gecko-dev/xpcom/glue/nsTArray.h
2014-06-02 11:26:12 +02:00

1848 lines
62 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsTArray_h__
#define nsTArray_h__
#include "nsTArrayForwardDeclare.h"
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/TypeTraits.h"
#include <string.h>
#include "nsCycleCollectionNoteChild.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsISupportsImpl.h"
#include <new>
namespace JS {
template <class T>
class Heap;
} /* namespace JS */
class nsRegion;
class nsIntRegion;
//
// nsTArray is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// nsTArray assumes that your "T" can be memmoved()'ed safely.
//
// The public classes defined in this header are
//
// nsTArray<T>,
// FallibleTArray<T>,
// nsAutoTArray<T, N>, and
// AutoFallibleTArray<T, N>.
//
// nsTArray and nsAutoTArray are infallible; if one tries to make an allocation
// which fails, it crashes the program. In contrast, FallibleTArray and
// AutoFallibleTArray are fallible; if you use one of these classes, you must
// check the return values of methods such as Append() which may allocate. If
// in doubt, choose an infallible type.
//
// InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and
// nsAutoTArray.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
// elements and has the following requirements:
//
// T MUST be safely memmove()'able.
// T MUST define a copy-constructor.
// T MAY define operator< for sorting.
// T MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_CopyChooser below.)
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
// class Comparator {
// public:
// /** @return True if the elements are equals; false otherwise. */
// bool Equals(const elem_type& a, const Item& b) const;
//
// /** @return True if (a < b); false otherwise. */
// bool LessThan(const elem_type& a, const Item& b) const;
// };
//
// The Equals method is used for searching, and the LessThan method is used for
// searching and sorting. The |Item| type above can be arbitrary, but must
// match the Item type passed to the sort or search function.
//
//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function. In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type. Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult
{
// Note: allows implicit conversions from and to bool
MOZ_IMPLICIT nsTArrayFallibleResult(bool result)
: mResult(result)
{}
operator bool() {
return mResult;
}
private:
bool mResult;
};
struct nsTArrayInfallibleResult
{
};
//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//
struct nsTArrayFallibleAllocatorBase
{
typedef bool ResultType;
typedef nsTArrayFallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy result) {
return result;
}
static bool Successful(ResultTypeProxy result) {
return result;
}
static ResultTypeProxy SuccessResult() {
return true;
}
static ResultTypeProxy FailureResult() {
return false;
}
static ResultType ConvertBoolToResultType(bool aValue) {
return aValue;
}
};
struct nsTArrayInfallibleAllocatorBase
{
typedef void ResultType;
typedef nsTArrayInfallibleResult ResultTypeProxy;
static ResultType Result(ResultTypeProxy result) {
}
static bool Successful(ResultTypeProxy) {
return true;
}
static ResultTypeProxy SuccessResult() {
return ResultTypeProxy();
}
static ResultTypeProxy FailureResult() {
NS_RUNTIMEABORT("Infallible nsTArray should never fail");
return ResultTypeProxy();
}
static ResultType ConvertBoolToResultType(bool aValue) {
if (!aValue) {
NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
}
}
};
#if defined(MOZALLOC_HAVE_XMALLOC)
#include "mozilla/mozalloc_abort.h"
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t size) {
return moz_malloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return moz_realloc(ptr, size);
}
static void Free(void* ptr) {
moz_free(ptr);
}
static void SizeTooBig(size_t) {
}
};
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t size) {
return moz_xmalloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return moz_xrealloc(ptr, size);
}
static void Free(void* ptr) {
moz_free(ptr);
}
static void SizeTooBig(size_t size) {
NS_ABORT_OOM(size);
}
};
#else
#include <stdlib.h>
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
static void* Malloc(size_t size) {
return malloc(size);
}
static void* Realloc(void* ptr, size_t size) {
return realloc(ptr, size);
}
static void Free(void* ptr) {
free(ptr);
}
static void SizeTooBig(size_t) {
}
};
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
static void* Malloc(size_t size) {
void* ptr = malloc(size);
if (MOZ_UNLIKELY(!ptr)) {
NS_ABORT_OOM(size);
}
return ptr;
}
static void* Realloc(void* ptr, size_t size) {
void* newptr = realloc(ptr, size);
if (MOZ_UNLIKELY(!newptr && size)) {
NS_ABORT_OOM(size);
}
return newptr;
}
static void Free(void* ptr) {
free(ptr);
}
static void SizeTooBig(size_t size) {
NS_ABORT_OOM(size);
}
};
#endif
// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this). This is done to minimize the size of the nsTArray
// object when it is empty.
struct NS_COM_GLUE nsTArrayHeader
{
static nsTArrayHeader sEmptyHdr;
uint32_t mLength;
uint32_t mCapacity : 31;
uint32_t mIsAutoArray : 1;
};
// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
typedef E* elem_type;
typedef size_t index_type;
// No implementation is provided for these two methods, and that is on
// purpose, since we don't support these functions on non-pointer type
// instantiations.
elem_type& SafeElementAt(index_type i);
const elem_type& SafeElementAt(index_type i) const;
};
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
typedef E* elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type i) {
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
}
const elem_type SafeElementAt(index_type i) const {
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
}
};
// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
typedef E* elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type i) {
return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
}
const elem_type SafeElementAt(index_type i) const {
return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
}
};
template <class T> class nsCOMPtr;
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> :
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
template <class T> class nsRefPtr;
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> :
public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};
//
// This class serves as a base class for nsTArray. It shouldn't be used
// directly. It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc, class Copy>
class nsTArray_base
{
// Allow swapping elements with |nsTArray_base|s created using a
// different allocator. This is kosher because all allocators use
// the same free().
template<class Allocator, class Copier>
friend class nsTArray_base;
protected:
typedef nsTArrayHeader Header;
public:
typedef size_t size_type;
typedef size_t index_type;
// @return The number of elements in the array.
size_type Length() const {
return mHdr->mLength;
}
// @return True if the array is empty or false otherwise.
bool IsEmpty() const {
return Length() == 0;
}
// @return The number of elements that can fit in the array without forcing
// the array to be re-allocated. The length of an array is always less
// than or equal to its capacity.
size_type Capacity() const {
return mHdr->mCapacity;
}
#ifdef DEBUG
void* DebugGetHeader() const {
return mHdr;
}
#endif
protected:
nsTArray_base();
~nsTArray_base();
// Resize the storage if necessary to achieve the requested capacity.
