndBorders.InsertElementAt(rowX);
}
} else {
GetIEndMostBorder(
aFirstRowIndex); // this will create missing entries
for (int32_t rowX = aFirstRowIndex + 1;
rowX < aFirstRowIndex + numNewRows; rowX++) {
mBCInfo->mIEndBorders.AppendElement();
}
}
}
return;
}
int32_t rowCount = cellMap->GetRowCount();
rgStartRowIndex += rowCount;
rowIndex -= rowCount;
cellMap = cellMap->GetNextSibling();
}
NS_ERROR("Attempt to insert row into wrong map.");
}
void nsTableCellMap::RemoveRows(int32_t aFirstRowIndex,
int32_t aNumRowsToRemove, bool aConsiderSpans,
TableArea& aDamageArea) {
int32_t rowIndex = aFirstRowIndex;
int32_t rgStartRowIndex = 0;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
int32_t rowCount = cellMap->GetRowCount();
if (rowCount > rowIndex) {
cellMap->RemoveRows(*this, rowIndex, aNumRowsToRemove, aConsiderSpans,
rgStartRowIndex, aDamageArea);
if (mBCInfo) {
for (int32_t rowX = aFirstRowIndex + aNumRowsToRemove - 1;
rowX >= aFirstRowIndex; rowX--) {
if (uint32_t(rowX) < mBCInfo->mIEndBorders.Length()) {
mBCInfo->mIEndBorders.RemoveElementAt(rowX);
}
}
}
break;
}
rgStartRowIndex += rowCount;
rowIndex -= rowCount;
cellMap = cellMap->GetNextSibling();
}
#ifdef DEBUG_TABLE_CELLMAP
Dump("after RemoveRows");
#endif
}
CellData* nsTableCellMap::AppendCell(nsTableCellFrame& aCellFrame,
int32_t aRowIndex,
bool aRebuildIfNecessary,
TableArea& aDamageArea) {
MOZ_ASSERT(&aCellFrame == aCellFrame.FirstInFlow(),
"invalid call on continuing frame");
nsIFrame* rgFrame = aCellFrame.GetParent(); // get the row
if (!rgFrame) return 0;
rgFrame = rgFrame->GetParent(); // get the row group
if (!rgFrame) return 0;
CellData* result = nullptr;
int32_t rowIndex = aRowIndex;
int32_t rgStartRowIndex = 0;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
if (cellMap->GetRowGroup() == rgFrame) {
result =
cellMap->AppendCell(*this, &aCellFrame, rowIndex, aRebuildIfNecessary,
rgStartRowIndex, aDamageArea);
break;
}
int32_t rowCount = cellMap->GetRowCount();
rgStartRowIndex += rowCount;
rowIndex -= rowCount;
cellMap = cellMap->GetNextSibling();
}
#ifdef DEBUG_TABLE_CELLMAP
Dump("after AppendCell");
#endif
return result;
}
void nsTableCellMap::InsertCells(nsTArray<nsTableCellFrame*>& aCellFrames,
int32_t aRowIndex, int32_t aColIndexBefore,
TableArea& aDamageArea) {
int32_t rowIndex = aRowIndex;
int32_t rgStartRowIndex = 0;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
int32_t rowCount = cellMap->GetRowCount();
if (rowCount > rowIndex) {
cellMap->InsertCells(*this, aCellFrames, rowIndex, aColIndexBefore,
rgStartRowIndex, aDamageArea);
break;
}
rgStartRowIndex += rowCount;
rowIndex -= rowCount;
cellMap = cellMap->GetNextSibling();
}
#ifdef DEBUG_TABLE_CELLMAP
Dump("after InsertCells");
#endif
}
void nsTableCellMap::RemoveCell(nsTableCellFrame* aCellFrame, int32_t aRowIndex,
TableArea& aDamageArea) {
if (!aCellFrame) ABORT0();
MOZ_ASSERT(aCellFrame == aCellFrame->FirstInFlow(),
"invalid call on continuing frame");
int32_t rowIndex = aRowIndex;
int32_t rgStartRowIndex = 0;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
int32_t rowCount = cellMap->GetRowCount();
if (rowCount > rowIndex) {
cellMap->RemoveCell(*this, aCellFrame, rowIndex, rgStartRowIndex,
aDamageArea);
#ifdef DEBUG_TABLE_CELLMAP
Dump("after RemoveCell");
#endif
return;
}
rgStartRowIndex += rowCount;
rowIndex -= rowCount;
cellMap = cellMap->GetNextSibling();
}
// if we reach this point - the cell did not get removed, the caller of this
// routine will delete the cell and the cellmap will probably hold a reference
// to the deleted cell which will cause a subsequent crash when this cell is
// referenced later
NS_ERROR("nsTableCellMap::RemoveCell - could not remove cell");
}
void nsTableCellMap::RebuildConsideringCells(
nsCellMap* aCellMap, nsTArray<nsTableCellFrame*>* aCellFrames,
int32_t aRowIndex, int32_t aColIndex, bool aInsert,
TableArea& aDamageArea) {
int32_t numOrigCols = GetColCount();
ClearCols();
nsCellMap* cellMap = mFirstMap;
int32_t rowCount = 0;
while (cellMap) {
if (cellMap == aCellMap) {
cellMap->RebuildConsideringCells(*this, numOrigCols, aCellFrames,
aRowIndex, aColIndex, aInsert);
} else {
cellMap->RebuildConsideringCells(*this, numOrigCols, nullptr, -1, 0,
false);
}
rowCount += cellMap->GetRowCount();
cellMap = cellMap->GetNextSibling();
}
SetDamageArea(0, 0, GetColCount(), rowCount, aDamageArea);
}
void nsTableCellMap::RebuildConsideringRows(
nsCellMap* aCellMap, int32_t aStartRowIndex,
nsTArray<nsTableRowFrame*>* aRowsToInsert, int32_t aNumRowsToRemove,
TableArea& aDamageArea) {
MOZ_ASSERT(!aRowsToInsert || aNumRowsToRemove == 0,
"Can't handle both removing and inserting rows at once");
int32_t numOrigCols = GetColCount();
ClearCols();
nsCellMap* cellMap = mFirstMap;
int32_t rowCount = 0;
while (cellMap) {
if (cellMap == aCellMap) {
cellMap->RebuildConsideringRows(*this, aStartRowIndex, aRowsToInsert,
aNumRowsToRemove);
} else {
cellMap->RebuildConsideringCells(*this, numOrigCols, nullptr, -1, 0,
false);
}
rowCount += cellMap->GetRowCount();
cellMap = cellMap->GetNextSibling();
}
SetDamageArea(0, 0, GetColCount(), rowCount, aDamageArea);
}
int32_t nsTableCellMap::GetNumCellsOriginatingInCol(int32_t aColIndex) const {
int32_t colCount = mCols.Length();
if ((aColIndex >= 0) && (aColIndex < colCount)) {
return mCols.ElementAt(aColIndex).mNumCellsOrig;
} else {
NS_ERROR("nsCellMap::GetNumCellsOriginatingInCol - bad col index");
return 0;
}
}
#ifdef DEBUG
void nsTableCellMap::Dump(char* aString) const {
if (aString) printf("%s \n", aString);
printf("***** START TABLE CELL MAP DUMP ***** %p\n", (void*)this);
// output col info
int32_t colCount = mCols.Length();
printf("cols array orig/span-> %p", (void*)this);
for (int32_t colX = 0; colX < colCount; colX++) {
const nsColInfo& colInfo = mCols.ElementAt(colX);
printf("%d=%d/%d ", colX, colInfo.mNumCellsOrig, colInfo.mNumCellsSpan);
}
printf(" cols in cache %d\n", int(mTableFrame.GetColCache().Length()));
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
cellMap->Dump(nullptr != mBCInfo);
cellMap = cellMap->GetNextSibling();
}
if (nullptr != mBCInfo) {
printf("***** block-end borders *****\n");
nscoord size;
BCBorderOwner owner;
LogicalSide side;
bool segStart;
bool bevel;
int32_t colIndex;
int32_t numCols = mBCInfo->mBEndBorders.Length();
for (int32_t i = 0; i <= 2; i++) {
printf("\n ");
for (colIndex = 0; colIndex < numCols; colIndex++) {
BCData& cd = mBCInfo->mBEndBorders.ElementAt(colIndex);
if (0 == i) {
size = cd.GetBStartEdge(owner, segStart);
printf("t=%d%X%d ", int32_t(size), owner, segStart);
} else if (1 == i) {
size = cd.GetIStartEdge(owner, segStart);
printf("l=%d%X%d ", int32_t(size), owner, segStart);
} else {
size = cd.GetCorner(side, bevel);
printf("c=%d%hhX%d ", int32_t(size), static_cast<uint8_t>(side),
bevel);
}
}
BCData& cd = mBCInfo->mBEndIEndCorner;
if (0 == i) {
size = cd.GetBStartEdge(owner, segStart);
printf("t=%d%X%d ", int32_t(size), owner, segStart);
} else if (1 == i) {
size = cd.GetIStartEdge(owner, segStart);
printf("l=%d%X%d ", int32_t(size), owner, segStart);
} else {
size = cd.GetCorner(side, bevel);
printf("c=%d%hhX%d ", int32_t(size), static_cast<uint8_t>(side), bevel);
}
}
printf("\n");
}
printf("***** END TABLE CELL MAP DUMP *****\n");
}
#endif
nsTableCellFrame* nsTableCellMap::GetCellInfoAt(int32_t aRowIndex,
int32_t aColIndex,
bool* aOriginates,
int32_t* aColSpan) const {
int32_t rowIndex = aRowIndex;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
if (cellMap->GetRowCount() > rowIndex) {
return cellMap->GetCellInfoAt(*this, rowIndex, aColIndex, aOriginates,
aColSpan);
}
rowIndex -= cellMap->GetRowCount();
cellMap = cellMap->GetNextSibling();
}
return nullptr;
}
int32_t nsTableCellMap::GetIndexByRowAndColumn(int32_t aRow,
int32_t aColumn) const {
int32_t index = 0;
int32_t colCount = mCols.Length();
int32_t rowIndex = aRow;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
int32_t rowCount = cellMap->GetRowCount();
if (rowIndex >= rowCount) {
// If the rowCount is less than the rowIndex, this means that the index is
// not within the current map. If so, get the index of the last cell in
// the last row.
