mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-28 23:31:56 +00:00
fc3b778ccf
This patch improves nested grid layout performance by caching the grid items' block axis measurement to avoid potentially doing exponential reflows. Differential Revision: https://phabricator.services.mozilla.com/D115711
9792 lines
404 KiB
C++
9792 lines
404 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||
|
||
/* rendering object for CSS "display: grid | inline-grid" */
|
||
|
||
#include "nsGridContainerFrame.h"
|
||
|
||
#include <functional>
|
||
#include <limits>
|
||
#include <stdlib.h> // for div()
|
||
#include <type_traits>
|
||
#include "gfxContext.h"
|
||
#include "mozilla/AutoRestore.h"
|
||
#include "mozilla/ComputedStyle.h"
|
||
#include "mozilla/CSSAlignUtils.h"
|
||
#include "mozilla/dom/GridBinding.h"
|
||
#include "mozilla/IntegerRange.h"
|
||
#include "mozilla/Maybe.h"
|
||
#include "mozilla/PodOperations.h" // for PodZero
|
||
#include "mozilla/Poison.h"
|
||
#include "mozilla/PresShell.h"
|
||
#include "nsAbsoluteContainingBlock.h"
|
||
#include "nsAlgorithm.h" // for clamped()
|
||
#include "nsBoxLayoutState.h"
|
||
#include "nsCSSAnonBoxes.h"
|
||
#include "nsCSSFrameConstructor.h"
|
||
#include "nsTHashMap.h"
|
||
#include "nsDisplayList.h"
|
||
#include "nsHashKeys.h"
|
||
#include "nsFieldSetFrame.h"
|
||
#include "nsIFrameInlines.h"
|
||
#include "nsPlaceholderFrame.h"
|
||
#include "nsPresContext.h"
|
||
#include "nsReadableUtils.h"
|
||
#include "nsTableWrapperFrame.h"
|
||
|
||
using namespace mozilla;
|
||
|
||
typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
|
||
typedef nsGridContainerFrame::TrackSize TrackSize;
|
||
typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags;
|
||
|
||
using GridTemplate = StyleGridTemplateComponent;
|
||
using TrackListValue =
|
||
StyleGenericTrackListValue<LengthPercentage, StyleInteger>;
|
||
using TrackRepeat = StyleGenericTrackRepeat<LengthPercentage, StyleInteger>;
|
||
using NameList = StyleOwnedSlice<StyleCustomIdent>;
|
||
using SizingConstraint = nsGridContainerFrame::SizingConstraint;
|
||
using GridItemCachedBAxisMeasurement =
|
||
nsGridContainerFrame::CachedBAxisMeasurement;
|
||
|
||
static const int32_t kMaxLine = StyleMAX_GRID_LINE;
|
||
static const int32_t kMinLine = StyleMIN_GRID_LINE;
|
||
// The maximum line number, in the zero-based translated grid.
|
||
static const uint32_t kTranslatedMaxLine = uint32_t(kMaxLine - kMinLine);
|
||
static const uint32_t kAutoLine = kTranslatedMaxLine + 3457U;
|
||
|
||
static const nsFrameState kIsSubgridBits =
|
||
(NS_STATE_GRID_IS_COL_SUBGRID | NS_STATE_GRID_IS_ROW_SUBGRID);
|
||
|
||
namespace mozilla {
|
||
|
||
template <>
|
||
inline Span<const StyleOwnedSlice<StyleCustomIdent>>
|
||
GridTemplate::LineNameLists(bool aIsSubgrid) const {
|
||
if (IsTrackList()) {
|
||
return AsTrackList()->line_names.AsSpan();
|
||
}
|
||
if (IsSubgrid() && aIsSubgrid) {
|
||
return AsSubgrid()->names.AsSpan();
|
||
}
|
||
MOZ_ASSERT(IsNone() || IsMasonry() || (IsSubgrid() && !aIsSubgrid));
|
||
return {};
|
||
}
|
||
|
||
template <>
|
||
inline const StyleTrackBreadth& StyleTrackSize::GetMax() const {
|
||
if (IsBreadth()) {
|
||
return AsBreadth();
|
||
}
|
||
if (IsMinmax()) {
|
||
return AsMinmax()._1;
|
||
}
|
||
MOZ_ASSERT(IsFitContent());
|
||
return AsFitContent();
|
||
}
|
||
|
||
template <>
|
||
inline const StyleTrackBreadth& StyleTrackSize::GetMin() const {
|
||
static const StyleTrackBreadth kAuto = StyleTrackBreadth::Auto();
|
||
if (IsBreadth()) {
|
||
// <flex> behaves like minmax(auto, <flex>)
|
||
return AsBreadth().IsFr() ? kAuto : AsBreadth();
|
||
}
|
||
if (IsMinmax()) {
|
||
return AsMinmax()._0;
|
||
}
|
||
MOZ_ASSERT(IsFitContent());
|
||
return kAuto;
|
||
}
|
||
|
||
} // namespace mozilla
|
||
|
||
static nscoord ClampToCSSMaxBSize(nscoord aSize,
|
||
const ReflowInput* aReflowInput) {
|
||
auto maxSize = aReflowInput->ComputedMaxBSize();
|
||
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
|
||
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
|
||
aSize = std::min(aSize, maxSize);
|
||
}
|
||
return aSize;
|
||
}
|
||
|
||
// Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
|
||
// (If we clamp aSize it means our size is less than the break point,
|
||
// i.e. we're effectively breaking in our overflow, so we should leave
|
||
// aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
|
||
static nscoord ClampToCSSMaxBSize(nscoord aSize,
|
||
const ReflowInput* aReflowInput,
|
||
nsReflowStatus* aStatus) {
|
||
auto maxSize = aReflowInput->ComputedMaxBSize();
|
||
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
|
||
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
|
||
if (aSize < maxSize) {
|
||
aStatus->SetIncomplete();
|
||
} else {
|
||
aSize = maxSize;
|
||
}
|
||
} else {
|
||
aStatus->SetIncomplete();
|
||
}
|
||
return aSize;
|
||
}
|
||
|
||
template <typename Size>
|
||
static bool IsPercentOfIndefiniteSize(const Size& aCoord,
|
||
nscoord aPercentBasis) {
|
||
return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
|
||
}
|
||
|
||
static nscoord ResolveToDefiniteSize(const StyleTrackBreadth& aBreadth,
|
||
nscoord aPercentBasis) {
|
||
MOZ_ASSERT(aBreadth.IsBreadth());
|
||
if (::IsPercentOfIndefiniteSize(aBreadth.AsBreadth(), aPercentBasis)) {
|
||
return nscoord(0);
|
||
}
|
||
return std::max(nscoord(0), aBreadth.AsBreadth().Resolve(aPercentBasis));
|
||
}
|
||
|
||
// Synthesize a baseline from a border box. For an alphabetical baseline
|
||
// this is the end edge of the border box. For a central baseline it's
|
||
// the center of the border box.
|
||
// https://drafts.csswg.org/css-align-3/#synthesize-baselines
|
||
// For a 'first baseline' the measure is from the border-box start edge and
|
||
// for a 'last baseline' the measure is from the border-box end edge.
|
||
static nscoord SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
|
||
WritingMode aWM,
|
||
nscoord aBorderBoxSize) {
|
||
if (aGroup == BaselineSharingGroup::First) {
|
||
return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2;
|
||
}
|
||
MOZ_ASSERT(aGroup == BaselineSharingGroup::Last);
|
||
// Round up for central baseline offset, to be consistent with eFirst.
|
||
return aWM.IsAlphabeticalBaseline()
|
||
? 0
|
||
: (aBorderBoxSize / 2) + (aBorderBoxSize % 2);
|
||
}
|
||
|
||
// The input sizes for calculating the number of repeat(auto-fill/fit) tracks.
|
||
// https://drafts.csswg.org/css-grid/#auto-repeat
|
||
struct RepeatTrackSizingInput {
|
||
explicit RepeatTrackSizingInput(WritingMode aWM)
|
||
: mMin(aWM, 0, 0),
|
||
mSize(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE),
|
||
mMax(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE) {}
|
||
RepeatTrackSizingInput(const LogicalSize& aMin, const LogicalSize& aSize,
|
||
const LogicalSize& aMax)
|
||
: mMin(aMin), mSize(aSize), mMax(aMax) {}
|
||
|
||
// This should be used in intrinsic sizing (i.e. when we can't initialize
|
||
// the sizes directly from ReflowInput values).
|
||
void InitFromStyle(LogicalAxis aAxis, WritingMode aWM,
|
||
const ComputedStyle* aStyle) {
|
||
const auto& pos = aStyle->StylePosition();
|
||
const bool borderBoxSizing = pos->mBoxSizing == StyleBoxSizing::Border;
|
||
nscoord bp = NS_UNCONSTRAINEDSIZE; // a sentinel to calculate it only once
|
||
auto adjustForBoxSizing = [borderBoxSizing, aWM, aAxis, aStyle,
|
||
&bp](nscoord aSize) {
|
||
if (!borderBoxSizing) {
|
||
return aSize;
|
||
}
|
||
if (bp == NS_UNCONSTRAINEDSIZE) {
|
||
const auto& padding = aStyle->StylePadding()->mPadding;
|
||
LogicalMargin border(aWM, aStyle->StyleBorder()->GetComputedBorder());
|
||
// We can use zero percentage basis since this is only called from
|
||
// intrinsic sizing code.
|
||
const nscoord percentageBasis = 0;
|
||
if (aAxis == eLogicalAxisInline) {
|
||
bp = std::max(padding.GetIStart(aWM).Resolve(percentageBasis), 0) +
|
||
std::max(padding.GetIEnd(aWM).Resolve(percentageBasis), 0) +
|
||
border.IStartEnd(aWM);
|
||
} else {
|
||
bp = std::max(padding.GetBStart(aWM).Resolve(percentageBasis), 0) +
|
||
std::max(padding.GetBEnd(aWM).Resolve(percentageBasis), 0) +
|
||
border.BStartEnd(aWM);
|
||
}
|
||
}
|
||
return std::max(aSize - bp, 0);
|
||
};
|
||
nscoord& min = mMin.Size(aAxis, aWM);
|
||
nscoord& size = mSize.Size(aAxis, aWM);
|
||
nscoord& max = mMax.Size(aAxis, aWM);
|
||
const auto& minCoord =
|
||
aAxis == eLogicalAxisInline ? pos->MinISize(aWM) : pos->MinBSize(aWM);
|
||
if (minCoord.ConvertsToLength()) {
|
||
min = adjustForBoxSizing(minCoord.ToLength());
|
||
}
|
||
const auto& maxCoord =
|
||
aAxis == eLogicalAxisInline ? pos->MaxISize(aWM) : pos->MaxBSize(aWM);
|
||
if (maxCoord.ConvertsToLength()) {
|
||
max = std::max(min, adjustForBoxSizing(maxCoord.ToLength()));
|
||
}
|
||
const auto& sizeCoord =
|
||
aAxis == eLogicalAxisInline ? pos->ISize(aWM) : pos->BSize(aWM);
|
||
if (sizeCoord.ConvertsToLength()) {
|
||
size = Clamp(adjustForBoxSizing(sizeCoord.ToLength()), min, max);
|
||
}
|
||
}
|
||
|
||
LogicalSize mMin;
|
||
LogicalSize mSize;
|
||
LogicalSize mMax;
|
||
};
|
||
|
||
enum class GridLineSide {
|
||
BeforeGridGap,
|
||
AfterGridGap,
|
||
};
|
||
|
||
struct nsGridContainerFrame::TrackSize {
|
||
enum StateBits : uint16_t {
|
||
// clang-format off
|
||
eAutoMinSizing = 0x1,
|
||
eMinContentMinSizing = 0x2,
|
||
eMaxContentMinSizing = 0x4,
|
||
eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
|
||
eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
|
||
eModified = 0x8,
|
||
eAutoMaxSizing = 0x10,
|
||
eMinContentMaxSizing = 0x20,
|
||
eMaxContentMaxSizing = 0x40,
|
||
eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
|
||
eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
|
||
eFlexMaxSizing = 0x80,
|
||
eFrozen = 0x100,
|
||
eSkipGrowUnlimited1 = 0x200,
|
||
eSkipGrowUnlimited2 = 0x400,
|
||
eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
|
||
eBreakBefore = 0x800,
|
||
eFitContent = 0x1000,
|
||
eInfinitelyGrowable = 0x2000,
|
||
|
||
// These are only used in the masonry axis. They share the same value
|
||
// as *MinSizing above, but that's OK because we don't use those in
|
||
// the masonry axis.
|
||
//
|
||
// This track corresponds to an item margin-box size that is stretching.
|
||
eItemStretchSize = 0x1,
|
||
// This bit says that we should clamp that size to mLimit.
|
||
eClampToLimit = 0x2,
|
||
// This bit says that the corresponding item has `auto` margin(s).
|
||
eItemHasAutoMargin = 0x4,
|
||
// clang-format on
|
||
};
|
||
|
||
StateBits Initialize(nscoord aPercentageBasis, const StyleTrackSize&);
|
||
bool IsFrozen() const { return mState & eFrozen; }
|
||
#ifdef DEBUG
|
||
static void DumpStateBits(StateBits aState);
|
||
void Dump() const;
|
||
#endif
|
||
|
||
static bool IsDefiniteMaxSizing(StateBits aStateBits) {
|
||
return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
|
||
}
|
||
|
||
nscoord mBase;
|
||
nscoord mLimit;
|
||
nscoord mPosition; // zero until we apply 'align/justify-content'
|
||
// mBaselineSubtreeSize is the size of a baseline-aligned subtree within
|
||
// this track. One subtree per baseline-sharing group (per track).