// @param capacity The requested number of array elements.
// @param elemSize The size of an array element.
// @return False if insufficient memory is available; true otherwise.
typename Alloc::ResultTypeProxy EnsureCapacity(size_type capacity, size_type elemSize);
// Resize the storage to the minimum required amount.
// @param elemSize The size of an array element.
// @param elemAlign The alignment in bytes of an array element.
void ShrinkCapacity(size_type elemSize, size_t elemAlign);
// This method may be called to resize a "gap" in the array by shifting
// elements around. It updates mLength appropriately. If the resulting
// array has zero elements, then the array's memory is free'd.
// @param start The starting index of the gap.
// @param oldLen The current length of the gap.
// @param newLen The desired length of the gap.
// @param elemSize The size of an array element.
// @param elemAlign The alignment in bytes of an array element.
void ShiftData(index_type start, size_type oldLen, size_type newLen,
size_type elemSize, size_t elemAlign);
// This method increments the length member of the array's header.
// Note that mHdr may actually be sEmptyHdr in the case where a
// zero-length array is inserted into our array. But then n should
// always be 0.
void IncrementLength(size_t n) {
if (mHdr == EmptyHdr()) {
if (MOZ_UNLIKELY(n != 0)) {
// Writing a non-zero length to the empty header would be extremely bad.
MOZ_CRASH();
}
} else {
mHdr->mLength += n;
}
}
// This method inserts blank slots into the array.
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of slots to insert
// @param elementSize the size of an array element.
// @param elemAlign the alignment in bytes of an array element.
bool InsertSlotsAt(index_type index, size_type count,
size_type elementSize, size_t elemAlign);
protected:
template<class Allocator>
typename Alloc::ResultTypeProxy
SwapArrayElements(nsTArray_base<Allocator, Copy>& other,
size_type elemSize,
size_t elemAlign);
// This is an RAII class used in SwapArrayElements.
class IsAutoArrayRestorer {
public:
IsAutoArrayRestorer(nsTArray_base<Alloc, Copy> &array, size_t elemAlign);
~IsAutoArrayRestorer();
private:
nsTArray_base<Alloc, Copy> &mArray;
size_t mElemAlign;
bool mIsAuto;
};
// Helper function for SwapArrayElements. Ensures that if the array
// is an nsAutoTArray that it doesn't use the built-in buffer.
bool EnsureNotUsingAutoArrayBuffer(size_type elemSize);
// Returns true if this nsTArray is an nsAutoTArray with a built-in buffer.
bool IsAutoArray() const {
return mHdr->mIsAutoArray;
}
// Returns a Header for the built-in buffer of this nsAutoTArray.
Header* GetAutoArrayBuffer(size_t elemAlign) {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(elemAlign);
}
const Header* GetAutoArrayBuffer(size_t elemAlign) const {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(elemAlign);
}
// Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't
// assert that we are an nsAutoTArray.
Header* GetAutoArrayBufferUnsafe(size_t elemAlign) {
return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(this)->
GetAutoArrayBufferUnsafe(elemAlign));
}
const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const;
// Returns true if this is an nsAutoTArray and it currently uses the
// built-in buffer to store its elements.
bool UsesAutoArrayBuffer() const;
// The array's elements (prefixed with a Header). This pointer is never
// null. If the array is empty, then this will point to sEmptyHdr.
Header *mHdr;
Header* Hdr() const {
return mHdr;
}
Header** PtrToHdr() {
return &mHdr;
}
static Header* EmptyHdr() {
return &Header::sEmptyHdr;
}
};
//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
// Invoke the default constructor in place.
static inline void Construct(E *e) {
// Do NOT call "E()"! That triggers C++ "default initialization"
// which zeroes out POD ("plain old data") types such as regular
// ints. We don't want that because it can be a performance issue
// and people don't expect it; nsTArray should work like a regular
// C/C++ array in this respect.
new (static_cast<void *>(e)) E;
}
// Invoke the copy-constructor in place.
template<class A>
static inline void Construct(E *e, const A &arg) {
typedef typename mozilla::RemoveCV<E>::Type E_NoCV;
typedef typename mozilla::RemoveCV<A>::Type A_NoCV;
static_assert(!mozilla::IsSame<E_NoCV*, A_NoCV>::value,
"For safety, we disallow constructing nsTArray<E> elements "
"from E* pointers. See bug 960591.");
new (static_cast<void *>(e)) E(arg);
}
// Invoke the destructor in place.
