gecko-dev/netwerk/ipc/ChannelEventQueue.h
Jean-Yves Avenard 72e72053c9 Bug 1588241 - P9. Make ChannelEventQueue::PrependEvents infallible. r=mattwoodrow
nsTArray::InsertElementsAt is infallible. So the test checking that nullptr wasn't returned would always be false.

Seeing that queuing an event is also an infallible operation, there's no point for prepentEvents to be.

Differential Revision: https://phabricator.services.mozilla.com/D53115

--HG--
extra : moz-landing-system : lando
2019-11-15 05:35:28 +00:00

378 lines
11 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set sw=2 ts=8 et tw=80 :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_net_ChannelEventQueue_h
#define mozilla_net_ChannelEventQueue_h
#include "nsTArray.h"
#include "nsAutoPtr.h"
#include "nsIEventTarget.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Mutex.h"
#include "mozilla/RecursiveMutex.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
class nsISupports;
namespace mozilla {
namespace net {
class ChannelEvent {
public:
ChannelEvent() { MOZ_COUNT_CTOR(ChannelEvent); }
virtual ~ChannelEvent() { MOZ_COUNT_DTOR(ChannelEvent); }
virtual void Run() = 0;
virtual already_AddRefed<nsIEventTarget> GetEventTarget() = 0;
};
// Note that MainThreadChannelEvent should not be used in child process since
// GetEventTarget() directly returns an unlabeled event target.
class MainThreadChannelEvent : public ChannelEvent {
public:
MainThreadChannelEvent() { MOZ_COUNT_CTOR(MainThreadChannelEvent); }
virtual ~MainThreadChannelEvent() { MOZ_COUNT_DTOR(MainThreadChannelEvent); }
already_AddRefed<nsIEventTarget> GetEventTarget() override {
MOZ_ASSERT(XRE_IsParentProcess());
return do_AddRef(GetMainThreadEventTarget());
}
};
// This event is designed to be only used for e10s child channels.
// The goal is to force the child channel to implement GetNeckoTarget()
// which should return a labeled main thread event target so that this
// channel event can be dispatched correctly.
template <typename T>
class NeckoTargetChannelEvent : public ChannelEvent {
public:
explicit NeckoTargetChannelEvent(T* aChild) : mChild(aChild) {
MOZ_COUNT_CTOR(NeckoTargetChannelEvent);
}
virtual ~NeckoTargetChannelEvent() {
MOZ_COUNT_DTOR(NeckoTargetChannelEvent);
}
already_AddRefed<nsIEventTarget> GetEventTarget() override {
MOZ_ASSERT(mChild);
return mChild->GetNeckoTarget();
}
protected:
T* mChild;
};
class ChannelFunctionEvent : public ChannelEvent {
public:
ChannelFunctionEvent(
std::function<already_AddRefed<nsIEventTarget>()>&& aGetEventTarget,
std::function<void()>&& aCallback)
: mGetEventTarget(std::move(aGetEventTarget)),
mCallback(std::move(aCallback)) {}
void Run() override { mCallback(); }
already_AddRefed<nsIEventTarget> GetEventTarget() override {
return mGetEventTarget();
}
private:
const std::function<already_AddRefed<nsIEventTarget>()> mGetEventTarget;
const std::function<void()> mCallback;
};
// UnsafePtr is a work-around our static analyzer that requires all
// ref-counted objects to be captured in lambda via a RefPtr
// The ChannelEventQueue makes it safe to capture "this" by pointer only.
// This is required as work-around to prevent cycles until bug 1596295
// is resolved.
template <typename T>
class UnsafePtr {
public:
explicit UnsafePtr(T* aPtr) : mPtr(aPtr) {}
T& operator*() const { return *mPtr; }
T* operator->() const {
MOZ_ASSERT(mPtr, "dereferencing a null pointer");
return mPtr;
}
operator T*() const& { return mPtr; }
explicit operator bool() const { return mPtr != nullptr; }
private:
T* const mPtr;
};
class NeckoTargetChannelFunctionEvent : public ChannelFunctionEvent {
public:
template <typename T>
NeckoTargetChannelFunctionEvent(T* aChild, std::function<void()>&& aCallback)
: ChannelFunctionEvent(
[child = UnsafePtr<T>(aChild)]() {
MOZ_ASSERT(child);
return child->GetNeckoTarget();
},
std::move(aCallback)) {}
};
// Workaround for Necko re-entrancy dangers. We buffer IPDL messages in a
// queue if still dispatching previous one(s) to listeners/observers.
