mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-11 08:13:35 +00:00
dce1e48caf
Differential Revision: https://phabricator.services.mozilla.com/D65288 --HG-- extra : moz-landing-system : lando
102 lines
3.6 KiB
C++
102 lines
3.6 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "AxisPhysicsModel.h"
|
|
|
|
namespace mozilla {
|
|
namespace layers {
|
|
|
|
/**
|
|
* The simulation is advanced forward in time with a fixed time step to ensure
|
|
* that it remains deterministic given variable framerates. To determine the
|
|
* position at any variable time, two samples are interpolated.
|
|
*
|
|
* kFixedtimestep is set to 120hz in order to ensure that every frame in a
|
|
* common 60hz refresh rate display will have at least one physics simulation
|
|
* sample. More accuracy can be obtained by reducing kFixedTimestep to smaller
|
|
* intervals, such as 240hz or 1000hz, at the cost of more CPU cycles. If
|
|
* kFixedTimestep is increased to much longer intervals, interpolation will
|
|
* become less effective at reducing temporal jitter and the simulation will
|
|
* lose accuracy.
|
|
*/
|
|
const double AxisPhysicsModel::kFixedTimestep = 1.0 / 120.0; // 120hz
|
|
|
|
/**
|
|
* Constructs an AxisPhysicsModel with initial values for state.
|
|
*
|
|
* @param aInitialPosition sets the initial position of the simulation,
|
|
* in AppUnits.
|
|
* @param aInitialVelocity sets the initial velocity of the simulation,
|
|
* in AppUnits / second.
|
|
*/
|
|
AxisPhysicsModel::AxisPhysicsModel(double aInitialPosition,
|
|
double aInitialVelocity)
|
|
: mProgress(1.0),
|
|
mPrevState(aInitialPosition, aInitialVelocity),
|
|
mNextState(aInitialPosition, aInitialVelocity) {}
|
|
|
|
AxisPhysicsModel::~AxisPhysicsModel() = default;
|
|
|
|
double AxisPhysicsModel::GetVelocity() const {
|
|
return LinearInterpolate(mPrevState.v, mNextState.v, mProgress);
|
|
}
|
|
|
|
double AxisPhysicsModel::GetPosition() const {
|
|
return LinearInterpolate(mPrevState.p, mNextState.p, mProgress);
|
|
}
|
|
|
|
void AxisPhysicsModel::SetVelocity(double aVelocity) {
|
|
mNextState.v = aVelocity;
|
|
mNextState.p = GetPosition();
|
|
mProgress = 1.0;
|
|
}
|
|
|
|
void AxisPhysicsModel::SetPosition(double aPosition) {
|
|
mNextState.v = GetVelocity();
|
|
mNextState.p = aPosition;
|
|
mProgress = 1.0;
|
|
}
|
|
|
|
void AxisPhysicsModel::Simulate(const TimeDuration& aDeltaTime) {
|
|
for (mProgress += aDeltaTime.ToSeconds() / kFixedTimestep; mProgress > 1.0;
|
|
mProgress -= 1.0) {
|
|
Integrate(kFixedTimestep);
|
|
}
|
|
}
|
|
|
|
void AxisPhysicsModel::Integrate(double aDeltaTime) {
|
|
mPrevState = mNextState;
|
|
|
|
// RK4 (Runge-Kutta method) Integration
|
|
// http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
|
|
Derivative a = Evaluate(mNextState, 0.0, Derivative());
|
|
Derivative b = Evaluate(mNextState, aDeltaTime * 0.5, a);
|
|
Derivative c = Evaluate(mNextState, aDeltaTime * 0.5, b);
|
|
Derivative d = Evaluate(mNextState, aDeltaTime, c);
|
|
|
|
double dpdt = 1.0 / 6.0 * (a.dp + 2.0 * (b.dp + c.dp) + d.dp);
|
|
double dvdt = 1.0 / 6.0 * (a.dv + 2.0 * (b.dv + c.dv) + d.dv);
|
|
|
|
mNextState.p += dpdt * aDeltaTime;
|
|
mNextState.v += dvdt * aDeltaTime;
|
|
}
|
|
|
|
AxisPhysicsModel::Derivative AxisPhysicsModel::Evaluate(
|
|
const State& aInitState, double aDeltaTime, const Derivative& aDerivative) {
|
|
State state(aInitState.p + aDerivative.dp * aDeltaTime,
|
|
aInitState.v + aDerivative.dv * aDeltaTime);
|
|
|
|
return Derivative(state.v, Acceleration(state));
|
|
}
|
|
|
|
double AxisPhysicsModel::LinearInterpolate(double aV1, double aV2,
|
|
double aBlend) {
|
|
return aV1 * (1.0 - aBlend) + aV2 * aBlend;
|
|
}
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|