static inline void Destruct(E *e) {
e->~E();
}
};
// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
bool Equals(const A& a, const B& b) const {
return a == b;
}
bool LessThan(const A& a, const B& b) const {
return a < b;
}
};
template <class E> class InfallibleTArray;
template <class E> class FallibleTArray;
template<bool IsPod, bool IsSameType>
struct AssignRangeAlgorithm {
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* elements, IndexType start,
SizeType count, const Item *values) {
ElemType *iter = elements + start, *end = iter + count;
for (; iter != end; ++iter, ++values)
nsTArrayElementTraits<ElemType>::Construct(iter, *values);
}
};
template<>
struct AssignRangeAlgorithm<true, true> {
template<class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* elements, IndexType start,
SizeType count, const Item *values) {
memcpy(elements + start, values, count * sizeof(ElemType));
}
};
//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic. The nsTArray_CopyChooser template class can be
// specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//
//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_CopyWithMemutils
{
const static bool allowRealloc = true;
static void CopyElements(void* dest, const void* src, size_t count, size_t elemSize) {
memcpy(dest, src, count * elemSize);
}
static void CopyHeaderAndElements(void* dest, const void* src, size_t count, size_t elemSize) {
memcpy(dest, src, sizeof(nsTArrayHeader) + count * elemSize);
}
static void MoveElements(void* dest, const void* src, size_t count, size_t elemSize) {
memmove(dest, src, count * elemSize);
}
};
//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template <class ElemType>
struct nsTArray_CopyWithConstructors
{
typedef nsTArrayElementTraits<ElemType> traits;
const static bool allowRealloc = false;
static void CopyElements(void* dest, void* src, size_t count, size_t elemSize) {
ElemType* destElem = static_cast<ElemType*>(dest);
ElemType* srcElem = static_cast<ElemType*>(src);
ElemType* destElemEnd = destElem + count;
#ifdef DEBUG
ElemType* srcElemEnd = srcElem + count;
MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
while (destElem != destElemEnd) {
traits::Construct(destElem, *srcElem);
traits::Destruct(srcElem);
++destElem;
++srcElem;
}
}
static void CopyHeaderAndElements(void* dest, void* src, size_t count, size_t elemSize) {
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(dest);
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(src);
*destHeader = *srcHeader;
CopyElements(static_cast<uint8_t*>(dest) + sizeof(nsTArrayHeader),
static_cast<uint8_t*>(src) + sizeof(nsTArrayHeader),
count, elemSize);
}
static void MoveElements(void* dest, void* src, size_t count, size_t elemSize) {
ElemType* destElem = static_cast<ElemType*>(dest);
ElemType* srcElem = static_cast<ElemType*>(src);
ElemType* destElemEnd = destElem + count;
ElemType* srcElemEnd = srcElem + count;
if (destElem == srcElem) {
return; // In practice, we don't do this.
} else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
while (destElemEnd != destElem) {
--destElemEnd;
--srcElemEnd;
traits::Construct(destElemEnd, *srcElemEnd);
traits::Destruct(srcElem);
}
} else {
CopyElements(dest, src, count, elemSize);
}
}
};
//
// The default behaviour is to use memcpy/memmove for everything.
//
template <class E>
struct nsTArray_CopyChooser {
typedef nsTArray_CopyWithMemutils Type;
};
//
// Some classes require constructors/destructors to be called, so they are
// specialized here.
//
template <class E>
struct nsTArray_CopyChooser<JS::Heap<E> > {
typedef nsTArray_CopyWithConstructors<JS::Heap<E> > Type;
};
template<>
struct nsTArray_CopyChooser<nsRegion> {
typedef nsTArray_CopyWithConstructors<nsRegion> Type;
};
template<>
struct nsTArray_CopyChooser<nsIntRegion> {
typedef nsTArray_CopyWithConstructors<nsIntRegion> Type;
};
//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template <class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};
//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template <class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
{
operator const nsTArray<E>& () {
static_assert(sizeof(E) == sizeof(JS::Heap<E>),
"JS::Heap<E> must be binary compatible with E.");
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<nsTArray<E> *>(self);
}
operator const FallibleTArray<E>& () {
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<FallibleTArray<E> *>(self);
}
};
//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// nsAutoTArray, and AutoFallibleTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template<class E, class Alloc>
class nsTArray_Impl : public nsTArray_base<Alloc, typename nsTArray_CopyChooser<E>::Type>,
public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc> >
{
public:
typedef typename nsTArray_CopyChooser<E>::Type copy_type;
typedef nsTArray_base<Alloc, copy_type> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::index_type index_type;
typedef E elem_type;
typedef nsTArray_Impl<E, Alloc> self_type;
typedef nsTArrayElementTraits<E> elem_traits;
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
using safeelementat_helper_type::SafeElementAt;
using base_type::EmptyHdr;
// A special value that is used to indicate an invalid or unknown index
// into the array.
static const index_type NoIndex = index_type(-1);
using base_type::Length;
//
// Finalization method
//
~nsTArray_Impl() { Clear(); }
//
// Initialization methods
//
nsTArray_Impl() {}
// Initialize this array and pre-allocate some number of elements.
explicit nsTArray_Impl(size_type capacity) {
SetCapacity(capacity);
}
// The array's copy-constructor performs a 'deep' copy of the given array.
// @param other The array object to copy.
//
// It's very important that we declare this method as taking |const
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
// an arbitrary OtherAlloc.
//
// If we don't declare a constructor taking |const self_type&|, C++ generates
// a copy-constructor for this class which merely copies the object's
// members, which is obviously wrong.
//
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
// effect on the API is the same as if we'd declared this method as taking
// |const nsTArray_Impl<E, OtherAlloc>&|.
explicit nsTArray_Impl(const self_type& other) {
AppendElements(other);
}
// Allow converting to a const array with a different kind of allocator,
// Since the allocator doesn't matter for const arrays
template<typename Allocator>
operator const nsTArray_Impl<E, Allocator>&() const {
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
}
// And we have to do this for our subclasses too
operator const nsTArray<E>&() const {
return *reinterpret_cast<const InfallibleTArray<E>*>(this);
}
operator const FallibleTArray<E>&() const {
return *reinterpret_cast<const FallibleTArray<E>*>(this);
}
// The array's assignment operator performs a 'deep' copy of the given
// array. It is optimized to reuse existing storage if possible.