|
||
PerBaseline<nscoord> mBaselineSubtreeSize;
|
||
StateBits mState;
|
||
};
|
||
|
||
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
|
||
|
||
namespace mozilla {
|
||
template <>
|
||
struct IsPod<nsGridContainerFrame::TrackSize> : std::true_type {};
|
||
} // namespace mozilla
|
||
|
||
TrackSize::StateBits nsGridContainerFrame::TrackSize::Initialize(
|
||
nscoord aPercentageBasis, const StyleTrackSize& aSize) {
|
||
using Tag = StyleTrackBreadth::Tag;
|
||
|
||
MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
|
||
"track size data is expected to be initialized to zero");
|
||
mBaselineSubtreeSize[BaselineSharingGroup::First] = nscoord(0);
|
||
mBaselineSubtreeSize[BaselineSharingGroup::Last] = nscoord(0);
|
||
|
||
auto& min = aSize.GetMin();
|
||
auto& max = aSize.GetMax();
|
||
|
||
Tag minSizeTag = min.tag;
|
||
Tag maxSizeTag = max.tag;
|
||
if (aSize.IsFitContent()) {
|
||
// In layout, fit-content(size) behaves as minmax(auto, max-content), with
|
||
// 'size' as an additional upper-bound.
|
||
mState = eFitContent;
|
||
minSizeTag = Tag::Auto;
|
||
maxSizeTag = Tag::MaxContent;
|
||
}
|
||
if (::IsPercentOfIndefiniteSize(min, aPercentageBasis)) {
|
||
// https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage
|
||
// "If the inline or block size of the grid container is indefinite,
|
||
// <percentage> values relative to that size are treated as 'auto'."
|
||
minSizeTag = Tag::Auto;
|
||
}
|
||
if (::IsPercentOfIndefiniteSize(max, aPercentageBasis)) {
|
||
maxSizeTag = Tag::Auto;
|
||
}
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#algo-init
|
||
switch (minSizeTag) {
|
||
case Tag::Auto:
|
||
mState |= eAutoMinSizing;
|
||
break;
|
||
case Tag::MinContent:
|
||
mState |= eMinContentMinSizing;
|
||
break;
|
||
case Tag::MaxContent:
|
||
mState |= eMaxContentMinSizing;
|
||
break;
|
||
default:
|
||
MOZ_ASSERT(!min.IsFr(), "<flex> min-sizing is invalid as a track size");
|
||
mBase = ::ResolveToDefiniteSize(min, aPercentageBasis);
|
||
}
|
||
switch (maxSizeTag) {
|
||
case Tag::Auto:
|
||
mState |= eAutoMaxSizing;
|
||
mLimit = NS_UNCONSTRAINEDSIZE;
|
||
break;
|
||
case Tag::MinContent:
|
||
case Tag::MaxContent:
|
||
mState |= maxSizeTag == Tag::MinContent ? eMinContentMaxSizing
|
||
: eMaxContentMaxSizing;
|
||
mLimit = NS_UNCONSTRAINEDSIZE;
|
||
break;
|
||
case Tag::Fr:
|
||
mState |= eFlexMaxSizing;
|
||
mLimit = mBase;
|
||
break;
|
||
default:
|
||
mLimit = ::ResolveToDefiniteSize(max, aPercentageBasis);
|
||
if (mLimit < mBase) {
|
||
mLimit = mBase;
|
||
}
|
||
}
|
||
return mState;
|
||
}
|
||
|
||
/**
|
||
* A LineRange can be definite or auto - when it's definite it represents
|
||
* a consecutive set of tracks between a starting line and an ending line.
|
||
* Before it's definite it can also represent an auto position with a span,
|
||
* where mStart == kAutoLine and mEnd is the (non-zero positive) span.
|
||
* For normal-flow items, the invariant mStart < mEnd holds when both
|
||
* lines are definite.
|
||
*
|
||
* For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
|
||
* "attach this side to the grid container containing block edge".
|
||
* Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
|
||
* i.e. the invariant is slightly relaxed compared to normal flow items.
|
||
*/
|
||
struct nsGridContainerFrame::LineRange {
|
||
LineRange(int32_t aStart, int32_t aEnd)
|
||
: mUntranslatedStart(aStart), mUntranslatedEnd(aEnd) {
|
||
#ifdef DEBUG
|
||
if (!IsAutoAuto()) {
|
||
if (IsAuto()) {
|
||
MOZ_ASSERT(aEnd >= kMinLine && aEnd <= kMaxLine, "invalid span");
|
||
} else {
|
||
MOZ_ASSERT(aStart >= kMinLine && aStart <= kMaxLine,
|
||
"invalid start line");
|
||
MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
|
||
(aEnd >= kMinLine && aEnd <= kMaxLine),
|
||
"invalid end line");
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
|
||
bool IsAuto() const { return mStart == kAutoLine; }
|
||
bool IsDefinite() const { return mStart != kAutoLine; }
|
||
uint32_t Extent() const {
|
||
MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
|
||
if (IsAuto()) {
|
||
MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(kMaxLine), "invalid span");
|
||
return mEnd;
|
||
}
|
||
return mEnd - mStart;
|
||
}
|
||
|
||
/**
|
||
* Return an object suitable for iterating this range.
|
||
*/
|
||
auto Range() const { return IntegerRange<uint32_t>(mStart, mEnd); }
|
||
|
||
/**
|
||
* Resolve this auto range to start at aStart, making it definite.
|
||
* @param aClampMaxLine the maximum allowed line number (zero-based)
|
||
* Precondition: this range IsAuto()
|
||
*/
|
||
void ResolveAutoPosition(uint32_t aStart, uint32_t aClampMaxLine) {
|
||
MOZ_ASSERT(IsAuto(), "Why call me?");
|
||
mStart = aStart;
|
||
mEnd += aStart;
|
||
// Clamp to aClampMaxLine, which is where kMaxLine is in the explicit
|
||
// grid in a non-subgrid axis; this implements clamping per
|
||
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
|
||
// In a subgrid axis it's the end of the grid in that axis.
|
||
if (MOZ_UNLIKELY(mStart >= aClampMaxLine)) {
|
||
mEnd = aClampMaxLine;
|
||
mStart = mEnd - 1;
|
||
} else if (MOZ_UNLIKELY(mEnd > aClampMaxLine)) {
|
||
mEnd = aClampMaxLine;
|
||
}
|
||
}
|
||
/**
|
||
* Translate the lines to account for (empty) removed tracks. This method
|
||
* is only for grid items and should only be called after placement.
|
||
* aNumRemovedTracks contains a count for each line in the grid how many
|
||
* tracks were removed between the start of the grid and that line.
|
||
*/
|
||
void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks) {
|
||
MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
|
||
MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
|
||
uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
|
||
MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
|
||
"tracks that a grid item spans can't be removed");
|
||
mStart -= numRemovedTracks;
|
||
mEnd -= numRemovedTracks;
|
||
}
|
||
/**
|
||
* Translate the lines to account for (empty) removed tracks. This method
|
||
* is only for abs.pos. children and should only be called after placement.
|
||
* Same as for in-flow items, but we don't touch 'auto' lines here and we
|
||
* also need to adjust areas that span into the removed tracks.
|
||
*/
|
||
void AdjustAbsPosForRemovedTracks(
|
||
const nsTArray<uint32_t>& aNumRemovedTracks) {
|
||
if (mStart != kAutoLine) {
|
||
mStart -= aNumRemovedTracks[mStart];
|
||
}
|
||
if (mEnd != kAutoLine) {
|
||
MOZ_ASSERT(mStart == kAutoLine || mEnd > mStart, "invalid line range");
|
||
mEnd -= aNumRemovedTracks[mEnd];
|
||
}
|
||
}
|
||
/**
|
||
* Return the contribution of this line range for step 2 in
|
||
* http://dev.w3.org/csswg/css-grid/#auto-placement-algo
|
||
*/
|
||
uint32_t HypotheticalEnd() const { return mEnd; }
|
||
/**
|
||
* Given an array of track sizes, return the starting position and length
|
||
* of the tracks in this line range.
|
||
*/
|
||
void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
|
||
nscoord* aPos, nscoord* aLength) const;
|
||
/**
|
||
* Given an array of track sizes, return the length of the tracks in this
|
||
* line range.
|
||
*/
|
||
nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
|
||
/**
|
||
* Given an array of track sizes and a grid origin coordinate, adjust the
|
||
* abs.pos. containing block along an axis given by aPos and aLength.
|
||
* aPos and aLength should already be initialized to the grid container
|
||
* containing block for this axis before calling this method.
|
||
*/
|
||
void ToPositionAndLengthForAbsPos(const Tracks& aTracks, nscoord aGridOrigin,
|
||
nscoord* aPos, nscoord* aLength) const;
|
||
|
||
void Translate(int32_t aOffset) {
|
||
MOZ_ASSERT(IsDefinite());
|
||
mStart += aOffset;
|
||
mEnd += aOffset;
|
||
}
|
||
|
||
/** Swap the start/end sides of this range. */
|
||
void ReverseDirection(uint32_t aGridEnd) {
|
||
MOZ_ASSERT(IsDefinite());
|
||
MOZ_ASSERT(aGridEnd >= mEnd);
|
||
uint32_t newStart = aGridEnd - mEnd;
|
||
mEnd = aGridEnd - mStart;
|
||
mStart = newStart;
|
||
}
|
||
|
||
/**
|
||
* @note We'll use the signed member while resolving definite positions
|
||
* to line numbers (1-based), which may become negative for implicit lines
|
||
* to the top/left of the explicit grid. PlaceGridItems() then translates
|
||
* the whole grid to a 0,0 origin and we'll use the unsigned member from
|
||
* there on.
|
||
*/
|
||
union {
|
||
uint32_t mStart;
|
||
int32_t mUntranslatedStart;
|
||
};
|
||
union {
|
||
uint32_t mEnd;
|
||
int32_t mUntranslatedEnd;
|
||
};
|
||
|
||
protected:
|
||
LineRange() : mStart(0), mEnd(0) {}
|
||
};
|
||
|
||
/**
|
||
* Helper class to construct a LineRange from translated lines.
|
||
* The ctor only accepts translated definite line numbers.
|
||
*/
|
||
struct nsGridContainerFrame::TranslatedLineRange : public LineRange {
|
||
TranslatedLineRange(uint32_t aStart, uint32_t aEnd) {
|
||
MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
|
||
mStart = aStart;
|
||
mEnd = aEnd;
|
||
}
|
||
};
|
||
|
||
/**
|
||
* A GridArea is the area in the grid for a grid item.
|
||
* The area is represented by two LineRanges, both of which can be auto
|
||
* (@see LineRange) in intermediate steps while the item is being placed.
|
||
* @see PlaceGridItems
|
||
*/
|
||
struct nsGridContainerFrame::GridArea {
|
||
GridArea(const LineRange& aCols, const LineRange& aRows)
|
||
: mCols(aCols), mRows(aRows) {}
|
||
bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
|
||
LineRange& LineRangeForAxis(LogicalAxis aAxis) {
|
||
return aAxis == eLogicalAxisInline ? mCols : mRows;
|
||
}
|
||
const LineRange& LineRangeForAxis(LogicalAxis aAxis) const {
|
||
return aAxis == eLogicalAxisInline ? mCols : mRows;
|
||
}
|
||
LineRange mCols;
|
||
LineRange mRows;
|
||
};
|
||
|
||
struct nsGridContainerFrame::GridItemInfo {
|
||
/**
|
||
* Item state per axis.
|
||
*/
|
||
enum StateBits : uint16_t {
|
||
// clang-format off
|
||
eIsFlexing = 0x1, // does the item span a flex track?
|
||
eFirstBaseline = 0x2, // participate in 'first baseline' alignment?
|
||
// ditto 'last baseline', mutually exclusive w. eFirstBaseline
|
||
eLastBaseline = 0x4,
|
||
eIsBaselineAligned = eFirstBaseline | eLastBaseline,
|
||
// One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
|
||
eSelfBaseline = 0x8, // is it *-self:[last ]baseline alignment?
|
||
// Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
|
||
eContentBaseline = 0x10,
|
||
// The baseline affects the margin or padding on the item's end side when
|
||
// this bit is set. In a grid-axis it's always set for eLastBaseline and
|
||
// always unset for eFirstBaseline. In a masonry-axis, it's set for
|
||
// baseline groups in the EndStretch set and unset for the StartStretch set.
|
||
eEndSideBaseline = 0x20,
|
||
eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline |
|
||
eEndSideBaseline,
|
||
// Should apply Automatic Minimum Size per:
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
eApplyAutoMinSize = 0x40,
|
||
// Clamp per https://drafts.csswg.org/css-grid/#min-size-auto
|
||
eClampMarginBoxMinSize = 0x80,
|
||
eIsSubgrid = 0x100,
|
||
// set on subgrids and items in subgrids if they are adjacent to the grid
|
||
// start/end edge (excluding grid-aligned abs.pos. frames)
|
||
eStartEdge = 0x200,
|
||
eEndEdge = 0x400,
|
||
eEdgeBits = eStartEdge | eEndEdge,
|
||
// Set if this item was auto-placed in this axis.
|
||
eAutoPlacement = 0x800,
|
||
// Set if this item is the last item in its track (masonry layout only)
|
||
eIsLastItemInMasonryTrack = 0x1000,
|
||
// clang-format on
|
||
};
|
||
|
||
GridItemInfo(nsIFrame* aFrame, const GridArea& aArea);
|
||
|
||
static bool BaselineAlignmentAffectsEndSide(StateBits state) {
|
||
return state & StateBits::eEndSideBaseline;
|
||
}
|
||
|
||
/**
|
||
* Inhibit subgrid layout unless the item is placed in the first "track" in
|
||
* a parent masonry-axis, or has definite placement or spans all tracks in
|
||
* the parent grid-axis.