rowIndex -= rowCount;
int32_t cellMapIdx = cellMap->GetHighestIndex(colCount);
if (cellMapIdx != -1) index += cellMapIdx + 1;
} else {
// Index is in valid range for this cellmap, so get the index of rowIndex
// and aColumn.
int32_t cellMapIdx =
cellMap->GetIndexByRowAndColumn(colCount, rowIndex, aColumn);
if (cellMapIdx == -1) return -1; // no cell at the given row and column.
index += cellMapIdx;
return index; // no need to look through further maps here
}
cellMap = cellMap->GetNextSibling();
}
return -1;
}
void nsTableCellMap::GetRowAndColumnByIndex(int32_t aIndex, int32_t* aRow,
int32_t* aColumn) const {
*aRow = -1;
*aColumn = -1;
int32_t colCount = mCols.Length();
int32_t previousRows = 0;
int32_t index = aIndex;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
int32_t rowCount = cellMap->GetRowCount();
// Determine the highest possible index in this map to see
// if wanted index is in here.
int32_t cellMapIdx = cellMap->GetHighestIndex(colCount);
if (cellMapIdx == -1) {
// The index is not within this map, increase the total row index
// accordingly.
previousRows += rowCount;
} else {
if (index > cellMapIdx) {
// The index is not within this map, so decrease it by the cellMapIdx
// determined index and increase the total row index accordingly.
index -= cellMapIdx + 1;
previousRows += rowCount;
} else {
cellMap->GetRowAndColumnByIndex(colCount, index, aRow, aColumn);
// If there were previous indexes, take them into account.
*aRow += previousRows;
return; // no need to look any further.
}
}
cellMap = cellMap->GetNextSibling();
}
}
bool nsTableCellMap::RowIsSpannedInto(int32_t aRowIndex,
int32_t aNumEffCols) const {
int32_t rowIndex = aRowIndex;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
if (cellMap->GetRowCount() > rowIndex) {
return cellMap->RowIsSpannedInto(rowIndex, aNumEffCols);
}
rowIndex -= cellMap->GetRowCount();
cellMap = cellMap->GetNextSibling();
}
return false;
}
bool nsTableCellMap::RowHasSpanningCells(int32_t aRowIndex,
int32_t aNumEffCols) const {
int32_t rowIndex = aRowIndex;
nsCellMap* cellMap = mFirstMap;
while (cellMap) {
if (cellMap->GetRowCount() > rowIndex) {
return cellMap->RowHasSpanningCells(rowIndex, aNumEffCols);
}
rowIndex -= cellMap->GetRowCount();
cellMap = cellMap->GetNextSibling();
}
return false;
}
// FIXME: The only value callers pass for aSide is LogicalSide::BEnd.
// Consider removing support for the other three values.
void nsTableCellMap::ResetBStartStart(LogicalSide aSide, nsCellMap& aCellMap,
uint32_t aRowGroupStart,
uint32_t aRowIndex, uint32_t aColIndex) {
if (!mBCInfo) ABORT0();
BCCellData* cellData;
BCData* bcData = nullptr;
switch (aSide) {
case LogicalSide::BEnd:
aRowIndex++;
[[fallthrough]];
case LogicalSide::BStart:
cellData = (BCCellData*)aCellMap.GetDataAt(aRowIndex - aRowGroupStart,
aColIndex);
if (cellData) {
bcData = &cellData->mData;
} else {
NS_ASSERTION(aSide == LogicalSide::BEnd, "program error");
// try the next row group
nsCellMap* cellMap = aCellMap.GetNextSibling();
if (cellMap) {
cellData = (BCCellData*)cellMap->GetDataAt(0, aColIndex);
if (cellData) {
bcData = &cellData->mData;
} else {
bcData = GetBEndMostBorder(aColIndex);
}
}
}
break;
case LogicalSide::IEnd:
aColIndex++;
[[fallthrough]];
case LogicalSide::IStart:
cellData = (BCCellData*)aCellMap.GetDataAt(aRowIndex - aRowGroupStart,
aColIndex);
if (cellData) {
bcData = &cellData->mData;
} else {
NS_ASSERTION(aSide == LogicalSide::IEnd, "program error");
bcData = GetIEndMostBorder(aRowIndex);
}
break;
}
if (bcData) {
bcData->SetBStartStart(false);
}
}
// store the aSide border segment at coord = (aRowIndex, aColIndex). For
// bStart/iStart, store the info at coord. For bEnd/iEnd store it at the
// adjacent location so that it is bStart/iStart at that location. If the new
// location is at the iEnd or bEnd edge of the table, then store it one of the
// special arrays (iEnd-most borders, bEnd-most borders).
void nsTableCellMap::SetBCBorderEdge(LogicalSide aSide, nsCellMap& aCellMap,
uint32_t aCellMapStart, uint32_t aRowIndex,
uint32_t aColIndex, uint32_t aLength,
BCBorderOwner aOwner, nscoord aSize,
bool aChanged) {
if (!mBCInfo) ABORT0();
BCCellData* cellData;
int32_t lastIndex, xIndex, yIndex;
int32_t xPos = aColIndex;
int32_t yPos = aRowIndex;
int32_t rgYPos = aRowIndex - aCellMapStart;
bool changed;
switch (aSide) {
case LogicalSide::BEnd:
rgYPos++;
yPos++;
[[fallthrough]];
case LogicalSide::BStart:
lastIndex = xPos + aLength - 1;
for (xIndex = xPos; xIndex <= lastIndex; xIndex++) {
changed = aChanged && (xIndex == xPos);
BCData* bcData = nullptr;
cellData = (BCCellData*)aCellMap.GetDataAt(rgYPos, xIndex);
if (!cellData) {
int32_t numRgRows = aCellMap.GetRowCount();
if (yPos < numRgRows) { // add a dead cell data
TableArea damageArea;
cellData = (BCCellData*)aCellMap.AppendCell(*this, nullptr, rgYPos,
false, 0, damageArea);
if (!cellData) ABORT0();
} else {
NS_ASSERTION(aSide == LogicalSide::BEnd, "program error");
// try the next non empty row group
nsCellMap* cellMap = aCellMap.GetNextSibling();
while (cellMap && (0 == cellMap->GetRowCount())) {
cellMap = cellMap->GetNextSibling();
}
if (cellMap) {
cellData = (BCCellData*)cellMap->GetDataAt(0, xIndex);
if (!cellData) { // add a dead cell
TableArea damageArea;
cellData = (BCCellData*)cellMap->AppendCell(
*this, nullptr, 0, false, 0, damageArea);
}
} else { // must be at the end of the table
bcData = GetBEndMostBorder(xIndex);
}
}
}
if (!bcData && cellData) {
bcData = &cellData->mData;
}
if (bcData) {
bcData->SetBStartEdge(aOwner, aSize, changed);
} else
NS_ERROR("Cellmap: BStart edge not found");
}
break;
case LogicalSide::IEnd:
xPos++;
[[fallthrough]];
case LogicalSide::IStart:
// since bStart, bEnd borders were set, there should already be a cellData
// entry
lastIndex = rgYPos + aLength - 1;
for (yIndex = rgYPos; yIndex <= lastIndex; yIndex++) {
changed = aChanged && (yIndex == rgYPos);
cellData = (BCCellData*)aCellMap.GetDataAt(yIndex, xPos);
if (cellData) {
cellData->mData.SetIStartEdge(aOwner, aSize, changed);
} else {
NS_ASSERTION(aSide == LogicalSide::IEnd, "program error");
BCData* bcData = GetIEndMostBorder(yIndex + aCellMapStart);
if (bcData) {
bcData->SetIStartEdge(aOwner, aSize, changed);
} else
NS_ERROR("Cellmap: IStart edge not found");
}
}
break;
}
}
// store corner info (aOwner, aSubSize, aBevel). For aCorner = eBStartIStart,
// store the info at (aRowIndex, aColIndex). For eBStartIEnd, store it in the
// entry to the iEnd-wards where it would be BStartIStart. For eBEndIEnd, store
// it in the entry to the bEnd-wards. etc.
