gecko-dev/memory/build/Mutex.h

268 lines
7.3 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef Mutex_h
#define Mutex_h
#if defined(XP_WIN)
# include <windows.h>
#else
# include <pthread.h>
#endif
#if defined(XP_DARWIN)
# include <os/lock.h>
#endif
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/ThreadSafety.h"
#if defined(XP_DARWIN)
// For information about the following undocumented flags and functions see
// https://github.com/apple/darwin-xnu/blob/main/bsd/sys/ulock.h and
// https://github.com/apple/darwin-libplatform/blob/main/private/os/lock_private.h
# define OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION (0x00010000)
# define OS_UNFAIR_LOCK_ADAPTIVE_SPIN (0x00040000)
extern "C" {
typedef uint32_t os_unfair_lock_options_t;
OS_UNFAIR_LOCK_AVAILABILITY
OS_EXPORT OS_NOTHROW OS_NONNULL_ALL void os_unfair_lock_lock_with_options(
os_unfair_lock_t lock, os_unfair_lock_options_t options);
}
#endif // defined(XP_DARWIN)
// Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
// places, because they require malloc()ed memory, which causes bootstrapping
// issues in some cases. We also can't use constructors, because for statics,
// they would fire after the first use of malloc, resetting the locks.
struct MOZ_CAPABILITY("mutex") Mutex {
#if defined(XP_WIN)
CRITICAL_SECTION mMutex;
#elif defined(XP_DARWIN)
os_unfair_lock mMutex;
#else
pthread_mutex_t mMutex;
#endif
// Initializes a mutex. Returns whether initialization succeeded.
inline bool Init() {
#if defined(XP_WIN)
if (!InitializeCriticalSectionAndSpinCount(&mMutex, 5000)) {
return false;
}
#elif defined(XP_DARWIN)
mMutex = OS_UNFAIR_LOCK_INIT;
#elif defined(XP_LINUX) && !defined(ANDROID)
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0) {
return false;
}
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
if (pthread_mutex_init(&mMutex, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return false;
}
pthread_mutexattr_destroy(&attr);
#else
if (pthread_mutex_init(&mMutex, nullptr) != 0) {
return false;
}
#endif
return true;
}
inline void Lock() MOZ_CAPABILITY_ACQUIRE() {
#if defined(XP_WIN)
EnterCriticalSection(&mMutex);
#elif defined(XP_DARWIN)
// We rely on a non-public function to improve performance here.
// The OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION flag informs the kernel that
// the calling thread is able to make progress even in absence of actions
// from other threads and the OS_UNFAIR_LOCK_ADAPTIVE_SPIN one causes the
// kernel to spin on a contested lock if the owning thread is running on
// the same physical core (presumably only on x86 CPUs given that ARM
// macs don't have cores capable of SMT).
os_unfair_lock_lock_with_options(
&mMutex,
OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION | OS_UNFAIR_LOCK_ADAPTIVE_SPIN);
#else
pthread_mutex_lock(&mMutex);
#endif
}
[[nodiscard]] bool TryLock() MOZ_TRY_ACQUIRE(true);
inline void Unlock() MOZ_CAPABILITY_RELEASE() {
#if defined(XP_WIN)
LeaveCriticalSection(&mMutex);
#elif defined(XP_DARWIN)
os_unfair_lock_unlock(&mMutex);
#else
pthread_mutex_unlock(&mMutex);
#endif
}
#if defined(XP_DARWIN)
static bool SpinInKernelSpace();
static const bool gSpinInKernelSpace;
#endif // XP_DARWIN
};
// Mutex that can be used for static initialization.
// On Windows, CRITICAL_SECTION requires a function call to be initialized,
// but for the initialization lock, a static initializer calling the
// function would be called too late. We need no-function-call
// initialization, which SRWLock provides.
// Ideally, we'd use the same type of locks everywhere, but SRWLocks
// everywhere incur a performance penalty. See bug 1418389.
