gecko-dev/mfbt/RefPtr.h
Andreas Pehrson 7ca1c4d5c0 Bug 1920972 - Allow CC traversal of const RefPtr. r=glandium,jgilbert
For traversing an object that wraps a RefPtr and allows setting a new (copied)
value, but only has a const getter, like Canonical<RefPtr<T>> from
StateMirroring.h and Watchable<RefPtr<T>> from StateWatching.h.

Differential Revision: https://phabricator.services.mozilla.com/D224714
2024-11-15 23:19:05 +00:00

647 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_RefPtr_h
#define mozilla_RefPtr_h
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/DbgMacro.h"
#include <type_traits>
/*****************************************************************************/
// template <class T> class RefPtrGetterAddRefs;
class nsQueryReferent;
class nsCOMPtr_helper;
class nsISupports;
namespace mozilla {
template <class T>
class MovingNotNull;
template <class T>
class NotNull;
template <class T>
class OwningNonNull;
template <class T>
class StaticLocalRefPtr;
template <class T>
class StaticRefPtr;
// Traditionally, RefPtr supports automatic refcounting of any pointer type
// with AddRef() and Release() methods that follow the traditional semantics.
//
// This traits class can be specialized to operate on other pointer types. For
// example, we specialize this trait for opaque FFI types that represent
// refcounted objects in Rust.
//
// Given the use of ConstRemovingRefPtrTraits below, U should not be a const-
// qualified type.
template <class U>
struct RefPtrTraits {
static void AddRef(U* aPtr) { aPtr->AddRef(); }
static void Release(U* aPtr) { aPtr->Release(); }
};
} // namespace mozilla
template <class T>
class MOZ_IS_REFPTR RefPtr {
private:
void assign_with_AddRef(T* aRawPtr) {
if (aRawPtr) {
ConstRemovingRefPtrTraits<T>::AddRef(aRawPtr);
}
assign_assuming_AddRef(aRawPtr);
}
void assign_assuming_AddRef(T* aNewPtr) {
T* oldPtr = mRawPtr;
mRawPtr = aNewPtr;
if (oldPtr) {
ConstRemovingRefPtrTraits<T>::Release(oldPtr);
}
}
private:
T* MOZ_OWNING_REF mRawPtr;
public:
typedef T element_type;
~RefPtr() {
if (mRawPtr) {
ConstRemovingRefPtrTraits<T>::Release(mRawPtr);
}
}
// Constructors
RefPtr()
: mRawPtr(nullptr)
// default constructor
{}
RefPtr(const RefPtr<T>& aSmartPtr)
: mRawPtr(aSmartPtr.mRawPtr)
// copy-constructor
{
if (mRawPtr) {
ConstRemovingRefPtrTraits<T>::AddRef(mRawPtr);
}
}
RefPtr(RefPtr<T>&& aRefPtr) noexcept : mRawPtr(aRefPtr.mRawPtr) {
aRefPtr.mRawPtr = nullptr;
}
// construct from a raw pointer (of the right type)
MOZ_IMPLICIT RefPtr(T* aRawPtr) : mRawPtr(aRawPtr) {
if (mRawPtr) {
ConstRemovingRefPtrTraits<T>::AddRef(mRawPtr);
}
}
MOZ_IMPLICIT RefPtr(decltype(nullptr)) : mRawPtr(nullptr) {}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I*, T*>>>
MOZ_IMPLICIT RefPtr(already_AddRefed<I>& aSmartPtr)
: mRawPtr(aSmartPtr.take())
// construct from |already_AddRefed|
{}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I*, T*>>>
MOZ_IMPLICIT RefPtr(already_AddRefed<I>&& aSmartPtr)
: mRawPtr(aSmartPtr.take())
// construct from |otherRefPtr.forget()|
{}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I*, T*>>>
MOZ_IMPLICIT RefPtr(const RefPtr<I>& aSmartPtr)
: mRawPtr(aSmartPtr.get())
// copy-construct from a smart pointer with a related pointer type
{
if (mRawPtr) {
ConstRemovingRefPtrTraits<T>::AddRef(mRawPtr);
}
}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I*, T*>>>
MOZ_IMPLICIT RefPtr(RefPtr<I>&& aSmartPtr)
: mRawPtr(aSmartPtr.forget().take())
// construct from |Move(RefPtr<SomeSubclassOfT>)|.