// @param other The array object to copy.
self_type& operator=(const self_type& other) {
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
return *this;
}
// Return true if this array has the same length and the same
// elements as |other|.
template<typename Allocator>
bool operator==(const nsTArray_Impl<E, Allocator>& other) const {
size_type len = Length();
if (len != other.Length())
return false;
// XXX std::equal would be as fast or faster here
for (index_type i = 0; i < len; ++i)
if (!(operator[](i) == other[i]))
return false;
return true;
}
// Return true if this array does not have the same length and the same
// elements as |other|.
bool operator!=(const self_type& other) const {
return !operator==(other);
}
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& other) {
ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
return *this;
}
// @return The amount of memory used by this nsTArray_Impl, excluding
// sizeof(*this).
size_t SizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr())
return 0;
return mallocSizeOf(this->Hdr());
}
// @return The amount of memory used by this nsTArray_Impl, including
// sizeof(*this).
size_t SizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf);
}
//
// Accessor methods
//
// This method provides direct access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
elem_type* Elements() {
return reinterpret_cast<elem_type *>(Hdr() + 1);
}
// This method provides direct, readonly access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
const elem_type* Elements() const {
return reinterpret_cast<const elem_type *>(Hdr() + 1);
}
// This method provides direct access to the i'th element of the array.
// The given index must be within the array bounds.
// @param i The index of an element in the array.
// @return A reference to the i'th element of the array.
elem_type& ElementAt(index_type i) {
MOZ_ASSERT(i < Length(), "invalid array index");
return Elements()[i];
}
// This method provides direct, readonly access to the i'th element of the
// array. The given index must be within the array bounds.
// @param i The index of an element in the array.
// @return A const reference to the i'th element of the array.
const elem_type& ElementAt(index_type i) const {
MOZ_ASSERT(i < Length(), "invalid array index");
return Elements()[i];
}
// This method provides direct access to the i'th element of the array in
// a bounds safe manner. If the requested index is out of bounds the
// provided default value is returned.
// @param i The index of an element in the array.
// @param def The value to return if the index is out of bounds.
elem_type& SafeElementAt(index_type i, elem_type& def) {
return i < Length() ? Elements()[i] : def;
}
// This method provides direct access to the i'th element of the array in
// a bounds safe manner. If the requested index is out of bounds the
// provided default value is returned.
// @param i The index of an element in the array.
// @param def The value to return if the index is out of bounds.
const elem_type& SafeElementAt(index_type i, const elem_type& def) const {
return i < Length() ? Elements()[i] : def;
}
// Shorthand for ElementAt(i)
elem_type& operator[](index_type i) {
return ElementAt(i);
}
// Shorthand for ElementAt(i)
const elem_type& operator[](index_type i) const {
return ElementAt(i);
}
// Shorthand for ElementAt(length - 1)
elem_type& LastElement() {
return ElementAt(Length() - 1);
}
// Shorthand for ElementAt(length - 1)
const elem_type& LastElement() const {
return ElementAt(Length() - 1);
}
// Shorthand for SafeElementAt(length - 1, def)
elem_type& SafeLastElement(elem_type& def) {
return SafeElementAt(Length() - 1, def);
}
// Shorthand for SafeElementAt(length - 1, def)
const elem_type& SafeLastElement(const elem_type& def) const {
return SafeElementAt(Length() - 1, def);
}
//
// Search methods
//
// This method searches for the first element in this array that is equal
// to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found.
template<class Item, class Comparator>
bool Contains(const Item& item, const Comparator& comp) const {
return IndexOf(item, 0, comp) != NoIndex;
}
// This method searches for the first element in this array that is equal
// to the given element. This method assumes that 'operator==' is defined
// for elem_type.
// @param item The item to search for.
// @return true if the element was found.
template<class Item>
bool Contains(const Item& item) const {
return IndexOf(item) != NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element.
// @param item The item to search for.
// @param start The index to start from.
// @param comp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type IndexOf(const Item& item, index_type start,
const Comparator& comp) const {
const elem_type* iter = Elements() + start, *end = Elements() + Length();
for (; iter != end; ++iter) {
if (comp.Equals(*iter, item))
return index_type(iter - Elements());
}
return NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param item The item to search for.
// @param start The index to start from.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type IndexOf(const Item& item, index_type start = 0) const {
return IndexOf(item, start, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset of the last element in this
// array that is equal to the given element.
// @param item The item to search for.
// @param start The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @param comp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type LastIndexOf(const Item& item, index_type start,
const Comparator& comp) const {
size_type endOffset = start >= Length() ? Length() : start + 1;
const elem_type* end = Elements() - 1, *iter = end + endOffset;
for (; iter != end; --iter) {
if (comp.Equals(*iter, item))
return index_type(iter - Elements());
}
return NoIndex;
}
// This method searches for the offset of the last element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for elem_type.
// @param item The item to search for.
// @param start The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type LastIndexOf(const Item& item,
index_type start = NoIndex) const {
return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>());
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// @param item The item to search for.
// @param comp The Comparator used.
// @return The index of the found element or NoIndex if not found.
template<class Item, class Comparator>
index_type BinaryIndexOf(const Item& item, const Comparator& comp) const {
index_type low = 0, high = Length();
while (high > low) {
index_type mid = (high + low) >> 1;
if (comp.Equals(ElementAt(mid), item))
return mid;
if (comp.LessThan(ElementAt(mid), item))
low = mid + 1;
else
high = mid;
}
return NoIndex;
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// This method assumes that 'operator==' and 'operator<' are defined.
