gecko-dev/mfbt/NotNull.h
Nika Layzell 10582b6528 Bug 1607634 - Part 1: Improve the ergonomics of using NotNull with RefPtr and nsCOMPtr, r=glandium
This does a few minor improvements:
1. Adds implicit conversions from NotNull to a raw pointer type if supported by
   the underlying type, to make it so NotNull<RefPtr<T>> acts more like
   RefPtr<T> in some situations.
2. Adds explicit conversion constructors and assignment operators for RefPtr
   and nsCOMPtr from NotNull, avoiding conversion ambiguity added by the first
   change.
3. Disable conversion constructors on NotNull with SFINAE if they should not be
   available, meaning that type traits like std::is_convertible_v interact with
   it properly.

Differential Revision: https://phabricator.services.mozilla.com/D168883
2023-03-20 15:40:35 +00:00

450 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_NotNull_h
#define mozilla_NotNull_h
// It's often unclear if a particular pointer, be it raw (T*) or smart
// (RefPtr<T>, nsCOMPtr<T>, etc.) can be null. This leads to missing null
// checks (which can cause crashes) and unnecessary null checks (which clutter
// the code).
//
// C++ has a built-in alternative that avoids these problems: references. This
// module defines another alternative, NotNull, which can be used in cases
// where references are not suitable.
//
// In the comments below we use the word "handle" to cover all varieties of
// pointers and references.
//
// References
// ----------
// References are always non-null. (You can do |T& r = *p;| where |p| is null,
// but that's undefined behaviour. C++ doesn't provide any built-in, ironclad
// guarantee of non-nullness.)
//
// A reference works well when you need a temporary handle to an existing
// single object, e.g. for passing a handle to a function, or as a local handle
// within another object. (In Rust parlance, this is a "borrow".)
//
// A reference is less appropriate in the following cases.
//
// - As a primary handle to an object. E.g. code such as this is possible but
// strange: |T& t = *new T(); ...; delete &t;|
//
// - As a handle to an array. It's common for |T*| to refer to either a single
// |T| or an array of |T|, but |T&| cannot refer to an array of |T| because
// you can't index off a reference (at least, not without first converting it
// to a pointer).
//
// - When the handle identity is meaningful, e.g. if you have a hashtable of
// handles, because you have to use |&| on the reference to convert it to a
// pointer.
//
// - Some people don't like using non-const references as function parameters,
// because it is not clear at the call site that the argument might be
// modified.
//
// - When you need "smart" behaviour. E.g. we lack reference equivalents to
// RefPtr and nsCOMPtr.
//
// - When interfacing with code that uses pointers a lot, sometimes using a
// reference just feels like an odd fit.
//
// Furthermore, a reference is impossible in the following cases.
//
// - When the handle is rebound to another object. References don't allow this.
//
// - When the handle has type |void|. |void&| is not allowed.
//
// NotNull is an alternative that can be used in any of the above cases except
// for the last one, where the handle type is |void|. See below.
#include <stddef.h>
#include <type_traits>
#include <utility>
#include "mozilla/Assertions.h"
namespace mozilla {
namespace detail {
template <typename T>
struct CopyablePtr {
T mPtr;
template <typename U>
explicit CopyablePtr(U&& aPtr) : mPtr{std::forward<U>(aPtr)} {}
template <typename U>
explicit CopyablePtr(CopyablePtr<U> aPtr) : mPtr{std::move(aPtr.mPtr)} {}
};
} // namespace detail
template <typename T>
class MovingNotNull;
// NotNull can be used to wrap a "base" pointer (raw or smart) to indicate it
// is not null. Some examples:
//
// - NotNull<char*>
// - NotNull<RefPtr<Event>>
// - NotNull<nsCOMPtr<Event>>
// - NotNull<UniquePtr<Pointee>>
//
// NotNull has the following notable properties.
//
// - It has zero space overhead.
//
// - It must be initialized explicitly. There is no default initialization.
//
// - It auto-converts to the base pointer type.
//
// - It does not auto-convert from a base pointer. Implicit conversion from a
// less-constrained type (e.g. T*) to a more-constrained type (e.g.