void nsTableCellMap::SetBCBorderCorner(LogicalCorner aCorner,
nsCellMap& aCellMap,
uint32_t aCellMapStart,
uint32_t aRowIndex, uint32_t aColIndex,
LogicalSide aOwner, nscoord aSubSize,
bool aBevel, bool aIsBEndIEnd) {
if (!mBCInfo) ABORT0();
if (aIsBEndIEnd) {
mBCInfo->mBEndIEndCorner.SetCorner(aSubSize, aOwner, aBevel);
return;
}
int32_t xPos = aColIndex;
int32_t yPos = aRowIndex;
int32_t rgYPos = aRowIndex - aCellMapStart;
if (LogicalCorner::BStartIEnd == aCorner) {
xPos++;
} else if (LogicalCorner::BEndIEnd == aCorner) {
xPos++;
rgYPos++;
yPos++;
} else if (LogicalCorner::BEndIStart == aCorner) {
rgYPos++;
yPos++;
}
BCCellData* cellData = nullptr;
BCData* bcData = nullptr;
if (GetColCount() <= xPos) {
NS_ASSERTION(xPos == GetColCount(), "program error");
// at the iEnd edge of the table as we checked the corner before
NS_ASSERTION(!aIsBEndIEnd, "should be handled before");
bcData = GetIEndMostBorder(yPos);
} else {
cellData = (BCCellData*)aCellMap.GetDataAt(rgYPos, xPos);
if (!cellData) {
int32_t numRgRows = aCellMap.GetRowCount();
if (yPos < numRgRows) { // add a dead cell data
TableArea damageArea;
cellData = (BCCellData*)aCellMap.AppendCell(*this, nullptr, rgYPos,
false, 0, damageArea);
} else {
// try the next non empty row group
nsCellMap* cellMap = aCellMap.GetNextSibling();
while (cellMap && (0 == cellMap->GetRowCount())) {
cellMap = cellMap->GetNextSibling();
}
if (cellMap) {
cellData = (BCCellData*)cellMap->GetDataAt(0, xPos);
if (!cellData) { // add a dead cell
TableArea damageArea;
cellData = (BCCellData*)cellMap->AppendCell(*this, nullptr, 0,
false, 0, damageArea);
}
} else { // must be at the bEnd of the table
bcData = GetBEndMostBorder(xPos);
}
}
}
}
if (!bcData && cellData) {
bcData = &cellData->mData;
}
if (bcData) {
bcData->SetCorner(aSubSize, aOwner, aBevel);
} else
NS_ERROR("program error: Corner not found");
}
nsCellMap::nsCellMap(nsTableRowGroupFrame* aRowGroup, bool aIsBC)
: mRows(8),
mContentRowCount(0),
mRowGroupFrame(aRowGroup),
mNextSibling(nullptr),
mIsBC(aIsBC),
mPresContext(aRowGroup->PresContext()) {
MOZ_COUNT_CTOR(nsCellMap);
NS_ASSERTION(mPresContext, "Must have prescontext");
}
nsCellMap::~nsCellMap() {
MOZ_COUNT_DTOR(nsCellMap);
uint32_t mapRowCount = mRows.Length();
for (uint32_t rowX = 0; rowX < mapRowCount; rowX++) {
CellDataArray& row = mRows[rowX];
uint32_t colCount = row.Length();
for (uint32_t colX = 0; colX < colCount; colX++) {
DestroyCellData(row[colX]);
}
}
}
/* static */
void nsCellMap::Init() {
MOZ_ASSERT(!sEmptyRow, "How did that happen?");
sEmptyRow = new nsCellMap::CellDataArray();
}
/* static */
void nsCellMap::Shutdown() { sEmptyRow = nullptr; }
nsTableCellFrame* nsCellMap::GetCellFrame(int32_t aRowIndexIn,
int32_t aColIndexIn, CellData& aData,
bool aUseRowIfOverlap) const {
int32_t rowIndex = aRowIndexIn - aData.GetRowSpanOffset();
int32_t colIndex = aColIndexIn - aData.GetColSpanOffset();
if (aData.IsOverlap()) {
if (aUseRowIfOverlap) {
colIndex = aColIndexIn;
} else {
rowIndex = aRowIndexIn;
}
}
CellData* data =
mRows.SafeElementAt(rowIndex, *sEmptyRow).SafeElementAt(colIndex);
if (data) {
return data->GetCellFrame();
}
return nullptr;
}
int32_t nsCellMap::GetHighestIndex(int32_t aColCount) {
int32_t index = -1;
int32_t rowCount = mRows.Length();
for (int32_t rowIdx = 0; rowIdx < rowCount; rowIdx++) {
const CellDataArray& row = mRows[rowIdx];
for (int32_t colIdx = 0; colIdx < aColCount; colIdx++) {
CellData* data = row.SafeElementAt(colIdx);
// No data means row doesn't have more cells.
if (!data) break;
if (data->IsOrig()) index++;
}
}
return index;
}
int32_t nsCellMap::GetIndexByRowAndColumn(int32_t aColCount, int32_t aRow,
int32_t aColumn) const {
if (uint32_t(aRow) >= mRows.Length()) return -1;
int32_t index = -1;
int32_t lastColsIdx = aColCount - 1;
// Find row index of the cell where row span is started.
const CellDataArray& row = mRows[aRow];
CellData* data = row.SafeElementAt(aColumn);
int32_t origRow = data ? aRow - data->GetRowSpanOffset() : aRow;
// Calculate cell index.
for (int32_t rowIdx = 0; rowIdx <= origRow; rowIdx++) {
const CellDataArray& row = mRows[rowIdx];
int32_t colCount = (rowIdx == origRow) ? aColumn : lastColsIdx;
for (int32_t colIdx = 0; colIdx <= colCount; colIdx++) {
data = row.SafeElementAt(colIdx);
// No data means row doesn't have more cells.
if (!data) break;
if (data->IsOrig()) index++;
}
}
// Given row and column don't point to the cell.
if (!data) return -1;
return index;
}
void nsCellMap::GetRowAndColumnByIndex(int32_t aColCount, int32_t aIndex,
int32_t* aRow, int32_t* aColumn) const {
*aRow = -1;
*aColumn = -1;
int32_t index = aIndex;
int32_t rowCount = mRows.Length();
for (int32_t rowIdx = 0; rowIdx < rowCount; rowIdx++) {
const CellDataArray& row = mRows[rowIdx];
for (int32_t colIdx = 0; colIdx < aColCount; colIdx++) {
CellData* data = row.SafeElementAt(colIdx);
// The row doesn't have more cells.
if (!data) break;
if (data->IsOrig()) index--;
if (index < 0) {
*aRow = rowIdx;
*aColumn = colIdx;
return;
}
}
}
}
bool nsCellMap::Grow(nsTableCellMap& aMap, int32_t aNumRows,
int32_t aRowIndex) {
NS_ASSERTION(aNumRows >= 1, "Why are we calling this?");
// Get the number of cols we want to use for preallocating the row arrays.
int32_t numCols = aMap.GetColCount();
if (numCols == 0) {
numCols = 4;
}
uint32_t startRowIndex = (aRowIndex >= 0) ? aRowIndex : mRows.Length();
NS_ASSERTION(startRowIndex <= mRows.Length(), "Missing grow call inbetween");
// XXX Change the return type of this function to void, or use a fallible
// operation.
mRows.InsertElementsAt(startRowIndex, aNumRows, numCols);
return true;
}
void nsCellMap::GrowRow(CellDataArray& aRow, int32_t aNumCols)
{
// Have to have the cast to get the template to do the right thing.
aRow.InsertElementsAt(aRow.Length(), aNumCols, (CellData*)nullptr);
}
void nsCellMap::InsertRows(nsTableCellMap& aMap,
nsTArray<nsTableRowFrame*>& aRows,
int32_t aFirstRowIndex, bool aConsiderSpans,
int32_t aRgFirstRowIndex, TableArea& aDamageArea) {
int32_t numCols = aMap.GetColCount();
NS_ASSERTION(aFirstRowIndex >= 0,
"nsCellMap::InsertRows called with negative rowIndex");
if (uint32_t(aFirstRowIndex) > mRows.Length()) {
// create (aFirstRowIndex - mRows.Length()) empty rows up to aFirstRowIndex
int32_t numEmptyRows = aFirstRowIndex - mRows.Length();
if (!Grow(aMap, numEmptyRows)) {
return;
}
}
if (!aConsiderSpans) {
// update mContentRowCount, since non-empty rows will be added
mContentRowCount = std::max(aFirstRowIndex, mContentRowCount);
ExpandWithRows(aMap, aRows, aFirstRowIndex, aRgFirstRowIndex, aDamageArea);
return;
}
// if any cells span into or out of the row being inserted, then rebuild
bool spansCauseRebuild =
CellsSpanInOrOut(aFirstRowIndex, aFirstRowIndex, 0, numCols - 1);
// update mContentRowCount, since non-empty rows will be added
mContentRowCount = std::max(aFirstRowIndex, mContentRowCount);
// if any of the new cells span out of the new rows being added, then rebuild
// XXX it would be better to only rebuild the portion of the map that follows
// the new rows
if (!spansCauseRebuild && (uint32_t(aFirstRowIndex) < mRows.Length())) {
spansCauseRebuild = CellsSpanOut(aRows);
}
if (spansCauseRebuild) {
aMap.RebuildConsideringRows(this, aFirstRowIndex, &aRows, 0, aDamageArea);
} else {
ExpandWithRows(aMap, aRows, aFirstRowIndex, aRgFirstRowIndex, aDamageArea);
}
}
void nsCellMap::RemoveRows(nsTableCellMap& aMap, int32_t aFirstRowIndex,
int32_t aNumRowsToRemove, bool aConsiderSpans,
int32_t aRgFirstRowIndex, TableArea& aDamageArea) {
int32_t numRows = mRows.Length();
int32_t numCols = aMap.GetColCount();
if (aFirstRowIndex >= numRows) {
// reduce the content based row count based on the function arguments
// as they are known to be real rows even if the cell map did not create
// rows for them before.