{}
template <typename I,
typename = std::enable_if_t<!std::is_same_v<I, RefPtr<T>> &&
std::is_convertible_v<I, RefPtr<T>>>>
MOZ_IMPLICIT RefPtr(const mozilla::NotNull<I>& aSmartPtr)
: mRawPtr(RefPtr<T>(aSmartPtr.get()).forget().take())
// construct from |mozilla::NotNull|.
{}
template <typename I,
typename = std::enable_if_t<!std::is_same_v<I, RefPtr<T>> &&
std::is_convertible_v<I, RefPtr<T>>>>
MOZ_IMPLICIT RefPtr(mozilla::MovingNotNull<I>&& aSmartPtr)
: mRawPtr(RefPtr<T>(std::move(aSmartPtr).unwrapBasePtr()).forget().take())
// construct from |mozilla::MovingNotNull|.
{}
MOZ_IMPLICIT RefPtr(const nsQueryReferent& aHelper);
MOZ_IMPLICIT RefPtr(const nsCOMPtr_helper& aHelper);
// Defined in OwningNonNull.h
template <class U>
MOZ_IMPLICIT RefPtr(const mozilla::OwningNonNull<U>& aOther);
// Defined in StaticLocalPtr.h
template <class U>
MOZ_IMPLICIT RefPtr(const mozilla::StaticLocalRefPtr<U>& aOther);
// Defined in StaticPtr.h
template <class U>
MOZ_IMPLICIT RefPtr(const mozilla::StaticRefPtr<U>& aOther);
// Assignment operators
RefPtr<T>& operator=(decltype(nullptr)) {
assign_assuming_AddRef(nullptr);
return *this;
}
RefPtr<T>& operator=(const RefPtr<T>& aRhs)
// copy assignment operator
{
assign_with_AddRef(aRhs.mRawPtr);
return *this;
}
template <typename I>
RefPtr<T>& operator=(const RefPtr<I>& aRhs)
// assign from an RefPtr of a related pointer type
{
assign_with_AddRef(aRhs.get());
return *this;
}
RefPtr<T>& operator=(T* aRhs)
// assign from a raw pointer (of the right type)
{
assign_with_AddRef(aRhs);
return *this;
}
template <typename I>
RefPtr<T>& operator=(already_AddRefed<I>& aRhs)
// assign from |already_AddRefed|
{
assign_assuming_AddRef(aRhs.take());
return *this;
}
template <typename I>
RefPtr<T>& operator=(already_AddRefed<I>&& aRhs)
// assign from |otherRefPtr.forget()|
{
assign_assuming_AddRef(aRhs.take());
return *this;
}
RefPtr<T>& operator=(const nsQueryReferent& aQueryReferent);
RefPtr<T>& operator=(const nsCOMPtr_helper& aHelper);
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I*, T*>>>
RefPtr<T>& operator=(RefPtr<I>&& aRefPtr) noexcept {
assign_assuming_AddRef(aRefPtr.forget().take());
return *this;
}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I, RefPtr<T>>>>
RefPtr<T>& operator=(const mozilla::NotNull<I>& aSmartPtr)
// assign from |mozilla::NotNull|.
{
assign_assuming_AddRef(RefPtr<T>(aSmartPtr.get()).forget().take());
return *this;
}
template <typename I,
typename = std::enable_if_t<std::is_convertible_v<I, RefPtr<T>>>>
RefPtr<T>& operator=(mozilla::MovingNotNull<I>&& aSmartPtr)
// assign from |mozilla::MovingNotNull|.