// NotNull<T*>) is dangerous. Creation and assignment from a base pointer can
// only be done with WrapNotNull() or MakeNotNull<>(), which makes them
// impossible to overlook, both when writing and reading code.
//
// - When initialized (or assigned) it is checked, and if it is null we abort.
// This guarantees that it cannot be null.
//
// - |operator bool()| is deleted. This means you cannot check a NotNull in a
// boolean context, which eliminates the possibility of unnecessary null
// checks.
//
// - It is not movable, but copyable if the base pointer type is copyable. It
// may be used together with MovingNotNull to avoid unnecessary copies or when
// the base pointer type is not copyable (such as UniquePtr<T>).
//
template <typename T>
class NotNull {
template <typename U>
friend constexpr NotNull<U> WrapNotNull(U aBasePtr);
template <typename U>
friend constexpr NotNull<U> WrapNotNullUnchecked(U aBasePtr);
template <typename U, typename... Args>
friend constexpr NotNull<U> MakeNotNull(Args&&... aArgs);
template <typename U>
friend class NotNull;
detail::CopyablePtr<T> mBasePtr;
// This constructor is only used by WrapNotNull() and MakeNotNull<U>().
template <typename U>
constexpr explicit NotNull(U aBasePtr) : mBasePtr(T{std::move(aBasePtr)}) {
static_assert(sizeof(T) == sizeof(NotNull<T>),
"NotNull must have zero space overhead.");
static_assert(offsetof(NotNull<T>, mBasePtr) == 0,
"mBasePtr must have zero offset.");
}
public:
// Disallow default construction.
NotNull() = delete;
// Construct/assign from another NotNull with a compatible base pointer type.
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<const U&, T>>>
constexpr MOZ_IMPLICIT NotNull(const NotNull<U>& aOther)
: mBasePtr(aOther.mBasePtr) {}
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<U&&, T>>>
constexpr MOZ_IMPLICIT NotNull(MovingNotNull<U>&& aOther)
: mBasePtr(std::move(aOther).unwrapBasePtr()) {}
// Disallow null checks, which are unnecessary for this type.
explicit operator bool() const = delete;
// Explicit conversion to a base pointer. Use only to resolve ambiguity or to
// get a castable pointer.
constexpr const T& get() const { return mBasePtr.mPtr; }
// Implicit conversion to a base pointer. Preferable to get().
constexpr operator const T&() const { return get(); }
// Implicit conversion to a raw pointer from const lvalue-reference if
// supported by the base pointer (for RefPtr<T> -> T* compatibility).
template <typename U,
std::enable_if_t<!std::is_pointer_v<T> &&
std::is_convertible_v<const T&, U*>,
int> = 0>
constexpr operator U*() const& {
return get();
}
// Don't allow implicit conversions to raw pointers from rvalue-references.
template <typename U,
std::enable_if_t<!std::is_pointer_v<T> &&
std::is_convertible_v<const T&, U*> &&
!std::is_convertible_v<const T&&, U*>,
int> = 0>
constexpr operator U*() const&& = delete;
// Dereference operators.
constexpr auto* operator->() const MOZ_NONNULL_RETURN {
return mBasePtr.mPtr.operator->();
}
constexpr decltype(*mBasePtr.mPtr) operator*() const {
return *mBasePtr.mPtr;
}
// NotNull can be copied, but not moved. Moving a NotNull with a smart base
// pointer would leave a nullptr NotNull behind. The move operations must not
// be explicitly deleted though, since that would cause overload resolution to
// fail in situations where a copy is possible.
NotNull(const NotNull&) = default;
NotNull& operator=(const NotNull&) = default;
};
// Specialization for T* to allow adding MOZ_NONNULL_RETURN attributes.
template <typename T>
class NotNull<T*> {
template <typename U>
friend constexpr NotNull<U> WrapNotNull(U aBasePtr);
template <typename U>
friend constexpr NotNull<U*> WrapNotNullUnchecked(U* aBasePtr);
template <typename U, typename... Args>
friend constexpr NotNull<U> MakeNotNull(Args&&... aArgs);
template <typename U>
friend class NotNull;
T* mBasePtr;
// This constructor is only used by WrapNotNull() and MakeNotNull<U>().
template <typename U>
constexpr explicit NotNull(U* aBasePtr) : mBasePtr(aBasePtr) {}
public:
// Disallow default construction.