|
||
* TODO: this is stricter than what the Masonry proposal currently states
|
||
* (bug 1627581)
|
||
*/
|
||
void MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
|
||
uint32_t aGridAxisTrackCount);
|
||
|
||
/**
|
||
* Inhibit subgridding in aAxis for this item.
|
||
*/
|
||
void InhibitSubgrid(nsGridContainerFrame* aParent, LogicalAxis aAxis);
|
||
|
||
/**
|
||
* Return a copy of this item with its row/column data swapped.
|
||
*/
|
||
GridItemInfo Transpose() const {
|
||
GridItemInfo info(mFrame, GridArea(mArea.mRows, mArea.mCols));
|
||
info.mState[0] = mState[1];
|
||
info.mState[1] = mState[0];
|
||
info.mBaselineOffset[0] = mBaselineOffset[1];
|
||
info.mBaselineOffset[1] = mBaselineOffset[0];
|
||
return info;
|
||
}
|
||
|
||
/** Swap the start/end sides in aAxis. */
|
||
inline void ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd);
|
||
|
||
// Is this item a subgrid in the given container axis?
|
||
bool IsSubgrid(LogicalAxis aAxis) const {
|
||
return mState[aAxis] & StateBits::eIsSubgrid;
|
||
}
|
||
|
||
// Is this item a subgrid in either axis?
|
||
bool IsSubgrid() const {
|
||
return IsSubgrid(eLogicalAxisInline) || IsSubgrid(eLogicalAxisBlock);
|
||
}
|
||
|
||
// Return the (inner) grid container frame associated with this subgrid item.
|
||
nsGridContainerFrame* SubgridFrame() const {
|
||
MOZ_ASSERT(IsSubgrid());
|
||
nsGridContainerFrame* gridFrame = GetGridContainerFrame(mFrame);
|
||
MOZ_ASSERT(gridFrame && gridFrame->IsSubgrid());
|
||
return gridFrame;
|
||
}
|
||
|
||
/**
|
||
* Adjust our grid areas to account for removed auto-fit tracks in aAxis.
|
||
*/
|
||
void AdjustForRemovedTracks(LogicalAxis aAxis,
|
||
const nsTArray<uint32_t>& aNumRemovedTracks);
|
||
|
||
/**
|
||
* If the item is [align|justify]-self:[last ]baseline aligned in the given
|
||
* axis then set aBaselineOffset to the baseline offset and return aAlign.
|
||
* Otherwise, return a fallback alignment.
|
||
*/
|
||
StyleAlignFlags GetSelfBaseline(StyleAlignFlags aAlign, LogicalAxis aAxis,
|
||
nscoord* aBaselineOffset) const {
|
||
MOZ_ASSERT(aAlign == StyleAlignFlags::BASELINE ||
|
||
aAlign == StyleAlignFlags::LAST_BASELINE);
|
||
if (!(mState[aAxis] & eSelfBaseline)) {
|
||
return aAlign == StyleAlignFlags::BASELINE ? StyleAlignFlags::SELF_START
|
||
: StyleAlignFlags::SELF_END;
|
||
}
|
||
*aBaselineOffset = mBaselineOffset[aAxis];
|
||
return aAlign;
|
||
}
|
||
|
||
// Return true if we should apply Automatic Minimum Size to this item.
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
// @note the caller should also check that the item spans at least one track
|
||
// that has a min track sizing function that is 'auto' before applying it.
|
||
bool ShouldApplyAutoMinSize(WritingMode aContainerWM,
|
||
LogicalAxis aContainerAxis,
|
||
nscoord aPercentageBasis) const {
|
||
const bool isInlineAxis = aContainerAxis == eLogicalAxisInline;
|
||
const auto* pos =
|
||
mFrame->IsTableWrapperFrame()
|
||
? mFrame->PrincipalChildList().FirstChild()->StylePosition()
|
||
: mFrame->StylePosition();
|
||
const auto& size =
|
||
isInlineAxis ? pos->ISize(aContainerWM) : pos->BSize(aContainerWM);
|
||
// max-content and min-content should behave as initial value in block axis.
|
||
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
|
||
// for block size dimension on sizing properties (e.g. height), so we
|
||
// treat it as `auto`.
|
||
bool isAuto = size.IsAuto() ||
|
||
(isInlineAxis ==
|
||
aContainerWM.IsOrthogonalTo(mFrame->GetWritingMode()) &&
|
||
size.BehavesLikeInitialValueOnBlockAxis());
|
||
// NOTE: if we have a definite size then our automatic minimum size
|
||
// can't affect our size. Excluding these simplifies applying
|
||
// the clamping in the right cases later.
|
||
if (!isAuto && !::IsPercentOfIndefiniteSize(size, aPercentageBasis)) {
|
||
return false;
|
||
}
|
||
const auto& minSize = isInlineAxis ? pos->MinISize(aContainerWM)
|
||
: pos->MinBSize(aContainerWM);
|
||
// max-content and min-content should behave as initial value in block axis.
|
||
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
|
||
// for block size dimension on sizing properties (e.g. height), so we
|
||
// treat it as `auto`.
|
||
isAuto = minSize.IsAuto() ||
|
||
(isInlineAxis ==
|
||
aContainerWM.IsOrthogonalTo(mFrame->GetWritingMode()) &&
|
||
minSize.BehavesLikeInitialValueOnBlockAxis());
|
||
return isAuto &&
|
||
mFrame->StyleDisplay()->mOverflowX == StyleOverflow::Visible;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void Dump() const;
|
||
#endif
|
||
|
||
static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b) {
|
||
return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
|
||
}
|
||
|
||
// Sorting functions for 'masonry-auto-flow:next'. We sort the items that
|
||
// were placed into the first track by the Grid placement algorithm first
|
||
// (to honor that placement). All other items will be placed by the Masonry
|
||
// layout algorithm (their Grid placement in the masonry axis is irrelevant).
|
||
static bool RowMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
|
||
return a->mArea.mRows.mStart == 0 && b->mArea.mRows.mStart != 0 &&
|
||
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
|
||
}
|
||
static bool ColMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
|
||
return a->mArea.mCols.mStart == 0 && b->mArea.mCols.mStart != 0 &&
|
||
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
|
||
}
|
||
|
||
// Sorting functions for 'masonry-auto-flow:definite-first'. Similar to
|
||
// the above, but here we also sort items with a definite item placement in
|
||
// the grid axis in track order before 'auto'-placed items. We also sort all
|
||
// continuations first since they use the same placement as their
|
||
// first-in-flow (we treat them as "definite" regardless of eAutoPlacement).
|
||
static bool RowMasonryDefiniteFirst(const GridItemInfo* a,
|
||
const GridItemInfo* b) {
|
||
bool isContinuationA = a->mFrame->GetPrevInFlow();
|
||
bool isContinuationB = b->mFrame->GetPrevInFlow();
|
||
if (isContinuationA != isContinuationB) {
|
||
return isContinuationA;
|
||
}
|
||
auto masonryA = a->mArea.mRows.mStart;
|
||
auto gridA = a->mState[eLogicalAxisInline] & StateBits::eAutoPlacement;
|
||
auto masonryB = b->mArea.mRows.mStart;
|
||
auto gridB = b->mState[eLogicalAxisInline] & StateBits::eAutoPlacement;
|
||
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
|
||
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
|
||
}
|
||
static bool ColMasonryDefiniteFirst(const GridItemInfo* a,
|
||
const GridItemInfo* b) {
|
||
MOZ_ASSERT(!a->mFrame->GetPrevInFlow() && !b->mFrame->GetPrevInFlow(),
|
||
"fragmentation not supported in inline axis");
|
||
auto masonryA = a->mArea.mCols.mStart;
|
||
auto gridA = a->mState[eLogicalAxisBlock] & StateBits::eAutoPlacement;
|
||
auto masonryB = b->mArea.mCols.mStart;
|
||
auto gridB = b->mState[eLogicalAxisBlock] & StateBits::eAutoPlacement;
|
||
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
|
||
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
|
||
}
|
||
|
||
nsIFrame* const mFrame;
|
||
GridArea mArea;
|
||
// Offset from the margin edge to the baseline (LogicalAxis index). It's from
|
||
// the start edge when eFirstBaseline is set, end edge otherwise. It's mutable
|
||
// since we update the value fairly late (just before reflowing the item).
|
||
mutable nscoord mBaselineOffset[2];
|
||
mutable StateBits mState[2]; // state bits per axis (LogicalAxis index)
|
||
static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value");
|
||
static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value");
|
||
};
|
||
|
||
using GridItemInfo = nsGridContainerFrame::GridItemInfo;
|
||
using ItemState = GridItemInfo::StateBits;
|
||
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)
|
||
|
||
GridItemInfo::GridItemInfo(nsIFrame* aFrame, const GridArea& aArea)
|
||
: mFrame(aFrame), mArea(aArea) {
|
||
mState[eLogicalAxisBlock] =
|
||
StateBits(mArea.mRows.mStart == kAutoLine ? eAutoPlacement : 0);
|
||
mState[eLogicalAxisInline] =
|
||
StateBits(mArea.mCols.mStart == kAutoLine ? eAutoPlacement : 0);
|
||
if (auto* gridFrame = GetGridContainerFrame(mFrame)) {
|
||
auto parentWM = aFrame->GetParent()->GetWritingMode();
|
||
bool isOrthogonal = parentWM.IsOrthogonalTo(gridFrame->GetWritingMode());
|
||
if (gridFrame->IsColSubgrid()) {
|
||
mState[isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline] |=
|
||
StateBits::eIsSubgrid;
|
||
}
|
||
if (gridFrame->IsRowSubgrid()) {
|
||
mState[isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock] |=
|
||
StateBits::eIsSubgrid;
|
||
}
|
||
}
|
||
mBaselineOffset[eLogicalAxisBlock] = nscoord(0);
|
||
mBaselineOffset[eLogicalAxisInline] = nscoord(0);
|
||
}
|
||
|
||
void GridItemInfo::ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd) {
|
||
mArea.LineRangeForAxis(aAxis).ReverseDirection(aGridEnd);
|
||
ItemState& state = mState[aAxis];
|
||
ItemState newState = state & ~ItemState::eEdgeBits;
|
||
if (state & ItemState::eStartEdge) {
|
||
newState |= ItemState::eEndEdge;
|
||
}
|
||
if (state & ItemState::eEndEdge) {
|
||
newState |= ItemState::eStartEdge;
|
||
}
|
||
state = newState;
|
||
}
|
||
|
||
void GridItemInfo::InhibitSubgrid(nsGridContainerFrame* aParent,
|
||
LogicalAxis aAxis) {
|
||
MOZ_ASSERT(IsSubgrid(aAxis));
|
||
auto bit = NS_STATE_GRID_IS_COL_SUBGRID;
|
||
if (aParent->GetWritingMode().IsOrthogonalTo(mFrame->GetWritingMode()) !=
|
||
(aAxis == eLogicalAxisBlock)) {
|
||
bit = NS_STATE_GRID_IS_ROW_SUBGRID;
|
||
}
|
||
MOZ_ASSERT(SubgridFrame()->HasAnyStateBits(bit));
|
||
SubgridFrame()->RemoveStateBits(bit);
|
||
mState[aAxis] &= StateBits(~StateBits::eIsSubgrid);
|
||
}
|
||
|
||
void GridItemInfo::MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
|
||
uint32_t aGridAxisTrackCount) {
|
||
if (IsSubgrid(eLogicalAxisInline) && aParent->IsMasonry(eLogicalAxisBlock) &&
|
||
mArea.mRows.mStart != 0 && mArea.mCols.Extent() != aGridAxisTrackCount &&
|
||
(mState[eLogicalAxisInline] & eAutoPlacement)) {
|
||
InhibitSubgrid(aParent, eLogicalAxisInline);
|
||
return;
|
||
}
|
||
if (IsSubgrid(eLogicalAxisBlock) && aParent->IsMasonry(eLogicalAxisInline) &&
|
||
mArea.mCols.mStart != 0 && mArea.mRows.Extent() != aGridAxisTrackCount &&
|
||
(mState[eLogicalAxisBlock] & eAutoPlacement)) {
|
||
InhibitSubgrid(aParent, eLogicalAxisBlock);
|
||
}
|
||
}
|
||
|
||
// Each subgrid stores this data about its items etc on a frame property.
|
||
struct nsGridContainerFrame::Subgrid {
|
||
Subgrid(const GridArea& aArea, bool aIsOrthogonal, WritingMode aCBWM)
|
||
: mArea(aArea),
|
||
mGridColEnd(0),
|
||
mGridRowEnd(0),
|
||
mMarginBorderPadding(aCBWM),
|
||
mIsOrthogonal(aIsOrthogonal) {}
|
||
|
||
// Return the relevant line range for the subgrid column axis.
|
||
const LineRange& SubgridCols() const {
|
||
return mIsOrthogonal ? mArea.mRows : mArea.mCols;
|
||
}
|
||
// Return the relevant line range for the subgrid row axis.
|
||
const LineRange& SubgridRows() const {
|
||
return mIsOrthogonal ? mArea.mCols : mArea.mRows;
|
||
}
|
||
|
||
// The subgrid's items.
|
||
nsTArray<GridItemInfo> mGridItems;
|
||
// The subgrid's abs.pos. items.
|
||
nsTArray<GridItemInfo> mAbsPosItems;
|
||
// The subgrid's area as a grid item, i.e. in its parent's grid space.