{
assign_assuming_AddRef(
RefPtr<T>(std::move(aSmartPtr).unwrapBasePtr()).forget().take());
return *this;
}
// Defined in OwningNonNull.h
template <class U>
RefPtr<T>& operator=(const mozilla::OwningNonNull<U>& aOther);
// Defined in StaticLocalPtr.h
template <class U>
RefPtr<T>& operator=(const mozilla::StaticLocalRefPtr<U>& aOther);
// Defined in StaticPtr.h
template <class U>
RefPtr<T>& operator=(const mozilla::StaticRefPtr<U>& aOther);
// Other pointer operators
void swap(RefPtr<T>& aRhs)
// ...exchange ownership with |aRhs|; can save a pair of refcount operations
{
T* temp = aRhs.mRawPtr;
aRhs.mRawPtr = mRawPtr;
mRawPtr = temp;
}
void swap(T*& aRhs)
// ...exchange ownership with |aRhs|; can save a pair of refcount operations
{
T* temp = aRhs;
aRhs = mRawPtr;
mRawPtr = temp;
}
already_AddRefed<T> MOZ_MAY_CALL_AFTER_MUST_RETURN forget()
// return the value of mRawPtr and null out mRawPtr. Useful for
// already_AddRefed return values.
{
T* temp = nullptr;
swap(temp);
return already_AddRefed<T>(temp);
}
template <typename I>
void forget(I** aRhs)
// Set the target of aRhs to the value of mRawPtr and null out mRawPtr.
// Useful to avoid unnecessary AddRef/Release pairs with "out"
// parameters where aRhs bay be a T** or an I** where I is a base class
// of T.
{
MOZ_ASSERT(aRhs, "Null pointer passed to forget!");
*aRhs = mRawPtr;
mRawPtr = nullptr;
}
void forget(nsISupports** aRhs) {
MOZ_ASSERT(aRhs, "Null pointer passed to forget!");
*aRhs = ToSupports(mRawPtr);
mRawPtr = nullptr;
}
T* get() const
/*
Prefer the implicit conversion provided automatically by |operator T*()
const|. Use |get()| to resolve ambiguity or to get a castable pointer.
*/
{
return const_cast<T*>(mRawPtr);
}
operator T*() const&
/*
...makes an |RefPtr| act like its underlying raw pointer type whenever it
is used in a context where a raw pointer is expected. It is this operator
that makes an |RefPtr| substitutable for a raw pointer.
Prefer the implicit use of this operator to calling |get()|, except where
necessary to resolve ambiguity.
*/
{
return get();
}
// Don't allow implicit conversion of temporary RefPtr to raw pointer,
// because the refcount might be one and the pointer will immediately become
// invalid.
operator T*() const&& = delete;
// These are needed to avoid the deleted operator above. XXX Why is operator!
// needed separately? Shouldn't the compiler prefer using the non-deleted
// operator bool instead of the deleted operator T*?
explicit operator bool() const { return !!mRawPtr; }
bool operator!() const { return !mRawPtr; }
T* operator->() const MOZ_NO_ADDREF_RELEASE_ON_RETURN {
MOZ_ASSERT(mRawPtr != nullptr,
"You can't dereference a NULL RefPtr with operator->().");
return get();
}
template <typename R, typename... Args>
class Proxy {
typedef R (T::*member_function)(Args...);
T* mRawPtr;
member_function mFunction;
public:
Proxy(T* aRawPtr, member_function aFunction)
: mRawPtr(aRawPtr), mFunction(aFunction) {}
template <typename... ActualArgs>
R operator()(ActualArgs&&... aArgs) {
return ((*mRawPtr).*mFunction)(std::forward<ActualArgs>(aArgs)...);
}
};
template <typename R, typename... Args>
Proxy<R, Args...> operator->*(R (T::*aFptr)(Args...)) const {
MOZ_ASSERT(mRawPtr != nullptr,
"You can't dereference a NULL RefPtr with operator->*().");
return Proxy<R, Args...>(get(), aFptr);
}
RefPtr<T>* get_address()
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
const RefPtr<T>* get_address() const
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
public:
T& operator*() const {
MOZ_ASSERT(mRawPtr != nullptr,
"You can't dereference a NULL RefPtr with operator*().");
return *get();
}
T** StartAssignment() {
assign_assuming_AddRef(nullptr);
return reinterpret_cast<T**>(&mRawPtr);
}
private:
// This helper class makes |RefPtr<const T>| possible by casting away
// the constness from the pointer when calling AddRef() and Release().