// @param item The item to search for.
// @return The index of the found element or NoIndex if not found.
template<class Item>
index_type BinaryIndexOf(const Item& item) const {
return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>());
}
//
// Mutation methods
//
// This method call the destructor on each element of the array, empties it,
// but does not shrink the array's capacity.
// See also SetLengthAndRetainStorage.
// Make sure to call Compact() if needed to avoid keeping a huge array
// around.
void ClearAndRetainStorage() {
if (base_type::mHdr == EmptyHdr()) {
return;
}
DestructRange(0, Length());
base_type::mHdr->mLength = 0;
}
// This method modifies the length of the array, but unlike SetLength
// it doesn't deallocate/reallocate the current internal storage.
// The new length MUST be shorter than or equal to the current capacity.
// If the new length is larger than the existing length of the array,
// then new elements will be constructed using elem_type's default
// constructor. If shorter, elements will be destructed and removed.
// See also ClearAndRetainStorage.
// @param newLen The desired length of this array.
void SetLengthAndRetainStorage(size_type newLen) {
MOZ_ASSERT(newLen <= base_type::Capacity());
size_type oldLen = Length();
if (newLen > oldLen) {
InsertElementsAt(oldLen, newLen - oldLen);
return;
}
if (newLen < oldLen) {
DestructRange(newLen, oldLen - newLen);
base_type::mHdr->mLength = newLen;
}
}
// This method replaces a range of elements in this array.
// @param start The starting index of the elements to replace.
// @param count The number of elements to replace. This may be zero to
// insert elements without removing any existing elements.
// @param array The values to copy into this array. Must be non-null,
// and these elements must not already exist in the array
// being modified.
// @param arrayLen The number of values to copy into this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const Item* array, size_type arrayLen) {
// Adjust memory allocation up-front to catch errors.
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))))
return nullptr;
DestructRange(start, count);
this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
AssignRange(start, arrayLen, array);
return Elements() + start;
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const nsTArray<Item>& array) {
return ReplaceElementsAt(start, count, array.Elements(), array.Length());
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementsAt(index_type start, size_type count,
const Item& item) {
return ReplaceElementsAt(start, count, &item, 1);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *ReplaceElementAt(index_type index, const Item& item) {
return ReplaceElementsAt(index, 1, &item, 1);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *InsertElementsAt(index_type index, const Item* array,
size_type arrayLen) {
return ReplaceElementsAt(index, 0, array, arrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item, class Allocator>
elem_type *InsertElementsAt(index_type index, const nsTArray_Impl<Item, Allocator>& array) {
return ReplaceElementsAt(index, 0, array.Elements(), array.Length());
}
// A variation on the ReplaceElementsAt method defined above.
template<class Item>
elem_type *InsertElementAt(index_type index, const Item& item) {
return ReplaceElementsAt(index, 0, &item, 1);
}
// Insert a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly inserted element, or null on OOM.
elem_type* InsertElementAt(index_type index) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type))))
return nullptr;
this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
elem_type *elem = Elements() + index;
elem_traits::Construct(elem);
return elem;
}
// This method searches for the smallest index of an element that is strictly
// greater than |item|. If |item| is inserted at this index, the array will
// remain sorted and |item| would come after all elements that are equal to
// it. If |item| is greater than or equal to all elements in the array, the
// array length is returned.
//
// Note that consumers who want to know whether there are existing items equal
// to |item| in the array can just check that the return value here is > 0 and
// indexing into the previous slot gives something equal to |item|.
//
//
// @param item The item to search for.
// @param comp The Comparator used.
// @return The index of greatest element <= to |item|
// @precondition The array is sorted
template<class Item, class Comparator>
index_type
IndexOfFirstElementGt(const Item& item,
const Comparator& comp) const {
// invariant: low <= [idx] <= high
index_type low = 0, high = Length();
while (high > low) {
index_type mid = (high + low) >> 1;
// Comparators are not required to provide a LessThan(Item&, elem_type),
// so we can't do comp.LessThan(item, ElementAt(mid)).
if (comp.LessThan(ElementAt(mid), item) ||
comp.Equals(ElementAt(mid), item)) {
// item >= ElementAt(mid), so our desired index is at least mid+1.
low = mid + 1;
} else {
// item < ElementAt(mid). Our desired index is therefore at most mid.
high = mid;
}
}
MOZ_ASSERT(high == low);
return low;
}
// A variation on the IndexOfFirstElementGt method defined above.
template<class Item>
index_type
IndexOfFirstElementGt(const Item& item) const {
return IndexOfFirstElementGt(item, nsDefaultComparator<elem_type, Item>());
}
// Inserts |item| at such an index to guarantee that if the array
// was previously sorted, it will remain sorted after this
// insertion.
template<class Item, class Comparator>
elem_type *InsertElementSorted(const Item& item, const Comparator& comp) {
index_type index = IndexOfFirstElementGt(item, comp);
return InsertElementAt(index, item);
}
// A variation on the InsertElementSorted method defined above.
template<class Item>
elem_type *InsertElementSorted(const Item& item) {
return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>());
}
// This method appends elements to the end of this array.
// @param array The elements to append to this array.