|
||
GridArea mArea;
|
||
// The (inner) grid size for the subgrid, zero-based.
|
||
uint32_t mGridColEnd;
|
||
uint32_t mGridRowEnd;
|
||
// The margin+border+padding for the subgrid box in its parent grid's WM.
|
||
// (This also includes the size of any scrollbars.)
|
||
LogicalMargin mMarginBorderPadding;
|
||
// Does the subgrid frame have orthogonal writing-mode to its parent grid
|
||
// container?
|
||
bool mIsOrthogonal;
|
||
|
||
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, Subgrid)
|
||
};
|
||
using Subgrid = nsGridContainerFrame::Subgrid;
|
||
|
||
void GridItemInfo::AdjustForRemovedTracks(
|
||
LogicalAxis aAxis, const nsTArray<uint32_t>& aNumRemovedTracks) {
|
||
const bool abspos = mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
|
||
auto& lines = mArea.LineRangeForAxis(aAxis);
|
||
if (abspos) {
|
||
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
|
||
} else {
|
||
lines.AdjustForRemovedTracks(aNumRemovedTracks);
|
||
}
|
||
if (IsSubgrid()) {
|
||
auto* subgrid = SubgridFrame()->GetProperty(Subgrid::Prop());
|
||
if (subgrid) {
|
||
auto& lines = subgrid->mArea.LineRangeForAxis(aAxis);
|
||
if (abspos) {
|
||
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
|
||
} else {
|
||
lines.AdjustForRemovedTracks(aNumRemovedTracks);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Track size data for use by subgrids (which don't do sizing of their own
|
||
* in a subgridded axis). A non-subgrid container stores its resolved sizes,
|
||
* but only if it has any subgrid children. A subgrid always stores one.
|
||
* In a subgridded axis, we copy the parent's sizes (see CopyUsedTrackSizes).
|
||
*
|
||
* This struct us stored on a frame property, which may be null before the track
|
||
* sizing step for the given container. A null property is semantically
|
||
* equivalent to mCanResolveLineRangeSize being false in both axes.
|
||
* @note the axis used to access this data is in the grid container's own
|
||
* writing-mode, same as in other track-sizing functions.
|
||
*/
|
||
struct nsGridContainerFrame::UsedTrackSizes {
|
||
UsedTrackSizes() : mCanResolveLineRangeSize{false, false} {}
|
||
|
||
/**
|
||
* Setup mSizes by copying track sizes from aFrame's grid container
|
||
* parent when aAxis is subgridded (and recurse if the parent is a subgrid
|
||
* that doesn't have sizes yet), or by running the Track Sizing Algo when
|
||
* the axis is not subgridded (for a subgrid).
|
||
* Set mCanResolveLineRangeSize[aAxis] to true once we have obtained
|
||
* sizes for an axis (if it's already true then this method is a NOP).
|
||
*/
|
||
void ResolveTrackSizesForAxis(nsGridContainerFrame* aFrame, LogicalAxis aAxis,
|
||
gfxContext& aRC);
|
||
|
||
/** Helper function for the above method */
|
||
void ResolveSubgridTrackSizesForAxis(nsGridContainerFrame* aFrame,
|
||
LogicalAxis aAxis, Subgrid* aSubgrid,
|
||
gfxContext& aRC,
|
||
nscoord aContentBoxSize);
|
||
|
||
// This only has valid sizes when mCanResolveLineRangeSize is true in
|
||
// the same axis. It may have zero tracks (a grid with only abs.pos.
|
||
// subgrids/items may have zero tracks).
|
||
PerLogicalAxis<nsTArray<TrackSize>> mSizes;
|
||
// True if mSizes can be used to resolve line range sizes in an axis.
|
||
PerLogicalAxis<bool> mCanResolveLineRangeSize;
|
||
|
||
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, UsedTrackSizes)
|
||
};
|
||
using UsedTrackSizes = nsGridContainerFrame::UsedTrackSizes;
|
||
|
||
#ifdef DEBUG
|
||
void nsGridContainerFrame::GridItemInfo::Dump() const {
|
||
auto Dump1 = [this](const char* aMsg, LogicalAxis aAxis) {
|
||
auto state = mState[aAxis];
|
||
if (!state) {
|
||
return;
|
||
}
|
||
printf("%s", aMsg);
|
||
if (state & ItemState::eEdgeBits) {
|
||
printf("subgrid-adjacent-edges(");
|
||
if (state & ItemState::eStartEdge) {
|
||
printf("start ");
|
||
}
|
||
if (state & ItemState::eEndEdge) {
|
||
printf("end");
|
||
}
|
||
printf(") ");
|
||
}
|
||
if (state & ItemState::eAutoPlacement) {
|
||
printf("masonry-auto ");
|
||
}
|
||
if (state & ItemState::eIsSubgrid) {
|
||
printf("subgrid ");
|
||
}
|
||
if (state & ItemState::eIsFlexing) {
|
||
printf("flexing ");
|
||
}
|
||
if (state & ItemState::eApplyAutoMinSize) {
|
||
printf("auto-min-size ");
|
||
}
|
||
if (state & ItemState::eClampMarginBoxMinSize) {
|
||
printf("clamp ");
|
||
}
|
||
if (state & ItemState::eIsLastItemInMasonryTrack) {
|
||
printf("last-in-track ");
|
||
}
|
||
if (state & ItemState::eFirstBaseline) {
|
||
printf("first baseline %s-alignment ",
|
||
(state & ItemState::eSelfBaseline) ? "self" : "content");
|
||
}
|
||
if (state & ItemState::eLastBaseline) {
|
||
printf("last baseline %s-alignment ",
|
||
(state & ItemState::eSelfBaseline) ? "self" : "content");
|
||
}
|
||
if (state & ItemState::eIsBaselineAligned) {
|
||
printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
|
||
AppUnitsPerCSSPixel()));
|
||
}
|
||
printf("\n");
|
||
};
|
||
printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
|
||
Dump1(" grid block-axis: ", eLogicalAxisBlock);
|
||
printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
|
||
Dump1(" grid inline-axis: ", eLogicalAxisInline);
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* Encapsulates CSS track-sizing functions.
|
||
*/
|
||
struct nsGridContainerFrame::TrackSizingFunctions {
|
||
private:
|
||
TrackSizingFunctions(const GridTemplate& aTemplate,
|
||
const StyleImplicitGridTracks& aAutoSizing,
|
||
const Maybe<size_t>& aRepeatAutoIndex, bool aIsSubgrid)
|
||
: mTemplate(aTemplate),
|
||
mTrackListValues(aTemplate.TrackListValues()),
|
||
mAutoSizing(aAutoSizing),
|
||
mExplicitGridOffset(0),
|
||
mRepeatAutoStart(aRepeatAutoIndex.valueOr(0)),
|
||
mRepeatAutoEnd(mRepeatAutoStart),
|
||
mHasRepeatAuto(aRepeatAutoIndex.isSome()) {
|
||
MOZ_ASSERT(!mHasRepeatAuto || !aIsSubgrid,
|
||
"a track-list for a subgrid can't have an <auto-repeat> track");
|
||
if (!aIsSubgrid) {
|
||
ExpandNonRepeatAutoTracks();
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
if (mHasRepeatAuto) {
|
||
MOZ_ASSERT(mExpandedTracks.Length() >= 1);
|
||
const unsigned maxTrack = kMaxLine - 1;
|
||
// If the exanded tracks are out of range of the maximum track, we
|
||
// can't compare the repeat-auto start. It will be removed later during
|
||
// grid item placement in that situation.
|
||
if (mExpandedTracks.Length() < maxTrack) {
|
||
MOZ_ASSERT(mRepeatAutoStart < mExpandedTracks.Length());
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
public:
|
||
TrackSizingFunctions(const GridTemplate& aGridTemplate,
|
||
const StyleImplicitGridTracks& aAutoSizing,
|
||
bool aIsSubgrid)
|
||
: TrackSizingFunctions(aGridTemplate, aAutoSizing,
|
||
aGridTemplate.RepeatAutoIndex(), aIsSubgrid) {}
|
||
|
||
private:
|
||
enum { ForSubgridFallbackTag };
|
||
TrackSizingFunctions(const GridTemplate& aGridTemplate,
|
||
const StyleImplicitGridTracks& aAutoSizing,
|
||
decltype(ForSubgridFallbackTag))
|
||
: TrackSizingFunctions(aGridTemplate, aAutoSizing, Nothing(),
|
||
/* aIsSubgrid */ true) {}
|
||
|
||
public:
|
||
/**
|
||
* This is used in a subgridded axis to resolve sizes before its parent's
|
||
* sizes are known for intrinsic sizing purposes. It copies the slice of
|
||
* the nearest non-subgridded axis' track sizing functions spanned by
|
||
* the subgrid.
|
||
*
|
||
* FIXME: this was written before there was a spec... the spec now says:
|
||
* "If calculating the layout of a grid item in this step depends on
|
||
* the available space in the block axis, assume the available space
|
||
* that it would have if any row with a definite max track sizing
|
||
* function had that size and all other rows were infinite."
|
||
* https://drafts.csswg.org/css-grid-2/#subgrid-sizing
|
||
*/
|
||
static TrackSizingFunctions ForSubgridFallback(
|
||
nsGridContainerFrame* aSubgridFrame, const Subgrid* aSubgrid,
|
||
nsGridContainerFrame* aParentGridContainer, LogicalAxis aParentAxis) {
|
||
MOZ_ASSERT(aSubgrid);
|
||
MOZ_ASSERT(aSubgridFrame->IsSubgrid(aSubgrid->mIsOrthogonal
|
||
? GetOrthogonalAxis(aParentAxis)
|
||
: aParentAxis));
|
||
nsGridContainerFrame* parent = aParentGridContainer;
|
||
auto parentAxis = aParentAxis;
|
||
LineRange range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
|
||
// Find our nearest non-subgridded axis and use its track sizing functions.
|
||
while (parent->IsSubgrid(parentAxis)) {
|
||
const auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
|
||
auto* grandParent = parent->ParentGridContainerForSubgrid();
|
||
auto grandParentWM = grandParent->GetWritingMode();
|
||
bool isSameDirInAxis =
|
||
parent->GetWritingMode().ParallelAxisStartsOnSameSide(parentAxis,
|
||
grandParentWM);
|
||
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
|
||
auto end = parentAxis == eLogicalAxisBlock ? parentSubgrid->mGridRowEnd
|
||
: parentSubgrid->mGridColEnd;
|
||
range.ReverseDirection(end);
|
||
// range is now in the same direction as the grand-parent's axis
|
||
}
|
||
auto grandParentAxis = parentSubgrid->mIsOrthogonal
|
||
? GetOrthogonalAxis(parentAxis)
|
||
: parentAxis;
|
||
const auto& parentRange =
|
||
parentSubgrid->mArea.LineRangeForAxis(grandParentAxis);
|
||
range.Translate(parentRange.mStart);
|
||
// range is now in the grand-parent's coordinates
|
||
parentAxis = grandParentAxis;
|
||
parent = grandParent;
|
||
}
|
||
const auto* pos = parent->StylePosition();
|
||
const auto isInlineAxis = parentAxis == eLogicalAxisInline;
|
||
const auto& szf =
|
||
isInlineAxis ? pos->mGridTemplateRows : pos->mGridTemplateColumns;
|
||
const auto& autoSizing =
|
||
isInlineAxis ? pos->mGridAutoColumns : pos->mGridAutoRows;
|
||
return TrackSizingFunctions(szf, autoSizing, ForSubgridFallbackTag);
|
||
}
|
||
|
||
/**
|
||
* Initialize the number of auto-fill/fit tracks to use.
|
||
* This can be zero if no auto-fill/fit track was specified, or if the repeat
|
||
* begins after the maximum allowed track.
|
||
*/
|
||
void InitRepeatTracks(const NonNegativeLengthPercentageOrNormal& aGridGap,
|
||
nscoord aMinSize, nscoord aSize, nscoord aMaxSize) {
|
||
const uint32_t maxTrack = kMaxLine - 1;
|
||
// Check for a repeat after the maximum allowed track.
|
||
if (MOZ_UNLIKELY(mRepeatAutoStart >= maxTrack)) {
|
||
mHasRepeatAuto = false;
|
||
mRepeatAutoStart = 0;
|
||
mRepeatAutoEnd = 0;
|
||
return;
|
||
}
|
||
uint32_t repeatTracks =
|
||
CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize) *
|
||
NumRepeatTracks();
|
||
// Clamp the number of repeat tracks to the maximum possible track.
|
||
repeatTracks = std::min(repeatTracks, maxTrack - mRepeatAutoStart);
|
||
SetNumRepeatTracks(repeatTracks);
|
||
// Blank out the removed flags for each of these tracks.
|
||
mRemovedRepeatTracks.SetLength(repeatTracks);
|
||
for (auto& track : mRemovedRepeatTracks) {
|
||
track = false;
|
||
}
|
||
}
|
||
|
||
uint32_t CalculateRepeatFillCount(
|
||
const NonNegativeLengthPercentageOrNormal& aGridGap, nscoord aMinSize,
|
||
nscoord aSize, nscoord aMaxSize) const {
|
||
if (!mHasRepeatAuto) {
|
||
return 0;
|
||
}
|
||
// At this point no tracks will have been collapsed, so the RepeatEndDelta
|
||
// should not be negative.