mContentRowCount -= aNumRowsToRemove;
return;
}
if (!aConsiderSpans) {
ShrinkWithoutRows(aMap, aFirstRowIndex, aNumRowsToRemove, aRgFirstRowIndex,
aDamageArea);
return;
}
int32_t endRowIndex = aFirstRowIndex + aNumRowsToRemove - 1;
if (endRowIndex >= numRows) {
NS_ERROR("nsCellMap::RemoveRows tried to remove too many rows");
endRowIndex = numRows - 1;
}
bool spansCauseRebuild =
CellsSpanInOrOut(aFirstRowIndex, endRowIndex, 0, numCols - 1);
if (spansCauseRebuild) {
aMap.RebuildConsideringRows(this, aFirstRowIndex, nullptr, aNumRowsToRemove,
aDamageArea);
} else {
ShrinkWithoutRows(aMap, aFirstRowIndex, aNumRowsToRemove, aRgFirstRowIndex,
aDamageArea);
}
}
CellData* nsCellMap::AppendCell(nsTableCellMap& aMap,
nsTableCellFrame* aCellFrame, int32_t aRowIndex,
bool aRebuildIfNecessary,
int32_t aRgFirstRowIndex,
TableArea& aDamageArea,
int32_t* aColToBeginSearch) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
int32_t origNumMapRows = mRows.Length();
int32_t origNumCols = aMap.GetColCount();
bool zeroRowSpan = false;
int32_t rowSpan =
(aCellFrame) ? GetRowSpanForNewCell(aCellFrame, aRowIndex, zeroRowSpan)
: 1;
// add new rows if necessary
int32_t endRowIndex = aRowIndex + rowSpan - 1;
if (endRowIndex >= origNumMapRows) {
// XXXbz handle allocation failures?
Grow(aMap, 1 + endRowIndex - origNumMapRows);
}
// get the first null or dead CellData in the desired row. It will equal
// origNumCols if there are none
CellData* origData = nullptr;
int32_t startColIndex = 0;
if (aColToBeginSearch) startColIndex = *aColToBeginSearch;
for (; startColIndex < origNumCols; startColIndex++) {
CellData* data = GetDataAt(aRowIndex, startColIndex);
if (!data) break;
// The border collapse code relies on having multiple dead cell data entries
// in a row.
if (data->IsDead() && aCellFrame) {
origData = data;
break;
}
}
// We found the place to append the cell, when the next cell is appended
// the next search does not need to duplicate the search but can start
// just at the next cell.
if (aColToBeginSearch) *aColToBeginSearch = startColIndex + 1;
int32_t colSpan = aCellFrame ? aCellFrame->GetColSpan() : 1;
// if the new cell could potentially span into other rows and collide with
// originating cells there, we will play it safe and just rebuild the map
if (aRebuildIfNecessary && (aRowIndex < mContentRowCount - 1) &&
(rowSpan > 1)) {
AutoTArray<nsTableCellFrame*, 1> newCellArray;
newCellArray.AppendElement(aCellFrame);
aMap.RebuildConsideringCells(this, &newCellArray, aRowIndex, startColIndex,
true, aDamageArea);
return origData;
}
mContentRowCount = std::max(mContentRowCount, aRowIndex + 1);
// add new cols to the table map if necessary
int32_t endColIndex = startColIndex + colSpan - 1;
if (endColIndex >= origNumCols) {
NS_ASSERTION(aCellFrame, "dead cells should not require new columns");
aMap.AddColsAtEnd(1 + endColIndex - origNumCols);
}
// Setup CellData for this cell
if (origData) {
NS_ASSERTION(origData->IsDead(),
"replacing a non dead cell is a memory leak");
if (aCellFrame) { // do nothing to replace a dead cell with a dead cell
origData->Init(aCellFrame);
// we are replacing a dead cell, increase the number of cells
// originating at this column
nsColInfo* colInfo = aMap.GetColInfoAt(startColIndex);
NS_ASSERTION(colInfo, "access to a non existing column");
if (colInfo) {
colInfo->mNumCellsOrig++;
}
}
} else {
origData = AllocCellData(aCellFrame);
if (!origData) ABORT1(origData);
SetDataAt(aMap, *origData, aRowIndex, startColIndex);
}
if (aRebuildIfNecessary) {
// the caller depends on the damageArea
// The special case for zeroRowSpan is to adjust for the '2' in
// GetRowSpanForNewCell.
uint32_t height = std::min(zeroRowSpan ? rowSpan - 1 : rowSpan,
GetRowCount() - aRowIndex);
SetDamageArea(startColIndex, aRgFirstRowIndex + aRowIndex,
1 + endColIndex - startColIndex, height, aDamageArea);
}
if (!aCellFrame) {
return origData;
}
// initialize the cell frame
aCellFrame->SetColIndex(startColIndex);
// Create CellData objects for the rows that this cell spans. Set
// their mOrigCell to nullptr and their mSpanData to point to data.
for (int32_t rowX = aRowIndex; rowX <= endRowIndex; rowX++) {
// The row at rowX will need to have at least endColIndex columns
mRows[rowX].SetCapacity(endColIndex);
for (int32_t colX = startColIndex; colX <= endColIndex; colX++) {
if ((rowX != aRowIndex) ||
(colX != startColIndex)) { // skip orig cell data done above
CellData* cellData = GetDataAt(rowX, colX);
if (cellData) {
if (cellData->IsOrig()) {
NS_ERROR("cannot overlap originating cell");
continue;
}
if (rowX > aRowIndex) { // row spanning into cell
if (cellData->IsRowSpan()) {
// do nothing, this can be caused by rowspan which is overlapped
// by a another cell with a rowspan and a colspan
} else {
cellData->SetRowSpanOffset(rowX - aRowIndex);
if (zeroRowSpan) {
cellData->SetZeroRowSpan(true);
}
}
}
if (colX > startColIndex) { // col spanning into cell
if (!cellData->IsColSpan()) {
if (cellData->IsRowSpan()) {
cellData->SetOverlap(true);
}
cellData->SetColSpanOffset(colX - startColIndex);
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsSpan++;
}
}
} else {
cellData = AllocCellData(nullptr);
if (!cellData) return origData;
if (rowX > aRowIndex) {
cellData->SetRowSpanOffset(rowX - aRowIndex);
if (zeroRowSpan) {
cellData->SetZeroRowSpan(true);
}
}
if (colX > startColIndex) {
cellData->SetColSpanOffset(colX - startColIndex);
}
SetDataAt(aMap, *cellData, rowX, colX);
}
}
}
}
#ifdef DEBUG_TABLE_CELLMAP
printf("appended cell=%p row=%d \n", aCellFrame, aRowIndex);
aMap.Dump();
#endif
return origData;
}
bool nsCellMap::CellsSpanOut(nsTArray<nsTableRowFrame*>& aRows) const {
int32_t numNewRows = aRows.Length();
for (int32_t rowX = 0; rowX < numNewRows; rowX++) {
nsTableRowFrame* rowFrame = aRows.ElementAt(rowX);
for (nsTableCellFrame* cellFrame = rowFrame->GetFirstCell(); cellFrame;
cellFrame = cellFrame->GetNextCell()) {
bool zeroSpan;
int32_t rowSpan = GetRowSpanForNewCell(cellFrame, rowX, zeroSpan);
if (zeroSpan || rowX + rowSpan > numNewRows) {
return true;
}
}
}
return false;
}
// return true if any cells have rows spans into or out of the region
// defined by the row and col indices or any cells have colspans into the region
bool nsCellMap::CellsSpanInOrOut(int32_t aStartRowIndex, int32_t aEndRowIndex,
int32_t aStartColIndex,
int32_t aEndColIndex) const {
/*
* this routine will watch the cells adjacent to the region or at the edge
* they are marked with *. The routine will verify whether they span in or
* are spanned out.