#if defined(XP_WIN)
struct MOZ_CAPABILITY("mutex") StaticMutex {
SRWLOCK mMutex;
inline void Lock() MOZ_CAPABILITY_ACQUIRE() {
AcquireSRWLockExclusive(&mMutex);
}
inline void Unlock() MOZ_CAPABILITY_RELEASE() {
ReleaseSRWLockExclusive(&mMutex);
}
};
// Normally, we'd use a constexpr constructor, but MSVC likes to create
// static initializers anyways.
# define STATIC_MUTEX_INIT SRWLOCK_INIT
#else
typedef Mutex StaticMutex;
# if defined(XP_DARWIN)
# define STATIC_MUTEX_INIT OS_UNFAIR_LOCK_INIT
# elif defined(XP_LINUX) && !defined(ANDROID)
# define STATIC_MUTEX_INIT PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
# else
# define STATIC_MUTEX_INIT PTHREAD_MUTEX_INITIALIZER
# endif
#endif
#ifdef XP_WIN
typedef DWORD ThreadId;
inline ThreadId GetThreadId() { return GetCurrentThreadId(); }
inline bool ThreadIdEqual(ThreadId a, ThreadId b) { return a == b; }
#else
typedef pthread_t ThreadId;
inline ThreadId GetThreadId() { return pthread_self(); }
inline bool ThreadIdEqual(ThreadId a, ThreadId b) {
return pthread_equal(a, b);
}
#endif
class MOZ_CAPABILITY("mutex") MaybeMutex : public Mutex {
public:
enum DoLock {
MUST_LOCK,
AVOID_LOCK_UNSAFE,
};
bool Init(DoLock aDoLock) {
mDoLock = aDoLock;
#ifdef MOZ_DEBUG
mThreadId = GetThreadId();
#endif
return Mutex::Init();
}
#ifndef XP_WIN
// Re initialise after fork(), assumes that mDoLock is already initialised.
void Reinit(pthread_t aForkingThread) {
if (mDoLock == MUST_LOCK) {
Mutex::Init();
return;
}
# ifdef MOZ_DEBUG
// If this is an eluded lock we can only safely re-initialise it if the
// thread that called fork is the one that owns the lock.
if (pthread_equal(mThreadId, aForkingThread)) {
mThreadId = GetThreadId();
Mutex::Init();
} else {
// We can't guantee that whatever resource this lock protects (probably a
// jemalloc arena) is in a consistent state.
mDeniedAfterFork = true;
}
# endif
}
#endif
inline void Lock() MOZ_CAPABILITY_ACQUIRE() {
if (ShouldLock()) {
Mutex::Lock();
}
}
inline void Unlock() MOZ_CAPABILITY_RELEASE() {
if (ShouldLock()) {
Mutex::Unlock();
}
}
// Return true if we can use this resource from this thread, either because
// we'll use the lock or because this is the only thread that will access the
// protected resource.
#ifdef MOZ_DEBUG
bool SafeOnThisThread() const {
return mDoLock == MUST_LOCK || ThreadIdEqual(GetThreadId(), mThreadId);
}
#endif
bool LockIsEnabled() const { return mDoLock == MUST_LOCK; }
private:
bool ShouldLock() {
#ifndef XP_WIN
MOZ_ASSERT(!mDeniedAfterFork);
#endif
if (mDoLock == MUST_LOCK) {
return true;
}
MOZ_ASSERT(ThreadIdEqual(GetThreadId(), mThreadId));
return false;
}
DoLock mDoLock;
#ifdef MOZ_DEBUG
ThreadId mThreadId;
# ifndef XP_WIN
bool mDeniedAfterFork = false;
# endif
#endif
};
template <typename T>
struct MOZ_SCOPED_CAPABILITY MOZ_RAII AutoLock {
explicit AutoLock(T& aMutex) MOZ_CAPABILITY_ACQUIRE(aMutex) : mMutex(aMutex) {
mMutex.Lock();
}
~AutoLock() MOZ_CAPABILITY_RELEASE() { mMutex.Unlock(); }
AutoLock(const AutoLock&) = delete;
AutoLock(AutoLock&&) = delete;
private:
T& mMutex;
};
using MutexAutoLock = AutoLock<Mutex>;
using MaybeMutexAutoLock = AutoLock<MaybeMutex>;
#endif