|
||
MOZ_ASSERT(RepeatEndDelta() >= 0);
|
||
// Note that this uses NumRepeatTracks and mRepeatAutoStart/End, although
|
||
// the result of this method is used to change those values to a fully
|
||
// expanded value. Spec quotes are from
|
||
// https://drafts.csswg.org/css-grid/#repeat-notation
|
||
const uint32_t numTracks = mExpandedTracks.Length() + RepeatEndDelta();
|
||
MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
|
||
if (MOZ_UNLIKELY(numTracks >= kMaxLine)) {
|
||
// The fixed tracks plus an entire repetition is either larger or as
|
||
// large as the maximum track, so we do not need to measure how many
|
||
// repetitions will fit. This also avoids needing to check for if
|
||
// kMaxLine - numTracks would underflow at the end where we clamp the
|
||
// result.
|
||
return 1;
|
||
}
|
||
nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
|
||
if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
|
||
// "Otherwise, the specified track list repeats only once."
|
||
return 1;
|
||
}
|
||
nscoord repeatTrackSum = 0;
|
||
// Note that one repeat() track size is included in |sum| in this loop.
|
||
nscoord sum = 0;
|
||
const nscoord percentBasis = aSize;
|
||
for (uint32_t i = 0; i < numTracks; ++i) {
|
||
// "treating each track as its max track sizing function if that is
|
||
// definite or as its minimum track sizing function otherwise"
|
||
// https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill
|
||
const auto& sizingFunction = SizingFor(i);
|
||
const auto& maxCoord = sizingFunction.GetMax();
|
||
const auto* coord = &maxCoord;
|
||
if (!coord->IsBreadth()) {
|
||
coord = &sizingFunction.GetMin();
|
||
if (!coord->IsBreadth()) {
|
||
return 1;
|
||
}
|
||
}
|
||
nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
|
||
if (i >= mRepeatAutoStart && i < mRepeatAutoEnd) {
|
||
// Use a minimum 1px for the repeat() track-size.
|
||
if (trackSize < AppUnitsPerCSSPixel()) {
|
||
trackSize = AppUnitsPerCSSPixel();
|
||
}
|
||
repeatTrackSum += trackSize;
|
||
}
|
||
sum += trackSize;
|
||
}
|
||
nscoord gridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aSize);
|
||
if (numTracks > 1) {
|
||
// Add grid-gaps for all the tracks including the repeat() track.
|
||
sum += gridGap * (numTracks - 1);
|
||
}
|
||
// Calculate the max number of tracks that fits without overflow.
|
||
nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
|
||
nscoord spaceToFill = available - sum;
|
||
if (spaceToFill <= 0) {
|
||
// "if any number of repetitions would overflow, then 1 repetition"
|
||
return 1;
|
||
}
|
||
// Calculate the max number of tracks that fits without overflow.
|
||
// Since we already have one repetition in sum, we can simply add one grid
|
||
// gap for each element in the repeat.
|
||
div_t q = div(spaceToFill, repeatTrackSum + gridGap * NumRepeatTracks());
|
||
// The +1 here is for the one repeat track we already accounted for above.
|
||
uint32_t numRepeatTracks = q.quot + 1;
|
||
if (q.rem != 0 && maxFill == NS_UNCONSTRAINEDSIZE) {
|
||
// "Otherwise, if the grid container has a definite min size in
|
||
// the relevant axis, the number of repetitions is the largest possible
|
||
// positive integer that fulfills that minimum requirement."
|
||
++numRepeatTracks; // one more to ensure the grid is at least min-size
|
||
}
|
||
// Clamp the number of repeat tracks so that the last line <= kMaxLine.
|
||
// (note that |numTracks| already includes one repeat() track)
|
||
MOZ_ASSERT(numTracks >= NumRepeatTracks());
|
||
const uint32_t maxRepeatTrackCount = kMaxLine - numTracks;
|
||
const uint32_t maxRepetitions = maxRepeatTrackCount / NumRepeatTracks();
|
||
return std::min(numRepeatTracks, maxRepetitions);
|
||
}
|
||
|
||
/**
|
||
* Compute the explicit grid end line number (in a zero-based grid).
|
||
* @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
|
||
*/
|
||
uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd) {
|
||
uint32_t end = NumExplicitTracks() + 1;
|
||
end = std::max(end, aGridTemplateAreasEnd);
|
||
end = std::min(end, uint32_t(kMaxLine));
|
||
return end;
|
||
}
|
||
const StyleTrackSize& SizingFor(uint32_t aTrackIndex) const {
|
||
static const StyleTrackSize kAutoTrackSize =
|
||
StyleTrackSize::Breadth(StyleTrackBreadth::Auto());
|
||
// |aIndex| is the relative index to mAutoSizing. A negative value means it
|
||
// is the last Nth element.
|
||
auto getImplicitSize = [this](int32_t aIndex) -> const StyleTrackSize& {
|
||
MOZ_ASSERT(!(mAutoSizing.Length() == 1 &&
|
||
mAutoSizing.AsSpan()[0] == kAutoTrackSize),
|
||
"It's impossible to have one track with auto value because we "
|
||
"filter out this case during parsing");
|
||
|
||
if (mAutoSizing.IsEmpty()) {
|
||
return kAutoTrackSize;
|
||
}
|
||
|
||
// If multiple track sizes are given, the pattern is repeated as necessary
|
||
// to find the size of the implicit tracks.
|
||
int32_t i = aIndex % int32_t(mAutoSizing.Length());
|
||
if (i < 0) {
|
||
i += mAutoSizing.Length();
|
||
}
|
||
return mAutoSizing.AsSpan()[i];
|
||
};
|
||
|
||
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
|
||
// The last implicit grid track before the explicit grid receives the
|
||
// last specified size, and so on backwards. Therefore we pass the
|
||
// negative relative index to imply that we should get the implicit size
|
||
// from the last Nth specified grid auto size.
|
||
return getImplicitSize(int32_t(aTrackIndex) -
|
||
int32_t(mExplicitGridOffset));
|
||
}
|
||
uint32_t index = aTrackIndex - mExplicitGridOffset;
|
||
MOZ_ASSERT(mRepeatAutoStart <= mRepeatAutoEnd);
|
||
|
||
if (index >= mRepeatAutoStart) {
|
||
if (index < mRepeatAutoEnd) {
|
||
// Expand the repeat tracks.
|
||
const auto& indices = mExpandedTracks[mRepeatAutoStart];
|
||
const TrackListValue& value = mTrackListValues[indices.first];
|
||
|
||
// We expect the default to be used for all track repeats.
|
||
MOZ_ASSERT(indices.second == 0);
|
||
|
||
const auto& repeatTracks = value.AsTrackRepeat().track_sizes.AsSpan();
|
||
|
||
// Find the repeat track to use, skipping over any collapsed tracks.
|
||
const uint32_t finalRepeatIndex = (index - mRepeatAutoStart);
|
||
uint32_t repeatWithCollapsed = 0;
|
||
// NOTE: We need SizingFor before the final collapsed tracks are known.
|
||
// We know that it's invalid to have empty mRemovedRepeatTracks when
|
||
// there are any repeat tracks, so we can detect that situation here.
|
||
if (mRemovedRepeatTracks.IsEmpty()) {
|
||
repeatWithCollapsed = finalRepeatIndex;
|
||
} else {
|
||
// Count up through the repeat tracks, until we have seen
|
||
// finalRepeatIndex number of non-collapsed tracks.
|
||
for (uint32_t repeatNoCollapsed = 0;
|
||
repeatNoCollapsed < finalRepeatIndex; repeatWithCollapsed++) {
|
||
if (!mRemovedRepeatTracks[repeatWithCollapsed]) {
|
||
repeatNoCollapsed++;
|
||
}
|
||
}
|
||
// If we stopped iterating on a collapsed track, continue to the next
|
||
// non-collapsed track.
|
||
while (mRemovedRepeatTracks[repeatWithCollapsed]) {
|
||
repeatWithCollapsed++;
|
||
}
|
||
}
|
||
return repeatTracks[repeatWithCollapsed % repeatTracks.Length()];
|
||
} else {
|
||
// The index is after the repeat auto range, adjust it to skip over the
|
||
// repeat value. This will have no effect if there is no auto repeat,
|
||
// since then RepeatEndDelta will return zero.
|
||
index -= RepeatEndDelta();
|
||
}
|
||
}
|
||
if (index >= mExpandedTracks.Length()) {
|
||
return getImplicitSize(index - mExpandedTracks.Length());
|
||
}
|
||
auto& indices = mExpandedTracks[index];
|
||
const TrackListValue& value = mTrackListValues[indices.first];
|
||
if (value.IsTrackSize()) {
|
||
MOZ_ASSERT(indices.second == 0);
|
||
return value.AsTrackSize();
|
||
}
|
||
return value.AsTrackRepeat().track_sizes.AsSpan()[indices.second];
|
||
}
|
||
const StyleTrackBreadth& MaxSizingFor(uint32_t aTrackIndex) const {
|
||
return SizingFor(aTrackIndex).GetMax();
|
||
}
|
||
const StyleTrackBreadth& MinSizingFor(uint32_t aTrackIndex) const {
|
||
return SizingFor(aTrackIndex).GetMin();
|
||
}
|
||
uint32_t NumExplicitTracks() const {
|
||
return mExpandedTracks.Length() + RepeatEndDelta();
|
||
}
|
||
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
|
||
// The difference between mExplicitGridEnd and mSizingFunctions.Length().
|
||
int32_t RepeatEndDelta() const {
|
||
return mHasRepeatAuto ? int32_t(NumRepeatTracks()) - 1 : 0;
|
||
}
|
||
void SetNumRepeatTracks(uint32_t aNumRepeatTracks) {
|
||
MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
|
||
mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
|
||
}
|
||
|
||
// Store mTrackListValues into mExpandedTracks with `repeat(INTEGER, ...)`
|
||
// tracks expanded.
|
||
void ExpandNonRepeatAutoTracks() {
|
||
for (size_t i = 0; i < mTrackListValues.Length(); ++i) {
|
||
auto& value = mTrackListValues[i];
|
||
if (value.IsTrackSize()) {
|
||
mExpandedTracks.EmplaceBack(i, 0);
|
||
continue;
|
||
}
|
||
auto& repeat = value.AsTrackRepeat();
|
||
if (!repeat.count.IsNumber()) {
|
||
MOZ_ASSERT(i == mRepeatAutoStart);
|
||
mRepeatAutoStart = mExpandedTracks.Length();
|
||
mRepeatAutoEnd = mRepeatAutoStart + repeat.track_sizes.Length();
|
||
mExpandedTracks.EmplaceBack(i, 0);
|
||
continue;
|
||
}
|
||
for (auto j : IntegerRange(repeat.count.AsNumber())) {
|
||
Unused << j;
|
||
size_t trackSizesCount = repeat.track_sizes.Length();
|
||
for (auto k : IntegerRange(trackSizesCount)) {
|
||
mExpandedTracks.EmplaceBack(i, k);
|
||
}
|
||
}
|
||
}
|
||
if (MOZ_UNLIKELY(mExpandedTracks.Length() > kMaxLine - 1)) {
|
||
mExpandedTracks.TruncateLength(kMaxLine - 1);
|
||
if (mHasRepeatAuto && mRepeatAutoStart > kMaxLine - 1) {
|
||
// The `repeat(auto-fill/fit)` track is outside the clamped grid.
|
||
mHasRepeatAuto = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Some style data references, for easy access.
|
||
const GridTemplate& mTemplate;
|
||
const Span<const TrackListValue> mTrackListValues;
|
||
const StyleImplicitGridTracks& mAutoSizing;
|
||
// An array from expanded track sizes (without expanding auto-repeat, which is
|
||
// included just once at `mRepeatAutoStart`).
|
||
//
|
||
// Each entry contains two indices, the first into mTrackListValues, and a
|
||
// second one inside mTrackListValues' repeat value, if any, or zero
|
||
// otherwise.
|
||
nsTArray<std::pair<size_t, size_t>> mExpandedTracks;
|
||
// Offset from the start of the implicit grid to the first explicit track.
|
||
uint32_t mExplicitGridOffset;
|
||
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
|
||
// Relative to mExplicitGridOffset (repeat tracks are explicit by definition).
|
||
uint32_t mRepeatAutoStart;
|
||
// The (hypothetical) index of the last such repeat() track.
|
||
uint32_t mRepeatAutoEnd;
|
||
// True if there is a specified repeat(auto-fill/fit) track.
|
||
bool mHasRepeatAuto;
|
||
// True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
|
||
// Indexed relative to mExplicitGridOffset + mRepeatAutoStart.
|
||
nsTArray<bool> mRemovedRepeatTracks;
|
||
};
|
||
|
||
/**
|
||
* Utility class to find line names. It provides an interface to lookup line
|
||
* names with a dynamic number of repeat(auto-fill/fit) tracks taken into
|
||
* account.
|
||
*/
|
||
class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap {
|
||
public:
|
||
/**
|
||
* Create a LineNameMap.