*
* startCol endCol
* r1c1 r1c2 r1c3 r1c4 r1c5 r1rc6 r1c7
* startrow r2c1 r2c2 *r2c3 *r2c4 *r2c5 *r2rc6 r2c7
* endrow r3c1 r3c2 *r3c3 r3c4 r3c5 *r3rc6 r3c7
* r4c1 r4c2 *r4c3 *r4c4 *r4c5 r4rc6 r4c7
* r5c1 r5c2 r5c3 r5c4 r5c5 r5rc6 r5c7
*/
int32_t numRows = mRows.Length(); // use the cellmap rows to determine the
// current cellmap extent.
for (int32_t colX = aStartColIndex; colX <= aEndColIndex; colX++) {
CellData* cellData;
if (aStartRowIndex > 0) {
cellData = GetDataAt(aStartRowIndex, colX);
if (cellData && (cellData->IsRowSpan())) {
return true; // there is a row span into the region
}
if ((aStartRowIndex >= mContentRowCount) && (mContentRowCount > 0)) {
cellData = GetDataAt(mContentRowCount - 1, colX);
if (cellData && cellData->IsZeroRowSpan()) {
return true; // When we expand the zerospan it'll span into our row
}
}
}
if (aEndRowIndex < numRows - 1) { // is there anything below aEndRowIndex
cellData = GetDataAt(aEndRowIndex + 1, colX);
if ((cellData) && (cellData->IsRowSpan())) {
return true; // there is a row span out of the region
}
} else {
cellData = GetDataAt(aEndRowIndex, colX);
if ((cellData) && (cellData->IsRowSpan()) &&
(mContentRowCount < numRows)) {
return true; // this cell might be the cause of a dead row
}
}
}
if (aStartColIndex > 0) {
for (int32_t rowX = aStartRowIndex; rowX <= aEndRowIndex; rowX++) {
CellData* cellData = GetDataAt(rowX, aStartColIndex);
if (cellData && (cellData->IsColSpan())) {
return true; // there is a col span into the region
}
cellData = GetDataAt(rowX, aEndColIndex + 1);
if (cellData && (cellData->IsColSpan())) {
return true; // there is a col span out of the region
}
}
}
return false;
}
void nsCellMap::InsertCells(nsTableCellMap& aMap,
nsTArray<nsTableCellFrame*>& aCellFrames,
int32_t aRowIndex, int32_t aColIndexBefore,
int32_t aRgFirstRowIndex, TableArea& aDamageArea) {
if (aCellFrames.Length() == 0) return;
NS_ASSERTION(aColIndexBefore >= -1, "index out of range");
int32_t numCols = aMap.GetColCount();
if (aColIndexBefore >= numCols) {
NS_ERROR(
"Inserting instead of appending cells indicates a serious cellmap "
"error");
aColIndexBefore = numCols - 1;
}
// get the starting col index of the 1st new cells
int32_t startColIndex;
for (startColIndex = aColIndexBefore + 1; startColIndex < numCols;
startColIndex++) {
CellData* data = GetDataAt(aRowIndex, startColIndex);
if (!data || data->IsOrig() || data->IsDead()) {
// // Not a span. Stop.
break;
}
}
// record whether inserted cells are going to cause complications due
// to existing row spans, col spans or table sizing.
bool spansCauseRebuild = false;
// check that all cells have the same row span
int32_t numNewCells = aCellFrames.Length();
bool zeroRowSpan = false;
int32_t rowSpan = 0;
for (int32_t cellX = 0; cellX < numNewCells; cellX++) {
nsTableCellFrame* cell = aCellFrames.ElementAt(cellX);
int32_t rowSpan2 = GetRowSpanForNewCell(cell, aRowIndex, zeroRowSpan);
if (rowSpan == 0) {
rowSpan = rowSpan2;
} else if (rowSpan != rowSpan2) {
spansCauseRebuild = true;
break;
}
}
// check if the new cells will cause the table to add more rows
if (!spansCauseRebuild) {
if (mRows.Length() < uint32_t(aRowIndex + rowSpan)) {
spansCauseRebuild = true;
}
}
if (!spansCauseRebuild) {
spansCauseRebuild = CellsSpanInOrOut(aRowIndex, aRowIndex + rowSpan - 1,
startColIndex, numCols - 1);
}
if (spansCauseRebuild) {
aMap.RebuildConsideringCells(this, &aCellFrames, aRowIndex, startColIndex,
true, aDamageArea);
} else {
ExpandWithCells(aMap, aCellFrames, aRowIndex, startColIndex, rowSpan,
zeroRowSpan, aRgFirstRowIndex, aDamageArea);
}
}
void nsCellMap::ExpandWithRows(nsTableCellMap& aMap,
nsTArray<nsTableRowFrame*>& aRowFrames,
int32_t aStartRowIndexIn,
int32_t aRgFirstRowIndex,
TableArea& aDamageArea) {
int32_t startRowIndex = (aStartRowIndexIn >= 0) ? aStartRowIndexIn : 0;
NS_ASSERTION(uint32_t(startRowIndex) <= mRows.Length(),
"caller should have grown cellmap before");
int32_t numNewRows = aRowFrames.Length();
mContentRowCount += numNewRows;
int32_t endRowIndex = startRowIndex + numNewRows - 1;
// shift the rows after startRowIndex down and insert empty rows that will
// be filled via the AppendCell call below
if (!Grow(aMap, numNewRows, startRowIndex)) {
return;
}
int32_t newRowIndex = 0;
for (int32_t rowX = startRowIndex; rowX <= endRowIndex; rowX++) {
nsTableRowFrame* rFrame = aRowFrames.ElementAt(newRowIndex);
// append cells
int32_t colIndex = 0;
for (nsTableCellFrame* cellFrame = rFrame->GetFirstCell(); cellFrame;
cellFrame = cellFrame->GetNextCell()) {
AppendCell(aMap, cellFrame, rowX, false, aRgFirstRowIndex, aDamageArea,
&colIndex);
}
newRowIndex++;
}
// mark all following rows damaged, they might contain a previously set
// damage area which we can not shift.
int32_t firstDamagedRow = aRgFirstRowIndex + startRowIndex;
SetDamageArea(0, firstDamagedRow, aMap.GetColCount(),
aMap.GetRowCount() - firstDamagedRow, aDamageArea);
}
void nsCellMap::ExpandWithCells(nsTableCellMap& aMap,
nsTArray<nsTableCellFrame*>& aCellFrames,
int32_t aRowIndex, int32_t aColIndex,
int32_t aRowSpan, // same for all cells
bool aRowSpanIsZero, int32_t aRgFirstRowIndex,
TableArea& aDamageArea) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
int32_t endRowIndex = aRowIndex + aRowSpan - 1;
int32_t startColIndex = aColIndex;
int32_t endColIndex = aColIndex;
int32_t numCells = aCellFrames.Length();
int32_t totalColSpan = 0;
// add cellData entries for the space taken up by the new cells
for (int32_t cellX = 0; cellX < numCells; cellX++) {
nsTableCellFrame* cellFrame = aCellFrames.ElementAt(cellX);
CellData* origData = AllocCellData(cellFrame); // the originating cell
if (!origData) return;
// set the starting and ending col index for the new cell
int32_t colSpan = cellFrame->GetColSpan();
totalColSpan += colSpan;
if (cellX == 0) {
endColIndex = aColIndex + colSpan - 1;
} else {
startColIndex = endColIndex + 1;
endColIndex = startColIndex + colSpan - 1;
}
// add the originating cell data and any cell data corresponding to row/col
// spans
for (int32_t rowX = aRowIndex; rowX <= endRowIndex; rowX++) {
CellDataArray& row = mRows[rowX];
// Pre-allocate all the cells we'll need in this array, setting
// them to null.
// Have to have the cast to get the template to do the right thing.
int32_t insertionIndex = row.Length();
if (insertionIndex > startColIndex) {
insertionIndex = startColIndex;
}
row.InsertElementsAt(insertionIndex, endColIndex - insertionIndex + 1,
(CellData*)nullptr);
for (int32_t colX = startColIndex; colX <= endColIndex; colX++) {
CellData* data = origData;
if ((rowX != aRowIndex) || (colX != startColIndex)) {
data = AllocCellData(nullptr);
if (!data) return;
if (rowX > aRowIndex) {
data->SetRowSpanOffset(rowX - aRowIndex);
if (aRowSpanIsZero) {
data->SetZeroRowSpan(true);
}
}
if (colX > startColIndex) {
data->SetColSpanOffset(colX - startColIndex);
}
}
SetDataAt(aMap, *data, rowX, colX);
}
}
cellFrame->SetColIndex(startColIndex);
}
int32_t damageHeight =
std::min(GetRowGroup()->GetRowCount() - aRowIndex, aRowSpan);
SetDamageArea(aColIndex, aRgFirstRowIndex + aRowIndex,
1 + endColIndex - aColIndex, damageHeight, aDamageArea);
int32_t rowX;
// update the row and col info due to shifting
for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) {
CellDataArray& row = mRows[rowX];
uint32_t numCols = row.Length();
uint32_t colX;
for (colX = aColIndex + totalColSpan; colX < numCols; colX++) {
CellData* data = row[colX];
if (data) {
// increase the origin and span counts beyond the spanned cols
if (data->IsOrig()) {
// a cell that gets moved needs adjustment as well as it new
// orignating col
data->GetCellFrame()->SetColIndex(colX);
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsOrig++;
}
if (data->IsColSpan()) {
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsSpan++;
}
// decrease the origin and span counts within the spanned cols
int32_t colX2 = colX - totalColSpan;
nsColInfo* colInfo2 = aMap.GetColInfoAt(colX2);
if (data->IsOrig()) {
// the old originating col of a moved cell needs adjustment
colInfo2->mNumCellsOrig--;
}
if (data->IsColSpan()) {
colInfo2->mNumCellsSpan--;
}
}
}
}
}
void nsCellMap::ShrinkWithoutRows(nsTableCellMap& aMap, int32_t aStartRowIndex,
int32_t aNumRowsToRemove,
int32_t aRgFirstRowIndex,
TableArea& aDamageArea) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
int32_t endRowIndex = aStartRowIndex + aNumRowsToRemove - 1;
uint32_t colCount = aMap.GetColCount();
for (int32_t rowX = endRowIndex; rowX >= aStartRowIndex; --rowX) {
CellDataArray& row = mRows[rowX];
uint32_t colX;
for (colX = 0; colX < colCount; colX++) {
CellData* data = row.SafeElementAt(colX);
if (data) {
// Adjust the column counts.
if (data->IsOrig()) {
// Decrement the column count.
