gecko-dev/gfx/layers/RotatedBuffer.cpp
Nicholas Nethercote 4008f58653 Bug 1561825 - Make layers.* static prefs follow the naming convention. r=KrisWright
The patch also removes the layers.mlgpu.enable-container-resizing pref, because
it's dead.

Differential Revision: https://phabricator.services.mozilla.com/D36159

--HG--
extra : rebase_source : e215d584aed18f865d2e8d00a78e76e9b0323e6e
2019-06-27 14:48:58 +10:00

475 lines
17 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "RotatedBuffer.h"
#include <sys/types.h> // for int32_t
#include <algorithm> // for max
#include "BasicImplData.h" // for BasicImplData
#include "BasicLayersImpl.h" // for ToData
#include "GeckoProfiler.h" // for AUTO_PROFILER_LABEL
#include "Layers.h" // for PaintedLayer, Layer, etc
#include "gfxPlatform.h" // for gfxPlatform
#include "gfxUtils.h" // for gfxUtils
#include "mozilla/ArrayUtils.h" // for ArrayLength
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/BaseSize.h" // for BaseSize
#include "mozilla/gfx/Matrix.h" // for Matrix
#include "mozilla/gfx/Point.h" // for Point, IntPoint
#include "mozilla/gfx/Rect.h" // for Rect, IntRect
#include "mozilla/gfx/Types.h" // for ExtendMode::ExtendMode::CLAMP, etc
#include "mozilla/layers/ShadowLayers.h" // for ShadowableLayer
#include "mozilla/layers/TextureClient.h" // for TextureClient
#include "mozilla/Move.h" // for Move
#include "mozilla/StaticPrefs.h" // for StaticPrefs
#include "mozilla/gfx/Point.h" // for IntSize
#include "gfx2DGlue.h"
#include "nsLayoutUtils.h" // for invalidation debugging
#include "PaintThread.h"
namespace mozilla {
using namespace gfx;
namespace layers {
void BorrowDrawTarget::ReturnDrawTarget(gfx::DrawTarget*& aReturned) {
MOZ_ASSERT(mLoanedDrawTarget);
MOZ_ASSERT(aReturned == mLoanedDrawTarget);
if (mLoanedDrawTarget) {
mLoanedDrawTarget->SetTransform(mLoanedTransform);
mLoanedDrawTarget = nullptr;
}
aReturned = nullptr;
}
IntRect RotatedBuffer::GetQuadrantRectangle(XSide aXSide, YSide aYSide) const {
// quadrantTranslation is the amount we translate the top-left
// of the quadrant by to get coordinates relative to the layer
IntPoint quadrantTranslation = -mBufferRotation;
quadrantTranslation.x += aXSide == LEFT ? mBufferRect.Width() : 0;
quadrantTranslation.y += aYSide == TOP ? mBufferRect.Height() : 0;
return mBufferRect + quadrantTranslation;
}
Rect RotatedBuffer::GetSourceRectangle(XSide aXSide, YSide aYSide) const {
Rect result;
if (aXSide == LEFT) {
result.SetBoxX(0, mBufferRotation.x);
} else {
result.SetBoxX(mBufferRotation.x, mBufferRect.Width());
}
if (aYSide == TOP) {
result.SetBoxY(0, mBufferRotation.y);
} else {
result.SetBoxY(mBufferRotation.y, mBufferRect.Height());
}
return result;
}
void RotatedBuffer::BeginCapture() {
RefPtr<gfx::DrawTarget> target = GetBufferTarget();
MOZ_ASSERT(!mCapture);
MOZ_ASSERT(target);
mCapture = Factory::CreateCaptureDrawTargetForTarget(
target, StaticPrefs::layers_omtp_capture_limit());
}
RefPtr<gfx::DrawTargetCapture> RotatedBuffer::EndCapture() {
MOZ_ASSERT(mCapture);
return std::move(mCapture);
}
/**
* @param aXSide LEFT means we draw from the left side of the buffer (which
* is drawn on the right side of mBufferRect). RIGHT means we draw from
* the right side of the buffer (which is drawn on the left side of
* mBufferRect).