// @param arrayLen The number of elements to append to this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
template<class Item>
elem_type *AppendElements(const Item* array, size_type arrayLen) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type))))
return nullptr;
index_type len = Length();
AssignRange(len, arrayLen, array);
this->IncrementLength(arrayLen);
return Elements() + len;
}
// A variation on the AppendElements method defined above.
template<class Item, class Allocator>
elem_type *AppendElements(const nsTArray_Impl<Item, Allocator>& array) {
return AppendElements(array.Elements(), array.Length());
}
// A variation on the AppendElements method defined above.
template<class Item>
elem_type *AppendElement(const Item& item) {
return AppendElements(&item, 1);
}
// Append new elements without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended elements, or null on OOM.
elem_type *AppendElements(size_type count) {
if (!Alloc::Successful(this->EnsureCapacity(Length() + count, sizeof(elem_type))))
return nullptr;
elem_type *elems = Elements() + Length();
size_type i;
for (i = 0; i < count; ++i) {
elem_traits::Construct(elems + i);
}
this->IncrementLength(count);
return elems;
}
// Append a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended element, or null on OOM.
elem_type *AppendElement() {
return AppendElements(1);
}
// Move all elements from another array to the end of this array without
// calling copy constructors or destructors.
// @return A pointer to the newly appended elements, or null on OOM.
template<class Item, class Allocator>
elem_type *MoveElementsFrom(nsTArray_Impl<Item, Allocator>& array) {
MOZ_ASSERT(&array != this, "argument must be different array");
index_type len = Length();
index_type otherLen = array.Length();
if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type))))
return nullptr;
copy_type::CopyElements(Elements() + len, array.Elements(), otherLen, sizeof(elem_type));
this->IncrementLength(otherLen);
array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
return Elements() + len;
}
// This method removes a range of elements from this array.
// @param start The starting index of the elements to remove.
// @param count The number of elements to remove.
void RemoveElementsAt(index_type start, size_type count) {
MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index");
MOZ_ASSERT(start + count <= Length(), "Invalid length");
// Check that the previous assert didn't overflow
MOZ_ASSERT(start <= start + count, "Start index plus length overflows");
DestructRange(start, count);
this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
// A variation on the RemoveElementsAt method defined above.
void RemoveElementAt(index_type index) {
RemoveElementsAt(index, 1);
}
// A variation on the RemoveElementsAt method defined above.
void Clear() {
RemoveElementsAt(0, Length());
}
// This helper function combines IndexOf with RemoveElementAt to "search
// and destroy" the first element that is equal to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElement(const Item& item, const Comparator& comp) {
index_type i = IndexOf(item, 0, comp);
if (i == NoIndex)
return false;
RemoveElementAt(i);
return true;
}
// A variation on the RemoveElement method defined above that assumes
// that 'operator==' is defined for elem_type.
template<class Item>
bool RemoveElement(const Item& item) {
return RemoveElement(item, nsDefaultComparator<elem_type, Item>());
}
// This helper function combines IndexOfFirstElementGt with
// RemoveElementAt to "search and destroy" the last element that
// is equal to the given element.
// @param item The item to search for.
// @param comp The Comparator used to determine element equality.
// @return true if the element was found
template<class Item, class Comparator>
bool RemoveElementSorted(const Item& item, const Comparator& comp) {
index_type index = IndexOfFirstElementGt(item, comp);
if (index > 0 && comp.Equals(ElementAt(index - 1), item)) {
RemoveElementAt(index - 1);
return true;
}
return false;
}
// A variation on the RemoveElementSorted method defined above.
template<class Item>
bool RemoveElementSorted(const Item& item) {
return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>());
}
// This method causes the elements contained in this array and the given
// array to be swapped.
template<class Allocator>
typename Alloc::ResultType
SwapElements(nsTArray_Impl<E, Allocator>& other) {
return Alloc::Result(this->SwapArrayElements(other, sizeof(elem_type),
MOZ_ALIGNOF(elem_type)));
}
//
// Allocation
//
// This method may increase the capacity of this array object by the
// specified amount. This method may be called in advance of several
// AppendElement operations to minimize heap re-allocations. This method
// will not reduce the number of elements in this array.
// @param capacity The desired capacity of this array.
// @return True if the operation succeeded; false if we ran out of memory
typename Alloc::ResultType SetCapacity(size_type capacity) {
return Alloc::Result(this->EnsureCapacity(capacity, sizeof(elem_type)));
}
// This method modifies the length of the array. If the new length is
// larger than the existing length of the array, then new elements will be
// constructed using elem_type's default constructor. Otherwise, this call
// removes elements from the array (see also RemoveElementsAt).
// @param newLen The desired length of this array.
// @return True if the operation succeeded; false otherwise.
// See also TruncateLength if the new length is guaranteed to be
// smaller than the old.
typename Alloc::ResultType SetLength(size_type newLen) {
size_type oldLen = Length();
if (newLen > oldLen) {
return Alloc::ConvertBoolToResultType(InsertElementsAt(oldLen, newLen - oldLen) != nullptr);
}
TruncateLength(newLen);
return Alloc::ConvertBoolToResultType(true);
}
// This method modifies the length of the array, but may only be
// called when the new length is shorter than the old. It can
// therefore be called when elem_type has no default constructor,
// unlike SetLength. It removes elements from the array (see also
// RemoveElementsAt).
// @param newLen The desired length of this array.
void TruncateLength(size_type newLen) {
size_type oldLen = Length();
NS_ABORT_IF_FALSE(newLen <= oldLen,
"caller should use SetLength instead");
RemoveElementsAt(newLen, oldLen - newLen);
}
// This method ensures that the array has length at least the given
// length. If the current length is shorter than the given length,
// then new elements will be constructed using elem_type's default
// constructor.
// @param minLen The desired minimum length of this array.