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsOrig--;
}
// colspan=0 is only counted as a spanned cell in the 1st col it spans
else if (data->IsColSpan()) {
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsSpan--;
}
}
}
uint32_t rowLength = row.Length();
// Delete our row information.
for (colX = 0; colX < rowLength; colX++) {
DestroyCellData(row[colX]);
}
mRows.RemoveElementAt(rowX);
// Decrement our row and next available index counts.
mContentRowCount--;
}
aMap.RemoveColsAtEnd();
// mark all following rows damaged, they might contain a previously set
// damage area which we can not shift.
int32_t firstDamagedRow = aRgFirstRowIndex + aStartRowIndex;
SetDamageArea(0, firstDamagedRow, aMap.GetColCount(),
aMap.GetRowCount() - firstDamagedRow, aDamageArea);
}
int32_t nsCellMap::GetEffectiveColSpan(const nsTableCellMap& aMap,
int32_t aRowIndex,
int32_t aColIndex) const {
int32_t numColsInTable = aMap.GetColCount();
int32_t colSpan = 1;
if (uint32_t(aRowIndex) >= mRows.Length()) {
return colSpan;
}
const CellDataArray& row = mRows[aRowIndex];
int32_t colX;
CellData* data;
int32_t maxCols = numColsInTable;
bool hitOverlap = false; // XXX this is not ever being set to true
for (colX = aColIndex + 1; colX < maxCols; colX++) {
data = row.SafeElementAt(colX);
if (data) {
// for an overlapping situation get the colspan from the originating cell
// and use that as the max number of cols to iterate. Since this is rare,
// only pay the price of looking up the cell's colspan here.
if (!hitOverlap && data->IsOverlap()) {
CellData* origData = row.SafeElementAt(aColIndex);
if (origData && origData->IsOrig()) {
nsTableCellFrame* cellFrame = origData->GetCellFrame();
if (cellFrame) {
// possible change the number of colums to iterate
maxCols = std::min(aColIndex + cellFrame->GetColSpan(), maxCols);
if (colX >= maxCols) break;
}
}
}
if (data->IsColSpan()) {
colSpan++;
} else {
break;
}
} else
break;
}
return colSpan;
}
int32_t nsCellMap::GetRowSpanForNewCell(nsTableCellFrame* aCellFrameToAdd,
int32_t aRowIndex,
bool& aIsZeroRowSpan) const {
aIsZeroRowSpan = false;
int32_t rowSpan = aCellFrameToAdd->GetRowSpan();
if (0 == rowSpan) {
// Use a min value of 2 for a zero rowspan to make computations easier
// elsewhere. Zero rowspans are only content dependent!
rowSpan = std::max(2, mContentRowCount - aRowIndex);
aIsZeroRowSpan = true;
}
return rowSpan;
}
bool nsCellMap::HasMoreThanOneCell(int32_t aRowIndex) const {
const CellDataArray& row = mRows.SafeElementAt(aRowIndex, *sEmptyRow);
uint32_t maxColIndex = row.Length();
uint32_t colIndex;
bool foundOne = false;
for (colIndex = 0; colIndex < maxColIndex; colIndex++) {
CellData* cellData = row[colIndex];
if (cellData && (cellData->GetCellFrame() || cellData->IsRowSpan())) {
if (foundOne) {
return true;
}
foundOne = true;
}
}
return false;
}
int32_t nsCellMap::GetNumCellsOriginatingInRow(int32_t aRowIndex) const {
const CellDataArray& row = mRows.SafeElementAt(aRowIndex, *sEmptyRow);
uint32_t count = 0;
uint32_t maxColIndex = row.Length();
uint32_t colIndex;
for (colIndex = 0; colIndex < maxColIndex; colIndex++) {
CellData* cellData = row[colIndex];
if (cellData && cellData->IsOrig()) count++;
}
return count;
}
int32_t nsCellMap::GetRowSpan(int32_t aRowIndex, int32_t aColIndex,
bool aGetEffective) const {
int32_t rowSpan = 1;
int32_t rowCount = (aGetEffective) ? mContentRowCount : mRows.Length();
int32_t rowX;
for (rowX = aRowIndex + 1; rowX < rowCount; rowX++) {
CellData* data = GetDataAt(rowX, aColIndex);
if (data) {
if (data->IsRowSpan()) {
rowSpan++;
} else {
break;
}
} else
break;
}
return rowSpan;
}
void nsCellMap::ShrinkWithoutCell(nsTableCellMap& aMap,
nsTableCellFrame& aCellFrame,
int32_t aRowIndex, int32_t aColIndex,
int32_t aRgFirstRowIndex,
TableArea& aDamageArea) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
uint32_t colX, rowX;
// get the rowspan and colspan from the cell map since the content may have
// changed
int32_t rowSpan = GetRowSpan(aRowIndex, aColIndex, true);
uint32_t colSpan = GetEffectiveColSpan(aMap, aRowIndex, aColIndex);
uint32_t endRowIndex = aRowIndex + rowSpan - 1;
uint32_t endColIndex = aColIndex + colSpan - 1;
// adjust the col counts due to the deleted cell before removing it
for (colX = aColIndex; colX <= endColIndex; colX++) {
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
if (colX == uint32_t(aColIndex)) {
colInfo->mNumCellsOrig--;
} else {
colInfo->mNumCellsSpan--;
}
}
// remove the deleted cell and cellData entries for it
for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) {
CellDataArray& row = mRows[rowX];
// endIndexForRow points at the first slot we don't want to clean up. This
// makes the aColIndex == 0 case work right with our unsigned int colX.
NS_ASSERTION(endColIndex + 1 <= row.Length(), "span beyond the row size!");
uint32_t endIndexForRow = std::min(endColIndex + 1, uint32_t(row.Length()));
// Since endIndexForRow <= row.Length(), enough to compare aColIndex to it.
if (uint32_t(aColIndex) < endIndexForRow) {
for (colX = endIndexForRow; colX > uint32_t(aColIndex); colX--) {
DestroyCellData(row[colX - 1]);
}
row.RemoveElementsAt(aColIndex, endIndexForRow - aColIndex);
}
}
uint32_t numCols = aMap.GetColCount();
// update the row and col info due to shifting
for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) {
CellDataArray& row = mRows[rowX];
for (colX = aColIndex; colX < numCols - colSpan; colX++) {
CellData* data = row.SafeElementAt(colX);
if (data) {
if (data->IsOrig()) {
// a cell that gets moved to the left needs adjustment in its new
// location
data->GetCellFrame()->SetColIndex(colX);
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsOrig++;
// a cell that gets moved to the left needs adjustment in its old
// location
colInfo = aMap.GetColInfoAt(colX + colSpan);
if (colInfo) {
colInfo->mNumCellsOrig--;
}
}
else if (data->IsColSpan()) {
// a cell that gets moved to the left needs adjustment
// in its new location
nsColInfo* colInfo = aMap.GetColInfoAt(colX);
colInfo->mNumCellsSpan++;
// a cell that gets moved to the left needs adjustment
// in its old location
colInfo = aMap.GetColInfoAt(colX + colSpan);
if (colInfo) {
colInfo->mNumCellsSpan--;
}
}
}
}
}
aMap.RemoveColsAtEnd();
SetDamageArea(aColIndex, aRgFirstRowIndex + aRowIndex,
std::max(0, aMap.GetColCount() - aColIndex - 1),
1 + endRowIndex - aRowIndex, aDamageArea);
}
void nsCellMap::RebuildConsideringRows(
nsTableCellMap& aMap, int32_t aStartRowIndex,
nsTArray<nsTableRowFrame*>* aRowsToInsert, int32_t aNumRowsToRemove) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
// copy the old cell map into a new array
uint32_t numOrigRows = mRows.Length();
nsTArray<CellDataArray> origRows = std::move(mRows);
int32_t rowNumberChange;
if (aRowsToInsert) {
rowNumberChange = aRowsToInsert->Length();
} else {
rowNumberChange = -aNumRowsToRemove;
}
// adjust mContentRowCount based on the function arguments as they are known
// to be real rows.
mContentRowCount += rowNumberChange;
NS_ASSERTION(mContentRowCount >= 0, "previous mContentRowCount was wrong");
// mRows is empty now. Grow it to the size we expect it to have.
if (mContentRowCount) {
if (!Grow(aMap, mContentRowCount)) {
// Bail, I guess... Not sure what else we can do here.
return;
}
}
// aStartRowIndex might be after all existing rows so we should limit the
// copy to the amount of exisiting rows
uint32_t copyEndRowIndex = std::min(numOrigRows, uint32_t(aStartRowIndex));
// rowX keeps track of where we are in mRows while setting up the
// new cellmap.
uint32_t rowX = 0;
TableArea damageArea;
// put back the rows before the affected ones just as before. Note that we
// can't just copy the old rows in bit-for-bit, because they might be
// spanning out into the rows we're adding/removing.