* @param aYSide TOP means we draw from the top side of the buffer (which
* is drawn on the bottom side of mBufferRect). BOTTOM means we draw from
* the bottom side of the buffer (which is drawn on the top side of
* mBufferRect).
*/
void RotatedBuffer::DrawBufferQuadrant(
gfx::DrawTarget* aTarget, XSide aXSide, YSide aYSide, float aOpacity,
gfx::CompositionOp aOperator, gfx::SourceSurface* aMask,
const gfx::Matrix* aMaskTransform) const {
// The rectangle that we're going to fill. Basically we're going to
// render the buffer at mBufferRect + quadrantTranslation to get the
// pixels in the right place, but we're only going to paint within
// mBufferRect
IntRect quadrantRect = GetQuadrantRectangle(aXSide, aYSide);
IntRect fillRect;
if (!fillRect.IntersectRect(mBufferRect, quadrantRect)) return;
gfx::Point quadrantTranslation(quadrantRect.X(), quadrantRect.Y());
RefPtr<SourceSurface> snapshot = GetBufferSource();
if (!snapshot) {
gfxCriticalError()
<< "Invalid snapshot in RotatedBuffer::DrawBufferQuadrant";
return;
}
// direct2d is much slower when using OP_SOURCE so use OP_OVER and
// (maybe) a clear instead. Normally we need to draw in a single operation
// (to avoid flickering) but direct2d is ok since it defers rendering.
// We should try abstract this logic in a helper when we have other use
// cases.
if ((aTarget->GetBackendType() == BackendType::DIRECT2D ||
aTarget->GetBackendType() == BackendType::DIRECT2D1_1) &&
aOperator == CompositionOp::OP_SOURCE) {
aOperator = CompositionOp::OP_OVER;
if (snapshot->GetFormat() == SurfaceFormat::B8G8R8A8) {
aTarget->ClearRect(IntRectToRect(fillRect));
}
}
// OP_SOURCE is unbounded in Azure, and we really don't want that behaviour
// here. We also can't do a ClearRect+FillRect since we need the drawing to
// happen as an atomic operation (to prevent flickering). We also need this
// clip in the case where we have a mask, since the mask surface might cover
// more than fillRect, but we only want to touch the pixels inside fillRect.
aTarget->PushClipRect(IntRectToRect(fillRect));
if (aMask) {
Matrix oldTransform = aTarget->GetTransform();
// Transform from user -> buffer space.
Matrix transform =
Matrix::Translation(quadrantTranslation.x, quadrantTranslation.y);
Matrix inverseMask = *aMaskTransform;
inverseMask.Invert();
transform *= oldTransform;
transform *= inverseMask;
#ifdef MOZ_GFX_OPTIMIZE_MOBILE
SurfacePattern source(snapshot, ExtendMode::CLAMP, transform,
SamplingFilter::POINT);
#else
SurfacePattern source(snapshot, ExtendMode::CLAMP, transform);
#endif
aTarget->SetTransform(*aMaskTransform);
aTarget->MaskSurface(source, aMask, Point(0, 0),
DrawOptions(aOpacity, aOperator));
aTarget->SetTransform(oldTransform);
} else {
#ifdef MOZ_GFX_OPTIMIZE_MOBILE
DrawSurfaceOptions options(SamplingFilter::POINT);
#else
DrawSurfaceOptions options;
#endif
aTarget->DrawSurface(snapshot, IntRectToRect(fillRect),
GetSourceRectangle(aXSide, aYSide), options,
DrawOptions(aOpacity, aOperator));
}
aTarget->PopClip();
}
void RotatedBuffer::DrawBufferWithRotation(
gfx::DrawTarget* aTarget, float aOpacity, gfx::CompositionOp aOperator,
gfx::SourceSurface* aMask, const gfx::Matrix* aMaskTransform) const {
AUTO_PROFILER_LABEL("RotatedBuffer::DrawBufferWithRotation", GRAPHICS);
// See above, in Azure Repeat should always be a safe, even faster choice
// though! Particularly on D2D Repeat should be a lot faster, need to look