|
||
* @param aStylePosition the style for the grid container
|
||
* @param aImplicitNamedAreas the implicit areas for the grid container
|
||
* @param aGridTemplate is the grid-template-rows/columns data for this axis
|
||
* @param aParentLineNameMap the parent grid's map parallel to this map, or
|
||
* null if this map isn't for a subgrid
|
||
* @param aRange the subgrid's range in the parent grid, or null
|
||
* @param aIsSameDirection true if our axis progresses in the same direction
|
||
* in the subgrid and parent
|
||
*/
|
||
LineNameMap(const nsStylePosition* aStylePosition,
|
||
const ImplicitNamedAreas* aImplicitNamedAreas,
|
||
const TrackSizingFunctions& aTracks,
|
||
const LineNameMap* aParentLineNameMap, const LineRange* aRange,
|
||
bool aIsSameDirection)
|
||
: mStylePosition(aStylePosition),
|
||
mAreas(aImplicitNamedAreas),
|
||
mRepeatAutoStart(aTracks.mRepeatAutoStart),
|
||
mRepeatAutoEnd(aTracks.mRepeatAutoEnd),
|
||
mRepeatEndDelta(aTracks.RepeatEndDelta()),
|
||
mParentLineNameMap(aParentLineNameMap),
|
||
mRange(aRange),
|
||
mIsSameDirection(aIsSameDirection),
|
||
mHasRepeatAuto(aTracks.mHasRepeatAuto) {
|
||
if (MOZ_UNLIKELY(aRange)) { // subgrid case
|
||
mClampMinLine = 1;
|
||
mClampMaxLine = 1 + aRange->Extent();
|
||
mRepeatAutoEnd = mRepeatAutoStart;
|
||
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
|
||
const auto fillLen = styleSubgrid->fill_len;
|
||
mHasRepeatAuto = fillLen != 0;
|
||
if (mHasRepeatAuto) {
|
||
const auto& lineNameLists = styleSubgrid->names;
|
||
const int32_t extraAutoFillLineCount =
|
||
mClampMaxLine - lineNameLists.Length();
|
||
// Maximum possible number of repeat name lists. This must be reduced
|
||
// to a whole number of repetitions of the fill length.
|
||
const uint32_t possibleRepeatLength =
|
||
std::max<int32_t>(0, extraAutoFillLineCount + fillLen);
|
||
const uint32_t repeatRemainder = possibleRepeatLength % fillLen;
|
||
mRepeatAutoStart = styleSubgrid->fill_start;
|
||
mRepeatAutoEnd =
|
||
mRepeatAutoStart + possibleRepeatLength - repeatRemainder;
|
||
}
|
||
} else {
|
||
mClampMinLine = kMinLine;
|
||
mClampMaxLine = kMaxLine;
|
||
if (mHasRepeatAuto) {
|
||
mTrackAutoRepeatLineNames =
|
||
aTracks.mTemplate.GetRepeatAutoValue()->line_names.AsSpan();
|
||
}
|
||
}
|
||
ExpandRepeatLineNames(!!aRange, aTracks);
|
||
if (mHasRepeatAuto) {
|
||
// We need mTemplateLinesEnd to be after all line names.
|
||
// mExpandedLineNames has one repetition of the repeat(auto-fit/fill)
|
||
// track name lists already, so we must subtract the number of repeat
|
||
// track name lists to get to the number of non-repeat tracks, minus 2
|
||
// because the first and last line name lists are shared with the
|
||
// preceding and following non-repeat line name lists. We then add
|
||
// mRepeatEndDelta to include the interior line name lists from repeat
|
||
// tracks.
|
||
mTemplateLinesEnd = mExpandedLineNames.Length() -
|
||
(mTrackAutoRepeatLineNames.Length() - 2) +
|
||
mRepeatEndDelta;
|
||
} else {
|
||
mTemplateLinesEnd = mExpandedLineNames.Length();
|
||
}
|
||
MOZ_ASSERT(mHasRepeatAuto || mRepeatEndDelta <= 0);
|
||
MOZ_ASSERT(!mHasRepeatAuto || aRange ||
|
||
(mExpandedLineNames.Length() >= 2 &&
|
||
mRepeatAutoStart <= mExpandedLineNames.Length()));
|
||
}
|
||
|
||
// Store line names into mExpandedLineNames with `repeat(INTEGER, ...)`
|
||
// expanded (for non-subgrid), and all `repeat(...)` expanded (for subgrid).
|
||
void ExpandRepeatLineNames(bool aIsSubgrid,
|
||
const TrackSizingFunctions& aTracks) {
|
||
auto lineNameLists = aTracks.mTemplate.LineNameLists(aIsSubgrid);
|
||
|
||
const auto& trackListValues = aTracks.mTrackListValues;
|
||
const NameList* nameListToMerge = nullptr;
|
||
// NOTE(emilio): We rely on std::move clearing out the array.
|
||
SmallPointerArray<const NameList> names;
|
||
// This adjusts for outputting the repeat auto names in subgrid. In that
|
||
// case, all of the repeat values are handled in a single iteration.
|
||
const uint32_t subgridRepeatDelta =
|
||
(aIsSubgrid && mHasRepeatAuto)
|
||
? (aTracks.mTemplate.AsSubgrid()->fill_len - 1)
|
||
: 0;
|
||
const uint32_t end = std::min<uint32_t>(
|
||
lineNameLists.Length() - subgridRepeatDelta, mClampMaxLine + 1);
|
||
for (uint32_t i = 0; i < end; ++i) {
|
||
if (aIsSubgrid) {
|
||
if (MOZ_UNLIKELY(mHasRepeatAuto && i == mRepeatAutoStart)) {
|
||
// XXX expand 'auto-fill' names for subgrid for now since HasNameAt()
|
||
// only deals with auto-repeat **tracks** currently.
|
||
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
|
||
MOZ_ASSERT(styleSubgrid->fill_len > 0);
|
||
for (auto j = i; j < mRepeatAutoEnd; ++j) {
|
||
const auto repeatIndex = (j - i) % styleSubgrid->fill_len;
|
||
names.AppendElement(
|
||
&lineNameLists[styleSubgrid->fill_start + repeatIndex]);
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
}
|
||
} else if (mHasRepeatAuto && i > mRepeatAutoStart) {
|
||
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
|
||
names.AppendElement(&lineNameLists[i + styleSubgrid->fill_len - 1]);
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
} else {
|
||
names.AppendElement(&lineNameLists[i]);
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
}
|
||
// XXX expand repeat(<integer>, ...) line names here (bug 1583429)
|
||
continue;
|
||
}
|
||
|
||
if (nameListToMerge) {
|
||
names.AppendElement(nameListToMerge);
|
||
nameListToMerge = nullptr;
|
||
}
|
||
names.AppendElement(&lineNameLists[i]);
|
||
if (i >= trackListValues.Length()) {
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
continue;
|
||
}
|
||
const auto& value = trackListValues[i];
|
||
if (value.IsTrackSize()) {
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
continue;
|
||
}
|
||
const auto& repeat = value.AsTrackRepeat();
|
||
if (!repeat.count.IsNumber()) {
|
||
const auto repeatNames = repeat.line_names.AsSpan();
|
||
// If the repeat was truncated due to more than kMaxLine tracks, then
|
||
// the repeat will no longer be set on mRepeatAutoStart).
|
||
MOZ_ASSERT(!mHasRepeatAuto ||
|
||
mRepeatAutoStart == mExpandedLineNames.Length());
|
||
MOZ_ASSERT(repeatNames.Length() >= 2);
|
||
for (const auto j : IntegerRange(repeatNames.Length() - 1)) {
|
||
names.AppendElement(&repeatNames[j]);
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
}
|
||
nameListToMerge = &repeatNames[repeatNames.Length() - 1];
|
||
continue;
|
||
}
|
||
for (auto j : IntegerRange(repeat.count.AsNumber())) {
|
||
Unused << j;
|
||
if (nameListToMerge) {
|
||
names.AppendElement(nameListToMerge);
|
||
nameListToMerge = nullptr;
|
||
}
|
||
size_t trackSizesCount = repeat.track_sizes.Length();
|
||
auto repeatLineNames = repeat.line_names.AsSpan();
|
||
MOZ_ASSERT(repeatLineNames.Length() == trackSizesCount ||
|
||
repeatLineNames.Length() == trackSizesCount + 1);
|
||
for (auto k : IntegerRange(trackSizesCount)) {
|
||
names.AppendElement(&repeatLineNames[k]);
|
||
mExpandedLineNames.AppendElement(std::move(names));
|
||
}
|
||
if (repeatLineNames.Length() == trackSizesCount + 1) {
|
||
nameListToMerge = &repeatLineNames[trackSizesCount];
|
||
}
|
||
}
|
||
}
|
||
|
||
if (MOZ_UNLIKELY(mExpandedLineNames.Length() > uint32_t(mClampMaxLine))) {
|
||
mExpandedLineNames.TruncateLength(mClampMaxLine);
|
||
}
|
||
if (MOZ_UNLIKELY(mHasRepeatAuto && aIsSubgrid)) {
|
||
mHasRepeatAuto = false; // we've expanded all subgrid auto-fill lines
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Find the aNth occurrence of aName, searching forward if aNth is positive,
|
||
* and in reverse if aNth is negative (aNth == 0 is invalid), starting from
|
||
* aFromIndex (not inclusive), and return a 1-based line number.
|
||
* Also take into account there is an unconditional match at the lines in
|
||
* aImplicitLines.
|
||
* Return zero if aNth occurrences can't be found. In that case, aNth has
|
||
* been decremented with the number of occurrences that were found (if any).
|
||
*
|
||
* E.g. to search for "A 2" forward from the start of the grid: aName is "A"
|
||
* aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and
|
||
* aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
|
||
* line when we're searching in reverse). For "span A 2", aNth is 2 when
|
||
* used on a grid-[row|column]-end property and -2 for a *-start property,
|
||
* and aFromIndex is the line (which we should skip) on the opposite property.
|
||
*/
|
||
uint32_t FindNamedLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
|
||
const nsTArray<uint32_t>& aImplicitLines) const {
|
||
MOZ_ASSERT(aName);
|
||
MOZ_ASSERT(!aName->IsEmpty());
|
||
MOZ_ASSERT(aNth && *aNth != 0);
|
||
if (*aNth > 0) {
|
||
return FindLine(aName, aNth, aFromIndex, aImplicitLines);
|
||
}
|
||
int32_t nth = -*aNth;
|
||
int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLines);
|
||
*aNth = -nth;
|
||
return line;
|
||
}
|
||
|
||
/**
|
||
* Return a set of lines in aImplicitLines which matches the area name aName
|
||
* on aSide. For example, for aName "a" and aSide being an end side, it
|
||
* returns the line numbers which would match "a-end" in the relevant axis.
|
||
* For subgrids it includes searching the relevant axis in all ancestor
|
||
* grids too (within this subgrid's spanned area). If an ancestor has
|
||
* opposite direction, we switch aSide to the opposite logical side so we
|
||
* match on the same physical side as the original subgrid we're resolving
|
||
* the name for.
|
||
*/
|
||
void FindNamedAreas(nsAtom* aName, LogicalSide aSide,
|
||
nsTArray<uint32_t>& aImplicitLines) const {
|
||
// True if we're currently in a map that has the same direction as 'this'.
|
||
bool sameDirectionAsThis = true;
|
||
uint32_t min = !mParentLineNameMap ? 1 : mClampMinLine;
|
||
uint32_t max = mClampMaxLine;
|
||
for (auto* map = this; true;) {
|
||
uint32_t line = map->FindNamedArea(aName, aSide, min, max);
|
||
if (line > 0) {
|
||
if (MOZ_LIKELY(sameDirectionAsThis)) {
|
||
line -= min - 1;
|
||
} else {
|
||
line = max - line + 1;
|
||
}
|
||
aImplicitLines.AppendElement(line);
|
||
}
|
||
auto* parent = map->mParentLineNameMap;
|
||
if (!parent) {
|
||
if (MOZ_UNLIKELY(aImplicitLines.Length() > 1)) {
|
||
// Remove duplicates and sort in ascending order.
|
||
aImplicitLines.Sort();
|
||
for (size_t i = 0; i < aImplicitLines.Length(); ++i) {
|
||
uint32_t prev = aImplicitLines[i];
|
||
auto j = i + 1;
|
||
const auto start = j;
|
||
while (j < aImplicitLines.Length() && aImplicitLines[j] == prev) {
|
||
++j;
|
||
}
|
||
if (j != start) {
|
||
aImplicitLines.RemoveElementsAt(start, j - start);
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
if (MOZ_UNLIKELY(!map->mIsSameDirection)) {
|
||
aSide = GetOppositeSide(aSide);
|
||
sameDirectionAsThis = !sameDirectionAsThis;
|
||
}
|
||
min = map->TranslateToParentMap(min);
|
||
max = map->TranslateToParentMap(max);
|
||
if (min > max) {
|
||
MOZ_ASSERT(!map->mIsSameDirection);
|
||
std::swap(min, max);
|
||
}
|
||
map = parent;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Return true if any implicit named areas match aName, in this map or
|
||
* in any of our ancestor maps.
|
||
*/
|
||
bool HasImplicitNamedArea(nsAtom* aName) const {
|
||
const auto* map = this;
|
||
do {
|
||
if (map->mAreas && map->mAreas->has(aName)) {
|
||
return true;
|
||
}
|
||
map = map->mParentLineNameMap;
|
||
} while (map);
|
||
return false;
|
||
}
|
||
|
||
// For generating line name data for devtools.
|
||
nsTArray<nsTArray<StyleCustomIdent>>
|
||
GetResolvedLineNamesForComputedGridTrackInfo() const {
|
||
nsTArray<nsTArray<StyleCustomIdent>> result;
|
||
for (auto& expandedLine : mExpandedLineNames) {
|
||
nsTArray<StyleCustomIdent> line;
|
||
for (auto* chunk : expandedLine) {
|
||
for (auto& name : chunk->AsSpan()) {
|
||
line.AppendElement(name);
|
||
}
|
||
}
|
||
result.AppendElement(std::move(line));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
nsTArray<RefPtr<nsAtom>> GetExplicitLineNamesAtIndex(uint32_t aIndex) const {
|
||
nsTArray<RefPtr<nsAtom>> lineNames;
|
||
if (aIndex < mTemplateLinesEnd) {
|
||
const auto nameLists = GetLineNamesAt(aIndex);
|
||
for (const NameList* nameList : nameLists) {
|
||
for (const auto& name : nameList->AsSpan()) {
|
||
lineNames.AppendElement(name.AsAtom());
|
||
}
|
||
}
|
||
}
|
||
return lineNames;
|
||
}
|
||
|
||
const nsTArray<SmallPointerArray<const NameList>>& ExpandedLineNames() const {
|
||
return mExpandedLineNames;
|
||
}
|
||
const Span<const StyleOwnedSlice<StyleCustomIdent>>&
|
||
TrackAutoRepeatLineNames() const {
|
||
return mTrackAutoRepeatLineNames;
|
||
}
|
||
bool HasRepeatAuto() const { return mHasRepeatAuto; }
|
||
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
|
||
uint32_t RepeatAutoStart() const { return mRepeatAutoStart; }
|
||
|
||
// The min/max line number (1-based) for clamping.