NotNull() = delete;
// Construct/assign from another NotNull with a compatible base pointer type.
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<const U&, T*>>>
constexpr MOZ_IMPLICIT NotNull(const NotNull<U>& aOther)
: mBasePtr(aOther.get()) {
static_assert(sizeof(T*) == sizeof(NotNull<T*>),
"NotNull must have zero space overhead.");
static_assert(offsetof(NotNull<T*>, mBasePtr) == 0,
"mBasePtr must have zero offset.");
}
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<U&&, T*>>>
constexpr MOZ_IMPLICIT NotNull(MovingNotNull<U>&& aOther)
: mBasePtr(NotNull{std::move(aOther)}) {}
// Disallow null checks, which are unnecessary for this type.
explicit operator bool() const = delete;
// Explicit conversion to a base pointer. Use only to resolve ambiguity or to
// get a castable pointer.
constexpr T* get() const MOZ_NONNULL_RETURN { return mBasePtr; }
// Implicit conversion to a base pointer. Preferable to get().
constexpr operator T*() const MOZ_NONNULL_RETURN { return get(); }
// Dereference operators.
constexpr T* operator->() const MOZ_NONNULL_RETURN { return get(); }
constexpr T& operator*() const { return *mBasePtr; }
};
template <typename T>
constexpr NotNull<T> WrapNotNull(T aBasePtr) {
MOZ_RELEASE_ASSERT(aBasePtr);
return NotNull<T>{std::move(aBasePtr)};
}
// WrapNotNullUnchecked should only be used in situations, where it is
// statically known that aBasePtr is non-null, and redundant release assertions
// should be avoided. It is only defined for raw base pointers, since it is only
// needed for those right now. There is no fundamental reason not to allow
// arbitrary base pointers here.
template <typename T>
constexpr NotNull<T> WrapNotNullUnchecked(T aBasePtr) {
return NotNull<T>{std::move(aBasePtr)};
}
template <typename T>
MOZ_NONNULL(1)
constexpr NotNull<T*> WrapNotNullUnchecked(T* const aBasePtr) {
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wpointer-bool-conversion"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wnonnull-compare"
#endif
MOZ_ASSERT(aBasePtr);
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
return NotNull<T*>{aBasePtr};
}
// A variant of NotNull that can be used as a return value or parameter type and
// moved into both NotNull and non-NotNull targets. This is not possible with
// NotNull, as it is not movable. MovingNotNull can therefore not guarantee it
// is always non-nullptr, but it can't be dereferenced, and there are debug
// assertions that ensure it is only moved once.
template <typename T>
class MOZ_NON_AUTOABLE MovingNotNull {
template <typename U>
friend constexpr MovingNotNull<U> WrapMovingNotNullUnchecked(U aBasePtr);
T mBasePtr;
#ifdef DEBUG
bool mConsumed = false;
#endif
// This constructor is only used by WrapNotNull() and MakeNotNull<U>().