// into that. TODO[Bas]
DrawBufferQuadrant(aTarget, LEFT, TOP, aOpacity, aOperator, aMask,
aMaskTransform);
DrawBufferQuadrant(aTarget, RIGHT, TOP, aOpacity, aOperator, aMask,
aMaskTransform);
DrawBufferQuadrant(aTarget, LEFT, BOTTOM, aOpacity, aOperator, aMask,
aMaskTransform);
DrawBufferQuadrant(aTarget, RIGHT, BOTTOM, aOpacity, aOperator, aMask,
aMaskTransform);
}
static bool IsClippingCheap(gfx::DrawTarget* aTarget,
const nsIntRegion& aRegion) {
// Assume clipping is cheap if the draw target just has an integer
// translation, and the visible region is simple.
return !aTarget->GetTransform().HasNonIntegerTranslation() &&
aRegion.GetNumRects() <= 1;
}
void RotatedBuffer::DrawTo(PaintedLayer* aLayer, DrawTarget* aTarget,
float aOpacity, CompositionOp aOp,
SourceSurface* aMask, const Matrix* aMaskTransform) {
bool clipped = false;
// If the entire buffer is valid, we can just draw the whole thing,
// no need to clip. But we'll still clip if clipping is cheap ---
// that might let us copy a smaller region of the buffer.
// Also clip to the visible region if we're told to.
if (!aLayer->GetValidRegion().Contains(BufferRect()) ||
(ToData(aLayer)->GetClipToVisibleRegion() &&
!aLayer->GetVisibleRegion().ToUnknownRegion().Contains(BufferRect())) ||
IsClippingCheap(aTarget,
aLayer->GetLocalVisibleRegion().ToUnknownRegion())) {
// We don't want to draw invalid stuff, so we need to clip. Might as
// well clip to the smallest area possible --- the visible region.
// Bug 599189 if there is a non-integer-translation transform in aTarget,
// we might sample pixels outside GetLocalVisibleRegion(), which is wrong
// and may cause gray lines.
gfxUtils::ClipToRegion(aTarget,
aLayer->GetLocalVisibleRegion().ToUnknownRegion());
clipped = true;
}
DrawBufferWithRotation(aTarget, aOpacity, aOp, aMask, aMaskTransform);
if (clipped) {
aTarget->PopClip();
}
}
void RotatedBuffer::UpdateDestinationFrom(const RotatedBuffer& aSource,
const gfx::IntRect& aUpdateRect) {
DrawIterator iter;
while (DrawTarget* destDT =
BorrowDrawTargetForQuadrantUpdate(aUpdateRect, &iter)) {
bool isClippingCheap = IsClippingCheap(destDT, iter.mDrawRegion);
if (isClippingCheap) {
gfxUtils::ClipToRegion(destDT, iter.mDrawRegion);
}
aSource.DrawBufferWithRotation(destDT, 1.0, CompositionOp::OP_SOURCE);
if (isClippingCheap) {
destDT->PopClip();
}
ReturnDrawTarget(destDT);
}
}
static void WrapRotationAxis(int32_t* aRotationPoint, int32_t aSize) {
if (*aRotationPoint < 0) {
*aRotationPoint += aSize;
} else if (*aRotationPoint >= aSize) {
*aRotationPoint -= aSize;
}
}
bool RotatedBuffer::Parameters::IsRotated() const {
return mBufferRotation != IntPoint(0, 0);
}
bool RotatedBuffer::Parameters::RectWrapsBuffer(
const gfx::IntRect& aRect) const {
int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x;
int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y;
return (aRect.X() < xBoundary && xBoundary < aRect.XMost()) ||
(aRect.Y() < yBoundary && yBoundary < aRect.YMost());
}
void RotatedBuffer::Parameters::SetUnrotated() {
mBufferRotation = IntPoint(0, 0);
mDidSelfCopy = true;
}
RotatedBuffer::Parameters RotatedBuffer::AdjustedParameters(
const gfx::IntRect& aDestBufferRect) const {
IntRect keepArea;
if (keepArea.IntersectRect(aDestBufferRect, mBufferRect)) {
// Set mBufferRotation so that the pixels currently in mDTBuffer
// will still be rendered in the right place when mBufferRect
// changes to aDestBufferRect.