// Otherwise synchronous XMLHttpRequests and/or other code that spins the
// event loop (ex: IPDL rpc) could cause listener->OnDataAvailable (for
// instance) to be dispatched and called before mListener->OnStartRequest has
// completed.
class ChannelEventQueue final {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ChannelEventQueue)
public:
explicit ChannelEventQueue(nsISupports* owner)
: mSuspendCount(0),
mSuspended(false),
mForcedCount(0),
mFlushing(false),
mHasCheckedForXMLHttpRequest(false),
mForXMLHttpRequest(false),
mOwner(owner),
mMutex("ChannelEventQueue::mMutex"),
mRunningMutex("ChannelEventQueue::mRunningMutex") {}
// Puts IPDL-generated channel event into queue, to be run later
// automatically when EndForcedQueueing and/or Resume is called.
//
// @param aCallback - the ChannelEvent
// @param aAssertionWhenNotQueued - this optional param will be used in an
// assertion when the event is executed directly.
inline void RunOrEnqueue(ChannelEvent* aCallback,
bool aAssertionWhenNotQueued = false);
// Append ChannelEvent in front of the event queue.
inline void PrependEvent(UniquePtr<ChannelEvent>&& aEvent);
inline void PrependEvents(nsTArray<UniquePtr<ChannelEvent>>& aEvents);
// After StartForcedQueueing is called, RunOrEnqueue() will start enqueuing
// events that will be run/flushed when EndForcedQueueing is called.
// - Note: queueing may still be required after EndForcedQueueing() (if the
// queue is suspended, etc): always call RunOrEnqueue() to avoid race
// conditions.
inline void StartForcedQueueing();
inline void EndForcedQueueing();
// Suspend/resume event queue. RunOrEnqueue() will start enqueuing
// events and they will be run/flushed when resume is called. These should be
// called when the channel owning the event queue is suspended/resumed.
void Suspend();
// Resume flushes the queue asynchronously, i.e. items in queue will be
// dispatched in a new event on the current thread.
void Resume();
private:
// Private destructor, to discourage deletion outside of Release():
~ChannelEventQueue() {}
void SuspendInternal();
void ResumeInternal();
bool MaybeSuspendIfEventsAreSuppressed();
inline void MaybeFlushQueue();
void FlushQueue();
inline void CompleteResume();
ChannelEvent* TakeEvent();
nsTArray<UniquePtr<ChannelEvent>> mEventQueue;
uint32_t mSuspendCount;
bool mSuspended;
uint32_t mForcedCount; // Support ForcedQueueing on multiple thread.
bool mFlushing;
// Whether the queue is associated with an XHR. This is lazily instantiated
// the first time it is needed.
bool mHasCheckedForXMLHttpRequest;
bool mForXMLHttpRequest;
// Keep ptr to avoid refcount cycle: only grab ref during flushing.
nsISupports* mOwner;
// For atomic mEventQueue operation and state update
Mutex mMutex;
// To guarantee event execution order among threads
RecursiveMutex mRunningMutex;
friend class AutoEventEnqueuer;
};
inline void ChannelEventQueue::RunOrEnqueue(ChannelEvent* aCallback,
bool aAssertionWhenNotQueued) {
MOZ_ASSERT(aCallback);
// Events execution could be a destruction of the channel (and our own
// destructor) unless we make sure its refcount doesn't drop to 0 while this
// method is running.
nsCOMPtr<nsISupports> kungFuDeathGrip(mOwner);
Unused << kungFuDeathGrip; // Not used in this function
// To avoid leaks.
UniquePtr<ChannelEvent> event(aCallback);
// To guarantee that the running event and all the events generated within
// it will be finished before events on other threads.