// @return True if the operation succeeded; false otherwise.
typename Alloc::ResultType EnsureLengthAtLeast(size_type minLen) {
size_type oldLen = Length();
if (minLen > oldLen) {
return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, minLen - oldLen));
}
return Alloc::ConvertBoolToResultType(true);
}
// This method inserts elements into the array, constructing
// them using elem_type's default constructor.
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of elements to insert
elem_type *InsertElementsAt(index_type index, size_type count) {
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type *iter = Elements() + index, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Construct(iter);
}
return Elements() + index;
}
// This method inserts elements into the array, constructing them
// elem_type's copy constructor (or whatever one-arg constructor
// happens to match the Item type).
// @param index the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param count the number of elements to insert.
// @param item the value to use when constructing the new elements.
template<class Item>
elem_type *InsertElementsAt(index_type index, size_type count,
const Item& item) {
if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Initialize the extra array elements
elem_type *iter = Elements() + index, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Construct(iter, item);
}
return Elements() + index;
}
// This method may be called to minimize the memory used by this array.
void Compact() {
ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
}
//
// Sorting
//
// This function is meant to be used with the NS_QuickSort function. It
// maps the callback API expected by NS_QuickSort to the Comparator API
// used by nsTArray_Impl. See nsTArray_Impl::Sort.
template<class Comparator>
static int Compare(const void* e1, const void* e2, void *data) {
const Comparator* c = reinterpret_cast<const Comparator*>(data);
const elem_type* a = static_cast<const elem_type*>(e1);
const elem_type* b = static_cast<const elem_type*>(e2);
return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
}
// This method sorts the elements of the array. It uses the LessThan
// method defined on the given Comparator object to collate elements.
// @param comp The Comparator used to collate elements.
template<class Comparator>
void Sort(const Comparator& comp) {
NS_QuickSort(Elements(), Length(), sizeof(elem_type),
Compare<Comparator>, const_cast<Comparator*>(&comp));
}
// A variation on the Sort method defined above that assumes that
// 'operator<' is defined for elem_type.
void Sort() {
Sort(nsDefaultComparator<elem_type, elem_type>());
}
//
// Binary Heap
//
// Sorts the array into a binary heap.
// @param comp The Comparator used to create the heap
template<class Comparator>
void MakeHeap(const Comparator& comp) {
if (!Length()) {
return;
}
index_type index = (Length() - 1) / 2;
do {
SiftDown(index, comp);
} while (index--);
}
// A variation on the MakeHeap method defined above.
void MakeHeap() {
MakeHeap(nsDefaultComparator<elem_type, elem_type>());
}
// Adds an element to the heap
// @param item The item to add
// @param comp The Comparator used to sift-up the item
template<class Item, class Comparator>
elem_type *PushHeap(const Item& item, const Comparator& comp) {
if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
return nullptr;
}
// Sift up the new node
elem_type *elem = Elements();
index_type index = Length() - 1;
index_type parent_index = (index - 1) / 2;
while (index && comp.LessThan(elem[parent_index], item)) {
elem[index] = elem[parent_index];
index = parent_index;
parent_index = (index - 1) / 2;
}
elem[index] = item;
return &elem[index];
}
// A variation on the PushHeap method defined above.
template<class Item>
elem_type *PushHeap(const Item& item) {
return PushHeap(item, nsDefaultComparator<elem_type, Item>());
}
// Delete the root of the heap and restore the heap
// @param comp The Comparator used to restore the heap
template<class Comparator>
void PopHeap(const Comparator& comp) {
if (!Length()) {
return;
}
index_type last_index = Length() - 1;
elem_type *elem = Elements();
elem[0] = elem[last_index];
TruncateLength(last_index);
if (Length()) {
SiftDown(0, comp);
}
}
// A variation on the PopHeap method defined above.
void PopHeap() {
PopHeap(nsDefaultComparator<elem_type, elem_type>());
}
protected:
using base_type::Hdr;
using base_type::ShrinkCapacity;
// This method invokes elem_type's destructor on a range of elements.
// @param start The index of the first element to destroy.
// @param count The number of elements to destroy.
void DestructRange(index_type start, size_type count) {
elem_type *iter = Elements() + start, *end = iter + count;
for (; iter != end; ++iter) {
elem_traits::Destruct(iter);
}
}
// This method invokes elem_type's copy-constructor on a range of elements.
// @param start The index of the first element to construct.
// @param count The number of elements to construct.
// @param values The array of elements to copy.
template<class Item>
void AssignRange(index_type start, size_type count,
const Item *values) {
AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
mozilla::IsSame<Item, elem_type>::value>
::implementation(Elements(), start, count, values);
}
// This method sifts an item down to its proper place in a binary heap
// @param index The index of the node to start sifting down from
// @param comp The Comparator used to sift down
template<class Comparator>
void SiftDown(index_type index, const Comparator& comp) {
elem_type *elem = Elements();
elem_type item = elem[index];
index_type end = Length() - 1;
while ((index * 2) < end) {
const index_type left = (index * 2) + 1;
const index_type right = (index * 2) + 2;
const index_type parent_index = index;
if (comp.LessThan(item, elem[left])) {
if (left < end &&
comp.LessThan(elem[left], elem[right])) {
index = right;
} else {
index = left;
}
} else if (left < end &&
comp.LessThan(item, elem[right])) {
index = right;
} else {
break;
}
elem[parent_index] = elem[index];
}
elem[index] = item;
}
};
template <typename E, typename Alloc>
inline void
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
{
aField.Clear();
}
template <typename E, typename Alloc>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
nsTArray_Impl<E, Alloc>& aField,
const char* aName,
uint32_t aFlags = 0)
{
aFlags |= CycleCollectionEdgeNameArrayFlag;
size_t length = aField.Length();
for (size_t i = 0; i < length; ++i) {
ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
}
}
//
// nsTArray is an infallible vector class. See the comment at the top of this
// file for more details.