IntPoint newRotation =
mBufferRotation + (aDestBufferRect.TopLeft() - mBufferRect.TopLeft());
WrapRotationAxis(&newRotation.x, mBufferRect.Width());
WrapRotationAxis(&newRotation.y, mBufferRect.Height());
NS_ASSERTION(gfx::IntRect(gfx::IntPoint(0, 0), mBufferRect.Size())
.Contains(newRotation),
"newRotation out of bounds");
return Parameters{aDestBufferRect, newRotation};
}
// No pixels are going to be kept. The whole visible region
// will be redrawn, so we don't need to copy anything, so we don't
// set destBuffer.
return Parameters{aDestBufferRect, IntPoint(0, 0)};
}
bool RotatedBuffer::UnrotateBufferTo(const Parameters& aParameters) {
RefPtr<gfx::DrawTarget> drawTarget = GetDrawTarget();
MOZ_ASSERT(drawTarget && drawTarget->IsValid());
if (mBufferRotation == IntPoint(0, 0)) {
IntRect srcRect(IntPoint(0, 0), mBufferRect.Size());
IntPoint dest = mBufferRect.TopLeft() - aParameters.mBufferRect.TopLeft();
drawTarget->CopyRect(srcRect, dest);
return true;
} else {
return drawTarget->Unrotate(aParameters.mBufferRotation);
}
}
void RotatedBuffer::SetParameters(
const RotatedBuffer::Parameters& aParameters) {
mBufferRect = aParameters.mBufferRect;
mBufferRotation = aParameters.mBufferRotation;
mDidSelfCopy = aParameters.mDidSelfCopy;
}
RotatedBuffer::ContentType RotatedBuffer::GetContentType() const {
return ContentForFormat(GetFormat());
}
DrawTarget* RotatedBuffer::BorrowDrawTargetForQuadrantUpdate(
const IntRect& aBounds, DrawIterator* aIter) {
IntRect bounds = aBounds;
if (aIter) {
// If an iterator was provided, then BeginPaint must have been run with
// PAINT_CAN_DRAW_ROTATED, and the draw region might cover multiple
// quadrants. Iterate over each of them, and return an appropriate buffer
// each time we find one that intersects the draw region. The iterator
// mCount value tracks which quadrants we have considered across multiple
// calls to this function.