//
// This is necessary because AddRef() and Release() implementations can't
// generally expected to be const themselves (without heavy use of |mutable|
// and |const_cast| in their own implementations).
//
// This should be sound because while |RefPtr<const T>| provides a
// const view of an object, the object itself should not be const (it
// would have to be allocated as |new const T| or similar to be const).
template <class U>
struct ConstRemovingRefPtrTraits {
static void AddRef(U* aPtr) { mozilla::RefPtrTraits<U>::AddRef(aPtr); }
static void Release(U* aPtr) { mozilla::RefPtrTraits<U>::Release(aPtr); }
};
template <class U>
struct ConstRemovingRefPtrTraits<const U> {
static void AddRef(const U* aPtr) {
mozilla::RefPtrTraits<U>::AddRef(const_cast<U*>(aPtr));
}
static void Release(const U* aPtr) {
mozilla::RefPtrTraits<U>::Release(const_cast<U*>(aPtr));
}
};
};
class nsCycleCollectionTraversalCallback;
template <typename T>
void CycleCollectionNoteChild(nsCycleCollectionTraversalCallback& aCallback,
T* aChild, const char* aName, uint32_t aFlags);
template <typename T>
inline void ImplCycleCollectionUnlink(RefPtr<T>& aField) {
aField = nullptr;
}
template <typename T>
inline void ImplCycleCollectionTraverse(
nsCycleCollectionTraversalCallback& aCallback, const RefPtr<T>& aField,
const char* aName, uint32_t aFlags = 0) {
CycleCollectionNoteChild(aCallback, aField.get(), aName, aFlags);
}
template <class T>
inline RefPtr<T>* address_of(RefPtr<T>& aPtr) {
return aPtr.get_address();
}
template <class T>
inline const RefPtr<T>* address_of(const RefPtr<T>& aPtr) {
return aPtr.get_address();
}
template <class T>
class RefPtrGetterAddRefs
/*
...
This class is designed to be used for anonymous temporary objects in the
argument list of calls that return COM interface pointers, e.g.,
RefPtr<IFoo> fooP;
...->GetAddRefedPointer(getter_AddRefs(fooP))
DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_AddRefs()| instead.
When initialized with a |RefPtr|, as in the example above, it returns
a |void**|, a |T**|, or an |nsISupports**| as needed, that the
outer call (|GetAddRefedPointer| in this case) can fill in.
This type should be a nested class inside |RefPtr<T>|.
*/
{
public:
explicit RefPtrGetterAddRefs(RefPtr<T>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr) {
// nothing else to do
}
operator void**() {
return reinterpret_cast<void**>(mTargetSmartPtr.StartAssignment());
}
operator T**() { return mTargetSmartPtr.StartAssignment(); }
T*& operator*() { return *(mTargetSmartPtr.StartAssignment()); }
private:
RefPtr<T>& mTargetSmartPtr;
};
template <class T>
inline RefPtrGetterAddRefs<T> getter_AddRefs(RefPtr<T>& aSmartPtr)
/*
Used around a |RefPtr| when
...makes the class |RefPtrGetterAddRefs<T>| invisible.