|
||
int32_t mClampMinLine;
|
||
int32_t mClampMaxLine;
|
||
|
||
private:
|
||
// Return true if this map represents a subgridded axis.
|
||
bool IsSubgridded() const { return mParentLineNameMap != nullptr; }
|
||
|
||
/**
|
||
* @see FindNamedLine, this function searches forward.
|
||
*/
|
||
uint32_t FindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
|
||
const nsTArray<uint32_t>& aImplicitLines) const {
|
||
MOZ_ASSERT(aNth && *aNth > 0);
|
||
int32_t nth = *aNth;
|
||
// For a subgrid we need to search to the end of the grid rather than
|
||
// the end of the local name list, since ancestors might match.
|
||
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
|
||
uint32_t line;
|
||
uint32_t i = aFromIndex;
|
||
for (; i < end; i = line) {
|
||
line = i + 1;
|
||
if (Contains(i, aName) || aImplicitLines.Contains(line)) {
|
||
if (--nth == 0) {
|
||
return line;
|
||
}
|
||
}
|
||
}
|
||
for (auto implicitLine : aImplicitLines) {
|
||
if (implicitLine > i) {
|
||
// implicitLine is after the lines we searched above so it's last.
|
||
// (grid-template-areas has more tracks than
|
||
// grid-template-[rows|columns])
|
||
if (--nth == 0) {
|
||
return implicitLine;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
|
||
*aNth = nth;
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @see FindNamedLine, this function searches in reverse.
|
||
*/
|
||
uint32_t RFindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
|
||
const nsTArray<uint32_t>& aImplicitLines) const {
|
||
MOZ_ASSERT(aNth && *aNth > 0);
|
||
if (MOZ_UNLIKELY(aFromIndex == 0)) {
|
||
return 0; // There are no named lines beyond the start of the explicit
|
||
// grid.
|
||
}
|
||
--aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
|
||
int32_t nth = *aNth;
|
||
// Implicit lines may be beyond the explicit grid so we match those
|
||
// first if it's within the mTemplateLinesEnd..aFromIndex range.
|
||
// aImplicitLines is presumed sorted.
|
||
// For a subgrid we need to search to the end of the grid rather than
|
||
// the end of the local name list, since ancestors might match.
|
||
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
|
||
for (auto implicitLine : Reversed(aImplicitLines)) {
|
||
if (implicitLine <= end) {
|
||
break;
|
||
}
|
||
if (implicitLine < aFromIndex) {
|
||
if (--nth == 0) {
|
||
return implicitLine;
|
||
}
|
||
}
|
||
}
|
||
for (uint32_t i = std::min(aFromIndex, end); i; --i) {
|
||
if (Contains(i - 1, aName) || aImplicitLines.Contains(i)) {
|
||
if (--nth == 0) {
|
||
return i;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
|
||
*aNth = nth;
|
||
return 0;
|
||
}
|
||
|
||
// Return true if aName exists at aIndex in this map or any parent map.
|
||
bool Contains(uint32_t aIndex, nsAtom* aName) const {
|
||
const auto* map = this;
|
||
while (true) {
|
||
if (aIndex < map->mTemplateLinesEnd && map->HasNameAt(aIndex, aName)) {
|
||
return true;
|
||
}
|
||
auto* parent = map->mParentLineNameMap;
|
||
if (!parent) {
|
||
return false;
|
||
}
|
||
uint32_t line = map->TranslateToParentMap(aIndex + 1);
|
||
MOZ_ASSERT(line >= 1, "expected a 1-based line number");
|
||
aIndex = line - 1;
|
||
map = parent;
|
||
}
|
||
MOZ_ASSERT_UNREACHABLE("we always return from inside the loop above");
|
||
}
|
||
|
||
static bool Contains(Span<const StyleCustomIdent> aNames, nsAtom* aName) {
|
||
for (auto& name : aNames) {
|
||
if (name.AsAtom() == aName) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Return true if aName exists at aIndex in this map.
|
||
bool HasNameAt(const uint32_t aIndex, nsAtom* const aName) const {
|
||
const auto nameLists = GetLineNamesAt(aIndex);
|
||
for (const NameList* nameList : nameLists) {
|
||
if (Contains(nameList->AsSpan(), aName)) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Get the line names at an index.
|
||
// This accounts for auto repeat. The results may be spread over multiple name
|
||
// lists returned in the array, which is done to avoid unneccessarily copying
|
||
// the arrays to concatenate them.
|
||
SmallPointerArray<const NameList> GetLineNamesAt(
|
||
const uint32_t aIndex) const {
|
||
SmallPointerArray<const NameList> names;
|
||
// The index into mExpandedLineNames to use, if aIndex doesn't point to a
|
||
// name inside of a auto repeat.
|
||
uint32_t repeatAdjustedIndex = aIndex;
|
||
if (mHasRepeatAuto) {
|
||
// If the index is inside of the auto repeat, use the repeat line
|
||
// names. Otherwise, if the index is past the end of the repeat it must
|
||
// be adjusted to acount for the repeat tracks.
|
||
// mExpandedLineNames has the first and last line name lists from the
|
||
// repeat in it already, so we can just ignore aIndex == mRepeatAutoStart
|
||
// and treat when aIndex == mRepeatAutoEnd the same as any line after the
|
||
// the repeat.
|
||
const uint32_t maxRepeatLine = mTrackAutoRepeatLineNames.Length() - 1;
|
||
if (aIndex > mRepeatAutoStart && aIndex < mRepeatAutoEnd) {
|
||
// The index is inside the auto repeat. Calculate the lines to use,
|
||
// including the previous repetitions final names when we roll over
|
||
// from one repetition to the next.
|
||
const uint32_t repeatIndex =
|
||
(aIndex - mRepeatAutoStart) % maxRepeatLine;
|
||
if (repeatIndex == 0) {
|
||
// The index is at the start of a new repetition. The start of the
|
||
// first repetition is intentionally ignored above, so this will
|
||
// consider both the end of the previous repetition and the start
|
||
// the one that contains aIndex.
|
||
names.AppendElement(&mTrackAutoRepeatLineNames[maxRepeatLine]);
|
||
}
|
||
names.AppendElement(&mTrackAutoRepeatLineNames[repeatIndex]);
|
||
return names;
|
||
}
|
||
if (aIndex != mRepeatAutoStart && aIndex >= mRepeatAutoEnd) {
|
||
// Adjust the index to account for the line names of the repeat.
|
||
repeatAdjustedIndex -= mRepeatEndDelta;
|
||
repeatAdjustedIndex += mTrackAutoRepeatLineNames.Length() - 2;
|
||
}
|
||
}
|
||
MOZ_ASSERT(names.IsEmpty());
|
||
// The index is not inside the repeat tracks, or no repeat tracks exist.
|
||
const auto& nameLists = mExpandedLineNames[repeatAdjustedIndex];
|
||
for (const NameList* nameList : nameLists) {
|
||
names.AppendElement(nameList);
|
||
}
|
||
return names;
|
||
}
|
||
|
||
// Translate a subgrid line (1-based) to a parent line (1-based).
|
||
uint32_t TranslateToParentMap(uint32_t aLine) const {
|
||
if (MOZ_LIKELY(mIsSameDirection)) {
|
||
return aLine + mRange->mStart;
|
||
}
|
||
MOZ_ASSERT(mRange->mEnd + 1 >= aLine);
|
||
return mRange->mEnd - (aLine - 1) + 1;
|
||
}
|
||
|
||
/**
|
||
* Return the 1-based line that match aName in 'grid-template-areas'
|
||
* on the side aSide. Clamp the result to aMin..aMax but require
|
||
* that some part of the area is inside for it to match.
|
||
* Return zero if there is no match.
|
||
*/
|
||
uint32_t FindNamedArea(nsAtom* aName, LogicalSide aSide, int32_t aMin,
|
||
int32_t aMax) const {
|
||
if (const NamedArea* area = FindNamedArea(aName)) {
|
||
int32_t start = IsBlock(aSide) ? area->rows.start : area->columns.start;
|
||
int32_t end = IsBlock(aSide) ? area->rows.end : area->columns.end;
|
||
if (IsStart(aSide)) {
|
||
if (start >= aMin) {
|
||
if (start <= aMax) {
|
||
return start;
|
||
}
|
||
} else if (end >= aMin) {
|
||
return aMin;
|
||
}
|
||
} else {
|
||
if (end <= aMax) {
|
||
if (end >= aMin) {
|
||
return end;
|
||
}
|
||
} else if (start <= aMax) {
|
||
return aMax;
|
||
}
|
||
}
|
||
}
|
||
return 0; // no match
|
||
}
|
||
|
||
/**
|
||
* A convenience method to lookup a name in 'grid-template-areas'.
|
||
* @return null if not found
|
||
*/
|
||
const NamedArea* FindNamedArea(nsAtom* aName) const {
|
||
if (mStylePosition->mGridTemplateAreas.IsNone()) {
|
||
return nullptr;
|
||
}
|
||
const auto areas = mStylePosition->mGridTemplateAreas.AsAreas();
|
||
for (const NamedArea& area : areas->areas.AsSpan()) {
|
||
if (area.name.AsAtom() == aName) {
|
||
return &area;
|
||
}
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
// Some style data references, for easy access.
|
||
const nsStylePosition* mStylePosition;
|
||
const ImplicitNamedAreas* mAreas;
|
||
// The expanded list of line-names. Each entry is usually a single NameList,
|
||
// but can be multiple in the case where repeat() expands to something that
|
||
// has a line name list at the end.
|
||
nsTArray<SmallPointerArray<const NameList>> mExpandedLineNames;
|
||
// The repeat(auto-fill/fit) track value, if any. (always empty for subgrid)
|
||
Span<const StyleOwnedSlice<StyleCustomIdent>> mTrackAutoRepeatLineNames;
|
||
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
|
||
uint32_t mRepeatAutoStart;
|
||
// The index one past the end of the repeat(auto-fill/fit) tracks. Equal to
|
||
// mRepeatAutoStart if there are no repeat(auto-fill/fit) tracks.
|
||
uint32_t mRepeatAutoEnd;
|
||
// The total number of repeat tracks minus 1.
|
||
int32_t mRepeatEndDelta;
|
||
// The end of the line name lists with repeat(auto-fill/fit) tracks accounted
|
||
// for.
|
||
uint32_t mTemplateLinesEnd;
|
||
|
||
// The parent line map, or null if this map isn't for a subgrid.
|
||
const LineNameMap* mParentLineNameMap;
|
||
// The subgrid's range, or null if this map isn't for a subgrid.
|
||
const LineRange* mRange;
|
||
// True if the subgrid/parent axes progresses in the same direction.
|
||
const bool mIsSameDirection;
|
||
|
||
// True if there is a specified repeat(auto-fill/fit) track.
|
||
bool mHasRepeatAuto;
|
||
};
|
||
|
||
/**
|
||
* State for the tracks in one dimension.
|
||
*/
|
||
struct nsGridContainerFrame::Tracks {
|
||
explicit Tracks(LogicalAxis aAxis)
|
||
: mContentBoxSize(NS_UNCONSTRAINEDSIZE),
|
||
mGridGap(NS_UNCONSTRAINEDSIZE),
|
||
mStateUnion(TrackSize::StateBits(0)),
|
||
mAxis(aAxis),
|
||
mCanResolveLineRangeSize(false),
|
||
mIsMasonry(false) {
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::AUTO;
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::AUTO;
|
||
mBaseline[BaselineSharingGroup::First] = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
mBaseline[BaselineSharingGroup::Last] = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
}
|
||
|
||
void Initialize(const TrackSizingFunctions& aFunctions,
|
||
const NonNegativeLengthPercentageOrNormal& aGridGap,
|
||
uint32_t aNumTracks, nscoord aContentBoxSize);
|
||
|
||
/**
|
||
* Return the union of the state bits for the tracks in aRange.
|
||
*/
|
||
TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const;
|
||
|
||
// Some data we collect for aligning baseline-aligned items.
|
||
struct ItemBaselineData {
|
||
uint32_t mBaselineTrack;
|
||
nscoord mBaseline;
|
||
nscoord mSize;
|
||
GridItemInfo* mGridItem;
|
||
static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
|
||
const ItemBaselineData& b) {
|
||
return a.mBaselineTrack < b.mBaselineTrack;
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Calculate baseline offsets for the given set of items.
|
||
* Helper for InitialzeItemBaselines.
|
||
*/
|
||
void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
|
||
BaselineSharingGroup aBaselineGroup);
|
||
|
||
/**
|
||
* Initialize grid item baseline state and offsets.