for (; rowX < copyEndRowIndex; rowX++) {
const CellDataArray& row = origRows[rowX];
uint32_t numCols = row.Length();
for (uint32_t colX = 0; colX < numCols; colX++) {
// put in the original cell from the cell map
const CellData* data = row.ElementAt(colX);
if (data && data->IsOrig()) {
AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea);
}
}
}
// Now handle the new rows being inserted, if any.
uint32_t copyStartRowIndex;
rowX = aStartRowIndex;
if (aRowsToInsert) {
// add in the new cells and create rows if necessary
int32_t numNewRows = aRowsToInsert->Length();
for (int32_t newRowX = 0; newRowX < numNewRows; newRowX++) {
nsTableRowFrame* rFrame = aRowsToInsert->ElementAt(newRowX);
for (nsTableCellFrame* cellFrame = rFrame->GetFirstCell(); cellFrame;
cellFrame = cellFrame->GetNextCell()) {
AppendCell(aMap, cellFrame, rowX, false, 0, damageArea);
}
rowX++;
}
copyStartRowIndex = aStartRowIndex;
} else {
copyStartRowIndex = aStartRowIndex + aNumRowsToRemove;
}
// put back the rows after the affected ones just as before. Again, we can't
// just copy the old bits because that would not handle the new rows spanning
// out or our earlier old rows spanning through the damaged area.
for (uint32_t copyRowX = copyStartRowIndex; copyRowX < numOrigRows;
copyRowX++) {
const CellDataArray& row = origRows[copyRowX];
uint32_t numCols = row.Length();
for (uint32_t colX = 0; colX < numCols; colX++) {
// put in the original cell from the cell map
CellData* data = row.ElementAt(colX);
if (data && data->IsOrig()) {
AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea);
}
}
rowX++;
}
// delete the old cell map. Now rowX no longer has anything to do with mRows
for (rowX = 0; rowX < numOrigRows; rowX++) {
CellDataArray& row = origRows[rowX];
uint32_t len = row.Length();
for (uint32_t colX = 0; colX < len; colX++) {
DestroyCellData(row[colX]);
}
}
}
void nsCellMap::RebuildConsideringCells(
nsTableCellMap& aMap, int32_t aNumOrigCols,
nsTArray<nsTableCellFrame*>* aCellFrames, int32_t aRowIndex,
int32_t aColIndex, bool aInsert) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
// copy the old cell map into a new array
int32_t numOrigRows = mRows.Length();
nsTArray<CellDataArray> origRows = std::move(mRows);
int32_t numNewCells = (aCellFrames) ? aCellFrames->Length() : 0;
// the new cells might extend the previous column number
NS_ASSERTION(aNumOrigCols >= aColIndex,
"Appending cells far beyond cellmap data?!");
int32_t numCols =
aInsert ? std::max(aNumOrigCols, aColIndex + 1) : aNumOrigCols;
// build the new cell map. Hard to say what, if anything, we can preallocate
// here... Should come back to that sometime, perhaps.
int32_t rowX;
TableArea damageArea;
for (rowX = 0; rowX < numOrigRows; rowX++) {
const CellDataArray& row = origRows[rowX];
for (int32_t colX = 0; colX < numCols; colX++) {
if ((rowX == aRowIndex) && (colX == aColIndex)) {
if (aInsert) { // put in the new cells
for (int32_t cellX = 0; cellX < numNewCells; cellX++) {
nsTableCellFrame* cell = aCellFrames->ElementAt(cellX);
if (cell) {
AppendCell(aMap, cell, rowX, false, 0, damageArea);
}
}
} else {
continue; // do not put the deleted cell back
}
}
// put in the original cell from the cell map
CellData* data = row.SafeElementAt(colX);
if (data && data->IsOrig()) {
AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea);
}
}
}
if (aInsert &&
numOrigRows <=
aRowIndex) { // append the new cells below the last original row
NS_ASSERTION(numOrigRows == aRowIndex,
"Appending cells far beyond the last row");
for (int32_t cellX = 0; cellX < numNewCells; cellX++) {
nsTableCellFrame* cell = aCellFrames->ElementAt(cellX);
if (cell) {
AppendCell(aMap, cell, aRowIndex, false, 0, damageArea);
}
}
}
// delete the old cell map
for (rowX = 0; rowX < numOrigRows; rowX++) {
CellDataArray& row = origRows[rowX];
uint32_t len = row.Length();
for (uint32_t colX = 0; colX < len; colX++) {
DestroyCellData(row.SafeElementAt(colX));
}
}
// expand the cellmap to cover empty content rows
if (mRows.Length() < uint32_t(mContentRowCount)) {
Grow(aMap, mContentRowCount - mRows.Length());
}
}
void nsCellMap::RemoveCell(nsTableCellMap& aMap, nsTableCellFrame* aCellFrame,
int32_t aRowIndex, int32_t aRgFirstRowIndex,
TableArea& aDamageArea) {
uint32_t numRows = mRows.Length();
if (uint32_t(aRowIndex) >= numRows) {
NS_ERROR("bad arg in nsCellMap::RemoveCell");
return;
}
int32_t numCols = aMap.GetColCount();
// Now aRowIndex is guaranteed OK.
// get the starting col index of the cell to remove
int32_t startColIndex;
for (startColIndex = 0; startColIndex < numCols; startColIndex++) {
CellData* data = mRows[aRowIndex].SafeElementAt(startColIndex);
if (data && (data->IsOrig()) && (aCellFrame == data->GetCellFrame())) {
break; // we found the col index
}
}
int32_t rowSpan = GetRowSpan(aRowIndex, startColIndex, false);
// record whether removing the cells is going to cause complications due
// to existing row spans, col spans or table sizing.
bool spansCauseRebuild = CellsSpanInOrOut(aRowIndex, aRowIndex + rowSpan - 1,
startColIndex, numCols - 1);
// XXX if the cell has a col span to the end of the map, and the end has no
// originating cells, we need to assume that this the only such cell, and
// rebuild so that there are no extraneous cols at the end. The same is true
// for removing rows.
if (!spansCauseRebuild) {
if (!aCellFrame->GetRowSpan() || !aCellFrame->GetColSpan()) {
spansCauseRebuild = true;
}
}
if (spansCauseRebuild) {
aMap.RebuildConsideringCells(this, nullptr, aRowIndex, startColIndex, false,
aDamageArea);
} else {
ShrinkWithoutCell(aMap, *aCellFrame, aRowIndex, startColIndex,
aRgFirstRowIndex, aDamageArea);
}
}
#ifdef DEBUG
void nsCellMap::Dump(bool aIsBorderCollapse) const {
printf("\n ***** START GROUP CELL MAP DUMP ***** %p\n", (void*)this);
nsTableRowGroupFrame* rg = GetRowGroup();
const nsStyleDisplay* display = rg->StyleDisplay();
switch (display->DisplayInside()) {
case StyleDisplayInside::TableHeaderGroup:
printf(" thead ");
break;
case StyleDisplayInside::TableFooterGroup:
printf(" tfoot ");
break;
case StyleDisplayInside::TableRowGroup:
printf(" tbody ");
break;
default:
printf("HUH? wrong display type on rowgroup");
}
uint32_t mapRowCount = mRows.Length();
printf("mapRowCount=%u tableRowCount=%d\n", mapRowCount, mContentRowCount);
uint32_t rowIndex, colIndex;
for (rowIndex = 0; rowIndex < mapRowCount; rowIndex++) {
const CellDataArray& row = mRows[rowIndex];
printf(" row %d : ", rowIndex);
uint32_t colCount = row.Length();
for (colIndex = 0; colIndex < colCount; colIndex++) {
CellData* cd = row[colIndex];
if (cd) {
if (cd->IsOrig()) {
printf("C%d,%d ", rowIndex, colIndex);
} else {
if (cd->IsRowSpan()) {
printf("R ");
}
if (cd->IsColSpan()) {
printf("C ");
}
if (!(cd->IsRowSpan() && cd->IsColSpan())) {
printf(" ");
}
printf(" ");
}
} else {
printf("---- ");
}
}
if (aIsBorderCollapse) {
nscoord size;
BCBorderOwner owner;
LogicalSide side;
bool segStart;
bool bevel;
for (int32_t i = 0; i <= 2; i++) {
printf("\n ");
for (colIndex = 0; colIndex < colCount; colIndex++) {
BCCellData* cd = (BCCellData*)row[colIndex];
if (cd) {
if (0 == i) {
size = cd->mData.GetBStartEdge(owner, segStart);
printf("t=%d%d%d ", int32_t(size), owner, segStart);
} else if (1 == i) {
size = cd->mData.GetIStartEdge(owner, segStart);
printf("l=%d%d%d ", int32_t(size), owner, segStart);
} else {
size = cd->mData.GetCorner(side, bevel);
printf("c=%d%hhu%d ", int32_t(size), static_cast<uint8_t>(side),
bevel);
}
}
}
}
}
printf("\n");
}
// output info mapping Ci,j to cell address
for (uint32_t rIndex = 0; rIndex < mapRowCount; rIndex++) {
const CellDataArray& row = mRows[rIndex];
uint32_t colCount = row.Length();
printf(" ");
for (colIndex = 0; colIndex < colCount; colIndex++) {
CellData* cd = row[colIndex];
if (cd) {
if (cd->IsOrig()) {
nsTableCellFrame* cellFrame = cd->GetCellFrame();
uint32_t cellFrameColIndex = cellFrame->ColIndex();
printf("C%d,%d=%p(%u) ", rIndex, colIndex, (void*)cellFrame,
cellFrameColIndex);
}
}
}
printf("\n");
}
printf(" ***** END GROUP CELL MAP DUMP *****\n");
}
#endif
CellData* nsCellMap::GetDataAt(int32_t aMapRowIndex, int32_t aColIndex) const {
return mRows.SafeElementAt(aMapRowIndex, *sEmptyRow).SafeElementAt(aColIndex);
}
// only called if the cell at aMapRowIndex, aColIndex is null or dead
// (the latter from ExpandZeroColSpans (XXXmats which has now been removed -
// are there other ways cells may be dead?)).