*/
{
return RefPtrGetterAddRefs<T>(aSmartPtr);
}
// Comparing two |RefPtr|s
template <class T, class U>
inline bool operator==(const RefPtr<T>& aLhs, const RefPtr<U>& aRhs) {
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs.get());
}
template <class T, class U>
inline bool operator!=(const RefPtr<T>& aLhs, const RefPtr<U>& aRhs) {
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs.get());
}
// Comparing an |RefPtr| to a raw pointer
template <class T, class U>
inline bool operator==(const RefPtr<T>& aLhs, const U* aRhs) {
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool operator==(const U* aLhs, const RefPtr<T>& aRhs) {
return static_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool operator!=(const RefPtr<T>& aLhs, const U* aRhs) {
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool operator!=(const U* aLhs, const RefPtr<T>& aRhs) {
return static_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool operator==(const RefPtr<T>& aLhs, U* aRhs) {
return static_cast<const T*>(aLhs.get()) == const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool operator==(U* aLhs, const RefPtr<T>& aRhs) {
return const_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool operator!=(const RefPtr<T>& aLhs, U* aRhs) {
return static_cast<const T*>(aLhs.get()) != const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool operator!=(U* aLhs, const RefPtr<T>& aRhs) {
return const_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
// Comparing an |RefPtr| to |nullptr|
template <class T>
inline bool operator==(const RefPtr<T>& aLhs, decltype(nullptr)) {
return aLhs.get() == nullptr;
}
template <class T>
inline bool operator==(decltype(nullptr), const RefPtr<T>& aRhs) {
return nullptr == aRhs.get();
}
template <class T>
inline bool operator!=(const RefPtr<T>& aLhs, decltype(nullptr)) {
return aLhs.get() != nullptr;
}
template <class T>
inline bool operator!=(decltype(nullptr), const RefPtr<T>& aRhs) {
return nullptr != aRhs.get();
}
// MOZ_DBG support
template <class T>
std::ostream& operator<<(std::ostream& aOut, const RefPtr<T>& aObj) {
return mozilla::DebugValue(aOut, aObj.get());
}
/*****************************************************************************/
template <class T>
inline already_AddRefed<T> do_AddRef(T* aObj) {
RefPtr<T> ref(aObj);
return ref.forget();
}
template <class T>
inline already_AddRefed<T> do_AddRef(const RefPtr<T>& aObj) {
RefPtr<T> ref(aObj);
return ref.forget();
}
namespace mozilla {
template <typename T>
class AlignmentFinder;
// Provide a specialization of AlignmentFinder to allow MOZ_ALIGNOF(RefPtr<T>)
// with an incomplete T.
template <typename T>
class AlignmentFinder<RefPtr<T>> {
public:
static const size_t alignment = alignof(T*);
};
/**
* Helper function to be able to conveniently write things like:
*
* already_AddRefed<T>
* f(...)
* {
* return MakeAndAddRef<T>(...);
* }
*/
template <typename T, typename... Args>
already_AddRefed<T> MakeAndAddRef(Args&&... aArgs) {
RefPtr<T> p(new T(std::forward<Args>(aArgs)...));
return p.forget();
}
/**
* Helper function to be able to conveniently write things like:
*
* auto runnable =
* MakeRefPtr<ErrorCallbackRunnable<nsIDOMGetUserMediaSuccessCallback>>(
* mOnSuccess, mOnFailure, *error, mWindowID);
*/
template <typename T, typename... Args>
RefPtr<T> MakeRefPtr(Args&&... aArgs) {
RefPtr<T> p(new T(std::forward<Args>(aArgs)...));
return p;
}
} // namespace mozilla
/**
* Deduction guide to allow simple `RefPtr` definitions from an
* already_AddRefed<T> without repeating the type, e.g.:
*
* RefPtr ptr = MakeAndAddRef<SomeType>(...);
*/
template <typename T>
RefPtr(already_AddRefed<T>) -> RefPtr<T>;
#endif /* mozilla_RefPtr_h */