aIter->mDrawRegion.SetEmpty();
while (aIter->mCount < 4) {
IntRect quadrant =
GetQuadrantRectangle((aIter->mCount & 1) ? LEFT : RIGHT,
(aIter->mCount & 2) ? TOP : BOTTOM);
aIter->mDrawRegion.And(aBounds, quadrant);
aIter->mCount++;
if (!aIter->mDrawRegion.IsEmpty()) {
break;
}
}
if (aIter->mDrawRegion.IsEmpty()) {
return nullptr;
}
bounds = aIter->mDrawRegion.GetBounds();
}
MOZ_ASSERT(!mLoanedDrawTarget,
"draw target has been borrowed and not returned");
mLoanedDrawTarget = GetDrawTarget();
// Figure out which quadrant to draw in
int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x;
int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y;
XSide sideX = bounds.XMost() <= xBoundary ? RIGHT : LEFT;
YSide sideY = bounds.YMost() <= yBoundary ? BOTTOM : TOP;
IntRect quadrantRect = GetQuadrantRectangle(sideX, sideY);
NS_ASSERTION(quadrantRect.Contains(bounds), "Messed up quadrants");
mLoanedTransform = mLoanedDrawTarget->GetTransform();
Matrix transform = Matrix(mLoanedTransform)
.PreTranslate(-quadrantRect.X(), -quadrantRect.Y());
mLoanedDrawTarget->SetTransform(transform);
return mLoanedDrawTarget;
}
gfx::SurfaceFormat RemoteRotatedBuffer::GetFormat() const {
return mClient->GetFormat();
}
bool RemoteRotatedBuffer::IsLocked() { return mClient->IsLocked(); }
bool RemoteRotatedBuffer::Lock(OpenMode aMode) {
MOZ_ASSERT(!mTarget);
MOZ_ASSERT(!mTargetOnWhite);
bool locked =
mClient->Lock(aMode) && (!mClientOnWhite || mClientOnWhite->Lock(aMode));
if (!locked) {
Unlock();
return false;
}
mTarget = mClient->BorrowDrawTarget();
if (!mTarget || !mTarget->IsValid()) {
gfxCriticalNote << "Invalid draw target " << hexa(mTarget)
<< " in RemoteRotatedBuffer::Lock";
Unlock();
return false;
}
if (mClientOnWhite) {
mTargetOnWhite = mClientOnWhite->BorrowDrawTarget();
if (!mTargetOnWhite || !mTargetOnWhite->IsValid()) {
gfxCriticalNote << "Invalid draw target(s) " << hexa(mTarget) << " and "
<< hexa(mTargetOnWhite)
<< " in RemoteRotatedBuffer::Lock";
Unlock();
return false;
}
}
if (mTargetOnWhite) {
mTargetDual = Factory::CreateDualDrawTarget(mTarget, mTargetOnWhite);
if (!mTargetDual || !mTargetDual->IsValid()) {
gfxCriticalNote << "Invalid dual draw target " << hexa(mTargetDual)
<< " in RemoteRotatedBuffer::Lock";
Unlock();
return false;
}
} else {
mTargetDual = mTarget;
}
return true;
}
void RemoteRotatedBuffer::Unlock() {
mTarget = nullptr;
mTargetOnWhite = nullptr;
mTargetDual = nullptr;
if (mClient->IsLocked()) {
mClient->Unlock();
}
if (mClientOnWhite && mClientOnWhite->IsLocked()) {
mClientOnWhite->Unlock();
}
}
void RemoteRotatedBuffer::SyncWithObject(SyncObjectClient* aSyncObject) {
mClient->SyncWithObject(aSyncObject);
if (mClientOnWhite) {
mClientOnWhite->SyncWithObject(aSyncObject);
}
}
void RemoteRotatedBuffer::Clear() {
MOZ_ASSERT(!mTarget && !mTargetOnWhite);
mClient = nullptr;
mClientOnWhite = nullptr;
}
gfx::DrawTarget* RemoteRotatedBuffer::GetBufferTarget() const {
return mTargetDual;
}
gfx::SurfaceFormat DrawTargetRotatedBuffer::GetFormat() const {
return mTarget->GetFormat();
}
gfx::DrawTarget* DrawTargetRotatedBuffer::GetBufferTarget() const {
return mTargetDual;
}
gfx::SurfaceFormat SourceRotatedBuffer::GetFormat() const {
return mSource->GetFormat();
}
already_AddRefed<SourceSurface> SourceRotatedBuffer::GetBufferSource() const {
RefPtr<SourceSurface> sourceDual = mSourceDual;
return sourceDual.forget();
}
} // namespace layers
} // namespace mozilla