void nsCellMap::SetDataAt(nsTableCellMap& aMap, CellData& aNewCell,
int32_t aMapRowIndex, int32_t aColIndex) {
NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch");
if (uint32_t(aMapRowIndex) >= mRows.Length()) {
NS_ERROR("SetDataAt called with row index > num rows");
return;
}
CellDataArray& row = mRows[aMapRowIndex];
// the table map may need cols added
int32_t numColsToAdd = aColIndex + 1 - aMap.GetColCount();
if (numColsToAdd > 0) {
aMap.AddColsAtEnd(numColsToAdd);
}
// the row may need cols added
numColsToAdd = aColIndex + 1 - row.Length();
if (numColsToAdd > 0) {
// XXXbz need to handle allocation failures.
GrowRow(row, numColsToAdd);
}
DestroyCellData(row[aColIndex]);
row.ReplaceElementsAt(aColIndex, 1, &aNewCell);
// update the originating cell counts if cell originates in this row, col
nsColInfo* colInfo = aMap.GetColInfoAt(aColIndex);
if (colInfo) {
if (aNewCell.IsOrig()) {
colInfo->mNumCellsOrig++;
} else if (aNewCell.IsColSpan()) {
colInfo->mNumCellsSpan++;
}
} else
NS_ERROR("SetDataAt called with col index > table map num cols");
}
nsTableCellFrame* nsCellMap::GetCellInfoAt(const nsTableCellMap& aMap,
int32_t aRowX, int32_t aColX,
bool* aOriginates,
int32_t* aColSpan) const {
if (aOriginates) {
*aOriginates = false;
}
CellData* data = GetDataAt(aRowX, aColX);
nsTableCellFrame* cellFrame = nullptr;
if (data) {
if (data->IsOrig()) {
cellFrame = data->GetCellFrame();
if (aOriginates) *aOriginates = true;
} else {
cellFrame = GetCellFrame(aRowX, aColX, *data, true);
}
if (cellFrame && aColSpan) {
uint32_t initialColIndex = cellFrame->ColIndex();
*aColSpan = GetEffectiveColSpan(aMap, aRowX, initialColIndex);
}
}
return cellFrame;
}
bool nsCellMap::RowIsSpannedInto(int32_t aRowIndex, int32_t aNumEffCols) const {
if ((0 > aRowIndex) || (aRowIndex >= mContentRowCount)) {
return false;
}
for (int32_t colIndex = 0; colIndex < aNumEffCols; colIndex++) {
CellData* cd = GetDataAt(aRowIndex, colIndex);
if (cd) { // there's really a cell at (aRowIndex, colIndex)
if (cd->IsSpan()) { // the cell at (aRowIndex, colIndex) is the result of
// a span
if (cd->IsRowSpan() && GetCellFrame(aRowIndex, colIndex, *cd,
true)) { // XXX why the last check
return true;
}
}
}
}
return false;
}
bool nsCellMap::RowHasSpanningCells(int32_t aRowIndex,
int32_t aNumEffCols) const {
if ((0 > aRowIndex) || (aRowIndex >= mContentRowCount)) {
return false;
}
if (aRowIndex != mContentRowCount - 1) {
// aRowIndex is not the last row, so we check the next row after aRowIndex
// for spanners
for (int32_t colIndex = 0; colIndex < aNumEffCols; colIndex++) {
CellData* cd = GetDataAt(aRowIndex, colIndex);
if (cd && (cd->IsOrig())) { // cell originates
CellData* cd2 = GetDataAt(aRowIndex + 1, colIndex);
if (cd2 && cd2->IsRowSpan()) { // cd2 is spanned by a row
if (cd->GetCellFrame() ==
GetCellFrame(aRowIndex + 1, colIndex, *cd2, true)) {
return true;
}
}
}
}
}
return false;
}
void nsCellMap::DestroyCellData(CellData* aData) {
if (!aData) {
return;
}
if (mIsBC) {
BCCellData* bcData = static_cast<BCCellData*>(aData);
bcData->~BCCellData();
mPresContext->PresShell()->FreeByObjectID(eArenaObjectID_BCCellData,
bcData);
} else {
aData->~CellData();
mPresContext->PresShell()->FreeByObjectID(eArenaObjectID_CellData, aData);
}
}
CellData* nsCellMap::AllocCellData(nsTableCellFrame* aOrigCell) {
if (mIsBC) {
BCCellData* data =
(BCCellData*)mPresContext->PresShell()->AllocateByObjectID(
eArenaObjectID_BCCellData, sizeof(BCCellData));
if (data) {
new (data) BCCellData(aOrigCell);
}
return data;
}
CellData* data = (CellData*)mPresContext->PresShell()->AllocateByObjectID(
eArenaObjectID_CellData, sizeof(CellData));
if (data) {
new (data) CellData(aOrigCell);
}
return data;
}
void nsCellMapColumnIterator::AdvanceRowGroup() {
do {
mCurMapStart += mCurMapContentRowCount;
mCurMap = mCurMap->GetNextSibling();
if (!mCurMap) {
// Set mCurMapContentRowCount and mCurMapRelevantRowCount to 0 in case
// mCurMap has no next sibling. This can happen if we just handled the
// last originating cell. Future calls will end up with mFoundCells ==
// mOrigCells, but for this one mFoundCells was definitely not big enough
// if we got here.
mCurMapContentRowCount = 0;
mCurMapRelevantRowCount = 0;
break;
}
mCurMapContentRowCount = mCurMap->GetRowCount();
uint32_t rowArrayLength = mCurMap->mRows.Length();
mCurMapRelevantRowCount = std::min(mCurMapContentRowCount, rowArrayLength);
} while (0 == mCurMapRelevantRowCount);
NS_ASSERTION(mCurMapRelevantRowCount != 0 || !mCurMap,
"How did that happen?");
// Set mCurMapRow to 0, since cells can't span across table row groups.
mCurMapRow = 0;
}
void nsCellMapColumnIterator::IncrementRow(int32_t aIncrement) {
MOZ_ASSERT(aIncrement >= 0, "Bogus increment");
MOZ_ASSERT(mCurMap, "Bogus mOrigCells?");
if (aIncrement == 0) {
AdvanceRowGroup();
} else {
mCurMapRow += aIncrement;
if (mCurMapRow >= mCurMapRelevantRowCount) {
AdvanceRowGroup();
}
}
}
nsTableCellFrame* nsCellMapColumnIterator::GetNextFrame(int32_t* aRow,
int32_t* aColSpan) {
// Fast-path for the case when we don't have anything left in the column and
// we know it.
if (mFoundCells == mOrigCells) {
*aRow = 0;
*aColSpan = 1;
return nullptr;
}
while (true) {
NS_ASSERTION(mCurMapRow < mCurMapRelevantRowCount, "Bogus mOrigCells?");
// Safe to just get the row (which is faster than calling GetDataAt(), but
// there may not be that many cells in it, so have to use SafeElementAt for
// the mCol.
const nsCellMap::CellDataArray& row = mCurMap->mRows[mCurMapRow];
CellData* cellData = row.SafeElementAt(mCol);
if (!cellData || cellData->IsDead()) {
// Could hit this if there are fewer cells in this row than others, for
// example.
IncrementRow(1);
continue;
}
if (cellData->IsColSpan()) {
// Look up the originating data for this cell, advance by its relative
// rowspan.
int32_t rowspanOffset = cellData->GetRowSpanOffset();
nsTableCellFrame* cellFrame =
mCurMap->GetCellFrame(mCurMapRow, mCol, *cellData, false);
NS_ASSERTION(cellFrame, "Must have usable originating data here");
int32_t rowSpan = cellFrame->GetRowSpan();
if (rowSpan == 0) {
AdvanceRowGroup();
} else {
IncrementRow(rowSpan - rowspanOffset);
}
continue;
}
NS_ASSERTION(cellData->IsOrig(),
"Must have originating cellData by this point. "
"See comment on mCurMapRow in header.");
nsTableCellFrame* cellFrame = cellData->GetCellFrame();
NS_ASSERTION(cellFrame, "Orig data without cellframe?");
*aRow = mCurMapStart + mCurMapRow;
*aColSpan = mCurMap->GetEffectiveColSpan(*mMap, mCurMapRow, mCol);
IncrementRow(cellFrame->GetRowSpan());
++mFoundCells;
MOZ_ASSERT(cellData == mMap->GetDataAt(*aRow, mCol),
"Giving caller bogus row?");
return cellFrame;
}
MOZ_ASSERT_UNREACHABLE("Can't get here");
return nullptr;
}