RecursiveMutexAutoLock lock(mRunningMutex);
{
MutexAutoLock lock(mMutex);
bool enqueue = !!mForcedCount || mSuspended || mFlushing ||
!mEventQueue.IsEmpty() ||
MaybeSuspendIfEventsAreSuppressed();
if (enqueue) {
mEventQueue.AppendElement(std::move(event));
return;
}
nsCOMPtr<nsIEventTarget> target = event->GetEventTarget();
MOZ_ASSERT(target);
bool isCurrentThread = false;
DebugOnly<nsresult> rv = target->IsOnCurrentThread(&isCurrentThread);
MOZ_ASSERT(NS_SUCCEEDED(rv));
if (!isCurrentThread) {
// Leverage Suspend/Resume mechanism to trigger flush procedure without
// creating a new one.
SuspendInternal();
mEventQueue.AppendElement(std::move(event));
ResumeInternal();
return;
}
}
MOZ_RELEASE_ASSERT(!aAssertionWhenNotQueued);
event->Run();
}
inline void ChannelEventQueue::StartForcedQueueing() {
MutexAutoLock lock(mMutex);
++mForcedCount;
}
inline void ChannelEventQueue::EndForcedQueueing() {
bool tryFlush = false;
{
MutexAutoLock lock(mMutex);
MOZ_ASSERT(mForcedCount > 0);
if (!--mForcedCount) {
tryFlush = true;
}
}
if (tryFlush) {
MaybeFlushQueue();
}
}
inline void ChannelEventQueue::PrependEvent(
UniquePtr<ChannelEvent>&& aEvent) {
MutexAutoLock lock(mMutex);
// Prepending event while no queue flush foreseen might cause the following
// channel events not run. This assertion here guarantee there must be a
// queue flush, either triggered by Resume or EndForcedQueueing, to execute
// the added event.
MOZ_ASSERT(mSuspended || !!mForcedCount);
mEventQueue.InsertElementAt(0, std::move(aEvent));
}
inline void ChannelEventQueue::PrependEvents(
nsTArray<UniquePtr<ChannelEvent>>& aEvents) {
MutexAutoLock lock(mMutex);
// Prepending event while no queue flush foreseen might cause the following
// channel events not run. This assertion here guarantee there must be a
// queue flush, either triggered by Resume or EndForcedQueueing, to execute
// the added events.
MOZ_ASSERT(mSuspended || !!mForcedCount);
mEventQueue.InsertElementsAt(0, aEvents.Length());
for (uint32_t i = 0; i < aEvents.Length(); i++) {
mEventQueue[i] = std::move(aEvents[i]);
}
}
inline void ChannelEventQueue::CompleteResume() {
bool tryFlush = false;
{
MutexAutoLock lock(mMutex);
// channel may have been suspended again since Resume fired event to call
// this.
if (!mSuspendCount) {
// we need to remain logically suspended (for purposes of queuing incoming
// messages) until this point, else new incoming messages could run before
// queued ones.
mSuspended = false;
tryFlush = true;
}
}
if (tryFlush) {
MaybeFlushQueue();
}
}
inline void ChannelEventQueue::MaybeFlushQueue() {
// Don't flush if forced queuing on, we're already being flushed, or
// suspended, or there's nothing to flush
bool flushQueue = false;
{
MutexAutoLock lock(mMutex);
flushQueue = !mForcedCount && !mFlushing && !mSuspended &&
!mEventQueue.IsEmpty() && !MaybeSuspendIfEventsAreSuppressed();
// Only one thread is allowed to run FlushQueue at a time.
if (flushQueue) {
mFlushing = true;
}
}
if (flushQueue) {
FlushQueue();
}
}
// Ensures that RunOrEnqueue() will be collecting events during its lifetime
// (letting caller know incoming IPDL msgs should be queued). Flushes the queue
// when it goes out of scope.
class MOZ_STACK_CLASS AutoEventEnqueuer {
public:
explicit AutoEventEnqueuer(ChannelEventQueue* queue)
: mEventQueue(queue), mOwner(queue->mOwner) {
mEventQueue->StartForcedQueueing();
}
~AutoEventEnqueuer() { mEventQueue->EndForcedQueueing(); }
private:
RefPtr<ChannelEventQueue> mEventQueue;
// Ensure channel object lives longer than ChannelEventQueue.
nsCOMPtr<nsISupports> mOwner;
};
} // namespace net
} // namespace mozilla
#endif