//
template <class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
typedef nsTArray<E> self_type;
typedef typename base_type::size_type size_type;
nsTArray() {}
explicit nsTArray(size_type capacity) : base_type(capacity) {}
explicit nsTArray(const nsTArray& other) : base_type(other) {}
template<class Allocator>
explicit nsTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};
//
// FallibleTArray is a fallible vector class.
//
template <class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
{
public:
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
typedef FallibleTArray<E> self_type;
typedef typename base_type::size_type size_type;
FallibleTArray() {}
explicit FallibleTArray(size_type capacity) : base_type(capacity) {}
explicit FallibleTArray(const FallibleTArray<E>& other) : base_type(other) {}
template<class Allocator>
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};
//
// nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray.
// You shouldn't use this class directly.
//
template <class TArrayBase, size_t N>
class nsAutoArrayBase : public TArrayBase
{
static_assert(N != 0, "nsAutoArrayBase<TArrayBase, 0> should be specialized");
public:
typedef nsAutoArrayBase<TArrayBase, N> self_type;
typedef TArrayBase base_type;
typedef typename base_type::Header Header;
typedef typename base_type::elem_type elem_type;
template<typename Allocator>
self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& other) {
base_type::operator=(other);
return *this;
}
protected:
nsAutoArrayBase() {
Init();
}
// We need this constructor because nsAutoTArray and friends all have
// implicit copy-constructors. If we don't have this method, those
// copy-constructors will call nsAutoArrayBase's implicit copy-constructor,
// which won't call Init() and set up the auto buffer!
nsAutoArrayBase(const self_type &aOther) {
Init();
this->AppendElements(aOther);
}
private:
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
// to mAutoBuf.
template<class Allocator, class Copier>
friend class nsTArray_base;
void Init() {
static_assert(MOZ_ALIGNOF(elem_type) <= 8,
"can't handle alignments greater than 8, "
"see nsTArray_base::UsesAutoArrayBuffer()");
// Temporary work around for VS2012 RC compiler crash
Header** phdr = base_type::PtrToHdr();
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
(*phdr)->mLength = 0;
(*phdr)->mCapacity = N;
(*phdr)->mIsAutoArray = 1;
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
reinterpret_cast<Header*>(&mAutoBuf),
"GetAutoArrayBuffer needs to be fixed");
}
// Declare mAutoBuf aligned to the maximum of the header's alignment and
// elem_type's alignment. We need to use a union rather than
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
// __attribute__((aligned(foo))).
union {
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
// Do the max operation inline to ensure that it is a compile-time constant.
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type))
? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
};
};
//
// Specialization of nsAutoArrayBase<TArrayBase, N> for the case where N == 0.
// nsAutoArrayBase<TArrayBase, 0> behaves exactly like TArrayBase, but without
// this specialization, it stores a useless inline header.
//
// We do have many nsAutoArrayBase<TArrayBase, 0> objects in memory: about
// 2,000 per tab as of May 2014. These are typically not explicitly
// nsAutoArrayBase<TArrayBase, 0> but rather nsAutoArrayBase<TArrayBase, N>
// for some value N depending on template parameters, in generic code.
//
// For that reason, we optimize this case with the below partial specialization,
// which ensures that nsAutoArrayBase<TArrayBase, 0> is just like TArrayBase,
// without any inline header overhead.
//
template <class TArrayBase>
class nsAutoArrayBase<TArrayBase, 0> : public TArrayBase
{};
//
// nsAutoTArray<E, N> is an infallible vector class with N elements of inline
// storage. If you try to store more than N elements inside an
// nsAutoTArray<E, N>, we'll call malloc() and store them all on the heap.
//
// Note that you can cast an nsAutoTArray<E, N> to
// |const AutoFallibleTArray<E, N>&|.
//
template<class E, size_t N>
class nsAutoTArray : public nsAutoArrayBase<nsTArray<E>, N>
{
typedef nsAutoTArray<E, N> self_type;
typedef nsAutoArrayBase<nsTArray<E>, N> Base;
public:
nsAutoTArray() {}
template<typename Allocator>
explicit nsAutoTArray(const nsTArray_Impl<E, Allocator>& other) {
Base::AppendElements(other);
}
operator const AutoFallibleTArray<E, N>&() const {
return *reinterpret_cast<const AutoFallibleTArray<E, N>*>(this);
}
};
//
// AutoFallibleTArray<E, N> is a fallible vector class with N elements of
// inline storage.
//
template<class E, size_t N>
class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N>
{
typedef AutoFallibleTArray<E, N> self_type;
typedef nsAutoArrayBase<FallibleTArray<E>, N> Base;
public:
AutoFallibleTArray() {}
template<typename Allocator>
explicit AutoFallibleTArray(const nsTArray_Impl<E, Allocator>& other) {
Base::AppendElements(other);
}
operator const nsAutoTArray<E, N>&() const {
return *reinterpret_cast<const nsAutoTArray<E, N>*>(this);
}
};
// Assert that nsAutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. nsAutoTArray<uint32_t, 1> wouldn't work. Since nsAutoTArray
// contains a pointer, its size must be a multiple of alignof(void*). (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.) The compiler pads the end of the structure to
// enforce this rule.
//
// If we used nsAutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
static_assert(sizeof(nsAutoTArray<uint32_t, 2>) ==
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
"nsAutoTArray shouldn't contain any extra padding, "
"see the comment");
// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"
#endif // nsTArray_h__