template <typename U>
constexpr explicit MovingNotNull(U aBasePtr) : mBasePtr{std::move(aBasePtr)} {
#ifndef DEBUG
static_assert(sizeof(T) == sizeof(MovingNotNull<T>),
"NotNull must have zero space overhead.");
#endif
static_assert(offsetof(MovingNotNull<T>, mBasePtr) == 0,
"mBasePtr must have zero offset.");
}
public:
MovingNotNull() = delete;
MOZ_IMPLICIT MovingNotNull(const NotNull<T>& aSrc) : mBasePtr(aSrc.get()) {}
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<U, T>>>
MOZ_IMPLICIT MovingNotNull(const NotNull<U>& aSrc) : mBasePtr(aSrc.get()) {}
template <typename U,
typename = std::enable_if_t<std::is_convertible_v<U, T>>>
MOZ_IMPLICIT MovingNotNull(MovingNotNull<U>&& aSrc)
: mBasePtr(std::move(aSrc).unwrapBasePtr()) {}
MOZ_IMPLICIT operator T() && { return std::move(*this).unwrapBasePtr(); }
MOZ_IMPLICIT operator NotNull<T>() && { return std::move(*this).unwrap(); }
NotNull<T> unwrap() && {
return WrapNotNullUnchecked(std::move(*this).unwrapBasePtr());
}
T unwrapBasePtr() && {
#ifdef DEBUG
MOZ_ASSERT(!mConsumed);
mConsumed = true;
#endif
return std::move(mBasePtr);
}
MovingNotNull(MovingNotNull&&) = default;
MovingNotNull& operator=(MovingNotNull&&) = default;
};
template <typename T>
constexpr MovingNotNull<T> WrapMovingNotNullUnchecked(T aBasePtr) {
return MovingNotNull<T>{std::move(aBasePtr)};
}
template <typename T>
constexpr MovingNotNull<T> WrapMovingNotNull(T aBasePtr) {
MOZ_RELEASE_ASSERT(aBasePtr);
return WrapMovingNotNullUnchecked(std::move(aBasePtr));
}
namespace detail {
// Extract the pointed-to type from a pointer type (be it raw or smart).
// The default implementation uses the dereferencing operator of the pointer
// type to find what it's pointing to.
template <typename Pointer>
struct PointedTo {
// Remove the reference that dereferencing operators may return.
using Type = std::remove_reference_t<decltype(*std::declval<Pointer>())>;
using NonConstType = std::remove_const_t<Type>;
};
// Specializations for raw pointers.
// This is especially required because VS 2017 15.6 (March 2018) started
// rejecting the above `decltype(*std::declval<Pointer>())` trick for raw
// pointers.
// See bug 1443367.
template <typename T>
struct PointedTo<T*> {
using Type = T;
using NonConstType = T;
};
template <typename T>
struct PointedTo<const T*> {
using Type = const T;
using NonConstType = T;
};
} // namespace detail
// Allocate an object with infallible new, and wrap its pointer in NotNull.
// |MakeNotNull<Ptr<Ob>>(args...)| will run |new Ob(args...)|
// and return NotNull<Ptr<Ob>>.
template <typename T, typename... Args>
constexpr NotNull<T> MakeNotNull(Args&&... aArgs) {
using Pointee = typename detail::PointedTo<T>::NonConstType;
static_assert(!std::is_array_v<Pointee>,
"MakeNotNull cannot construct an array");
return NotNull<T>(new Pointee(std::forward<Args>(aArgs)...));
}
// Compare two NotNulls.
template <typename T, typename U>
constexpr bool operator==(const NotNull<T>& aLhs, const NotNull<U>& aRhs) {
return aLhs.get() == aRhs.get();
}
template <typename T, typename U>
constexpr bool operator!=(const NotNull<T>& aLhs, const NotNull<U>& aRhs) {
return aLhs.get() != aRhs.get();
}
// Compare a NotNull to a base pointer.
template <typename T, typename U>
constexpr bool operator==(const NotNull<T>& aLhs, const U& aRhs) {
return aLhs.get() == aRhs;
}
template <typename T, typename U>
constexpr bool operator!=(const NotNull<T>& aLhs, const U& aRhs) {
return aLhs.get() != aRhs;
}
// Compare a base pointer to a NotNull.
template <typename T, typename U>
constexpr bool operator==(const T& aLhs, const NotNull<U>& aRhs) {
return aLhs == aRhs.get();
}
template <typename T, typename U>
constexpr bool operator!=(const T& aLhs, const NotNull<U>& aRhs) {
return aLhs != aRhs.get();
}
// Disallow comparing a NotNull to a nullptr.
template <typename T>
bool operator==(const NotNull<T>&, decltype(nullptr)) = delete;
template <typename T>
bool operator!=(const NotNull<T>&, decltype(nullptr)) = delete;
// Disallow comparing a nullptr to a NotNull.
template <typename T>
bool operator==(decltype(nullptr), const NotNull<T>&) = delete;
template <typename T>
bool operator!=(decltype(nullptr), const NotNull<T>&) = delete;
} // namespace mozilla
#endif /* mozilla_NotNull_h */