|
||
*/
|
||
void InitializeItemBaselines(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems);
|
||
|
||
/**
|
||
* A masonry axis has four baseline alignment sets and each set can have
|
||
* a first- and last-baseline alignment group, for a total of eight possible
|
||
* baseline alignment groups, as follows:
|
||
* set 1: the first item in each `start` or `stretch` grid track
|
||
* set 2: the last item in each `start` grid track
|
||
* set 3: the last item in each `end` or `stretch` grid track
|
||
* set 4: the first item in each `end` grid track
|
||
* (`start`/`end`/`stretch` refers to the relevant `align/justify-tracks`
|
||
* value of the (grid-axis) start track for the item) Baseline-alignment for
|
||
* set 1 and 2 always adjusts the item's padding or margin on the start side,
|
||
* and set 3 and 4 on the end side, for both first- and last-baseline groups
|
||
* in the set. (This is similar to regular grid which always adjusts
|
||
* first-baseline groups on the start side and last-baseline groups on the
|
||
* end-side. The crux is that those groups are always aligned to the track's
|
||
* start/end side respectively.)
|
||
*/
|
||
struct BaselineAlignmentSet {
|
||
bool MatchTrackAlignment(StyleAlignFlags aTrackAlignment) const {
|
||
if (mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
|
||
return aTrackAlignment == StyleAlignFlags::START ||
|
||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
|
||
mItemSet == BaselineAlignmentSet::FirstItems);
|
||
}
|
||
return aTrackAlignment == StyleAlignFlags::END ||
|
||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
|
||
mItemSet == BaselineAlignmentSet::LastItems);
|
||
}
|
||
|
||
enum ItemSet { FirstItems, LastItems };
|
||
ItemSet mItemSet = FirstItems;
|
||
enum TrackAlignmentSet { StartStretch, EndStretch };
|
||
TrackAlignmentSet mTrackAlignmentSet = StartStretch;
|
||
};
|
||
void InitializeItemBaselinesInMasonryAxis(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
|
||
nsTArray<nscoord>& aTrackSizes,
|
||
nsTArray<ItemBaselineData>& aFirstBaselineItems,
|
||
nsTArray<ItemBaselineData>& aLastBaselineItems);
|
||
|
||
/**
|
||
* Apply the additional alignment needed to align the baseline-aligned subtree
|
||
* the item belongs to within its baseline track.
|
||
*/
|
||
void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;
|
||
|
||
enum class TrackSizingPhase {
|
||
IntrinsicMinimums,
|
||
ContentBasedMinimums,
|
||
MaxContentMinimums,
|
||
IntrinsicMaximums,
|
||
MaxContentMaximums,
|
||
};
|
||
|
||
// Some data we collect on each item for Step 2 of the Track Sizing Algorithm
|
||
// in ResolveIntrinsicSize below.
|
||
struct Step2ItemData final {
|
||
uint32_t mSpan;
|
||
TrackSize::StateBits mState;
|
||
LineRange mLineRange;
|
||
nscoord mMinSize;
|
||
nscoord mMinContentContribution;
|
||
nscoord mMaxContentContribution;
|
||
nsIFrame* mFrame;
|
||
static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b) {
|
||
return a.mSpan < b.mSpan;
|
||
}
|
||
|
||
template <TrackSizingPhase phase>
|
||
nscoord SizeContributionForPhase() const {
|
||
switch (phase) {
|
||
case TrackSizingPhase::IntrinsicMinimums:
|
||
return mMinSize;
|
||
case TrackSizingPhase::ContentBasedMinimums:
|
||
case TrackSizingPhase::IntrinsicMaximums:
|
||
return mMinContentContribution;
|
||
case TrackSizingPhase::MaxContentMinimums:
|
||
case TrackSizingPhase::MaxContentMaximums:
|
||
return mMaxContentContribution;
|
||
}
|
||
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
|
||
}
|
||
};
|
||
|
||
using FitContentClamper =
|
||
std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;
|
||
|
||
// Helper method for ResolveIntrinsicSize.
|
||
template <TrackSizingPhase phase>
|
||
bool GrowSizeForSpanningItems(nsTArray<Step2ItemData>::iterator aIter,
|
||
const nsTArray<Step2ItemData>::iterator aEnd,
|
||
nsTArray<uint32_t>& aTracks,
|
||
nsTArray<TrackSize>& aPlan,
|
||
nsTArray<TrackSize>& aItemPlan,
|
||
TrackSize::StateBits aSelector,
|
||
const FitContentClamper& aClamper = nullptr,
|
||
bool aNeedInfinitelyGrowableFlag = false);
|
||
/**
|
||
* Resolve Intrinsic Track Sizes.
|
||
* http://dev.w3.org/csswg/css-grid/#algo-content
|
||
*/
|
||
void ResolveIntrinsicSize(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
LineRange GridArea::*aRange,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit
|
||
* non-spanning items" in the spec. Return true if the track has a <flex>
|
||
* max-sizing function, false otherwise.
|
||
*/
|
||
bool ResolveIntrinsicSizeStep1(GridReflowInput& aState,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint,
|
||
const LineRange& aRange,
|
||
const GridItemInfo& aGridItem);
|
||
|
||
// Helper method that returns the track size to use in §11.5.1.2
|
||
// https://drafts.csswg.org/css-grid/#extra-space
|
||
template <TrackSizingPhase phase>
|
||
static nscoord StartSizeInDistribution(const TrackSize& aSize) {
|
||
switch (phase) {
|
||
case TrackSizingPhase::IntrinsicMinimums:
|
||
case TrackSizingPhase::ContentBasedMinimums:
|
||
case TrackSizingPhase::MaxContentMinimums:
|
||
return aSize.mBase;
|
||
case TrackSizingPhase::IntrinsicMaximums:
|
||
case TrackSizingPhase::MaxContentMaximums:
|
||
if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
return aSize.mBase;
|
||
}
|
||
return aSize.mLimit;
|
||
}
|
||
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
|
||
}
|
||
|
||
/**
|
||
* Collect the tracks which are growable (matching aSelector) into
|
||
* aGrowableTracks, and return the amount of space that can be used
|
||
* to grow those tracks. This method implements CSS Grid §11.5.1.2.
|
||
* https://drafts.csswg.org/css-grid/#extra-space
|
||
*/
|
||
template <TrackSizingPhase phase>
|
||
nscoord CollectGrowable(nscoord aAvailableSpace, const LineRange& aRange,
|
||
TrackSize::StateBits aSelector,
|
||
nsTArray<uint32_t>& aGrowableTracks) const {
|
||
MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
|
||
nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
|
||
for (auto i : aRange.Range()) {
|
||
const TrackSize& sz = mSizes[i];
|
||
space -= StartSizeInDistribution<phase>(sz);
|
||
if (space <= 0) {
|
||
return 0;
|
||
}
|
||
if (sz.mState & aSelector) {
|
||
aGrowableTracks.AppendElement(i);
|
||
}
|
||
}
|
||
return aGrowableTracks.IsEmpty() ? 0 : space;
|
||
}
|
||
|
||
template <TrackSizingPhase phase>
|
||
void InitializeItemPlan(nsTArray<TrackSize>& aItemPlan,
|
||
const nsTArray<uint32_t>& aTracks) const {
|
||
for (uint32_t track : aTracks) {
|
||
auto& plan = aItemPlan[track];
|
||
const TrackSize& sz = mSizes[track];
|
||
plan.mBase = StartSizeInDistribution<phase>(sz);
|
||
bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable;
|
||
plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit;
|
||
plan.mState = sz.mState;
|
||
}
|
||
}
|
||
|
||
template <TrackSizingPhase phase>
|
||
void InitializePlan(nsTArray<TrackSize>& aPlan) const {
|
||
for (size_t i = 0, len = aPlan.Length(); i < len; ++i) {
|
||
auto& plan = aPlan[i];
|
||
const auto& sz = mSizes[i];
|
||
plan.mBase = StartSizeInDistribution<phase>(sz);
|
||
MOZ_ASSERT(phase == TrackSizingPhase::MaxContentMaximums ||
|
||
!(sz.mState & TrackSize::eInfinitelyGrowable),
|
||
"forgot to reset the eInfinitelyGrowable bit?");
|
||
plan.mState = sz.mState;
|
||
}
|
||
}
|
||
|
||
template <TrackSizingPhase phase>
|
||
void CopyPlanToSize(const nsTArray<TrackSize>& aPlan,
|
||
bool aNeedInfinitelyGrowableFlag = false) {
|
||
for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
const auto& plan = aPlan[i];
|
||
MOZ_ASSERT(plan.mBase >= 0);
|
||
auto& sz = mSizes[i];
|
||
switch (phase) {
|
||
case TrackSizingPhase::IntrinsicMinimums:
|
||
case TrackSizingPhase::ContentBasedMinimums:
|
||
case TrackSizingPhase::MaxContentMinimums:
|
||
sz.mBase = plan.mBase;
|
||
break;
|
||
case TrackSizingPhase::IntrinsicMaximums:
|
||
if (plan.mState & TrackSize::eModified) {
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE &&
|
||
aNeedInfinitelyGrowableFlag) {
|
||
sz.mState |= TrackSize::eInfinitelyGrowable;
|
||
}
|
||
sz.mLimit = plan.mBase;
|
||
}
|
||
break;
|
||
case TrackSizingPhase::MaxContentMaximums:
|
||
if (plan.mState & TrackSize::eModified) {
|
||
sz.mLimit = plan.mBase;
|
||
}
|
||
sz.mState &= ~TrackSize::eInfinitelyGrowable;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Grow the planned size for tracks in aGrowableTracks up to their limit
|
||
* and then freeze them (all aGrowableTracks must be unfrozen on entry).
|
||
* Subtract the space added from aAvailableSpace and return that.
|
||
*/
|
||
nscoord GrowTracksToLimit(nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
const FitContentClamper& aFitContentClamper) const {
|
||
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
|
||
nscoord space = aAvailableSpace;
|
||
uint32_t numGrowable = aGrowableTracks.Length();
|
||
while (true) {
|
||
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
if (sz.IsFrozen()) {
|
||
continue;
|
||
}
|
||
nscoord newBase = sz.mBase + spacePerTrack;
|
||
nscoord limit = sz.mLimit;
|
||
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
|
||
aFitContentClamper)) {
|
||
// Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
|
||
aFitContentClamper(track, sz.mBase, &limit);
|
||
}
|
||
if (newBase > limit) {
|
||
nscoord consumed = limit - sz.mBase;
|
||
if (consumed > 0) {
|
||
space -= consumed;
|
||
sz.mBase = limit;
|
||
}
|
||
sz.mState |= TrackSize::eFrozen;
|
||
if (--numGrowable == 0) {
|
||
return space;
|
||
}
|
||
} else {
|
||
sz.mBase = newBase;
|
||
space -= spacePerTrack;
|
||
}
|
||
MOZ_ASSERT(space >= 0);
|
||
if (space == 0) {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that
|
||
* match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
|
||
* then mark it with aSkipFlag. If all tracks in S were marked then unmark
|
||
* them. Return aNumGrowable minus the number of tracks marked. It is
|
||
* assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
|
||
* on entry to this method.
|
||
*/
|
||
static uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
|
||
uint32_t aNumGrowable,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aMinSizingSelector,
|
||
TrackSize::StateBits aMaxSizingSelector,
|
||
TrackSize::StateBits aSkipFlag) {
|
||
bool foundOneSelected = false;
|
||
bool foundOneGrowable = false;
|
||
uint32_t numGrowable = aNumGrowable;
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
const auto state = sz.mState;
|
||
if (state & aMinSizingSelector) {
|
||
foundOneSelected = true;
|
||
if (state & aMaxSizingSelector) {
|
||
foundOneGrowable = true;
|
||
continue;
|
||
}
|
||
sz.mState |= aSkipFlag;
|
||
MOZ_ASSERT(numGrowable != 0);
|
||
--numGrowable;
|
||
}
|
||
}
|
||
// 12.5 "if there are no such tracks, then all affected tracks"
|
||
if (foundOneSelected && !foundOneGrowable) {
|
||
for (uint32_t track : aGrowableTracks) {
|
||
aPlan[track].mState &= ~aSkipFlag;
|
||
}
|
||
numGrowable = aNumGrowable;
|
||
}
|
||
return numGrowable;
|
||
}
|
||
|
||
/**
|
||
* Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if
|
||
* they *shouldn't* grow unlimited in §11.5.1.2.3 "Distribute space beyond
|
||
* growth limits" https://drafts.csswg.org/css-grid/#extra-space
|
||
* Return the number of tracks that are still growable.
|
||
*/
|
||
template <TrackSizingPhase phase>
|
||
static uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aSelector) {
|
||
uint32_t numGrowable = aGrowableTracks.Length();
|
||
if (phase == TrackSizingPhase::IntrinsicMaximums ||
|
||
phase == TrackSizingPhase::MaxContentMaximums) {
|
||
// "when handling any intrinsic growth limit: all affected tracks"
|
||
return numGrowable;
|
||
}
|
||
MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) &&
|
||
(aSelector & TrackSize::eMaxContentMinSizing),
|
||
"Should only get here for track sizing steps 2.1 to 2.3");
|
||
// Note that eMaxContentMinSizing is always included. We do those first:
|
||
numGrowable = MarkExcludedTracks(
|
||
aPlan, numGrowable, aGrowableTracks, TrackSize::eMaxContentMinSizing,
|
||
TrackSize::eMaxContentMaxSizing, TrackSize::eSkipGrowUnlimited1);
|
||
// Now mark min-content/auto min-sizing tracks if requested.
|
||
auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
|
||
if (minOrAutoSelector) {
|
||
numGrowable = MarkExcludedTracks(
|
||
aPlan, numGrowable, aGrowableTracks, minOrAutoSelector,
|
||
TrackSize::eIntrinsicMaxSizing, TrackSize::eSkipGrowUnlimited2);
|
||
}
|
||
return numGrowable;
|
||
}
|
||
|
||
/**
|
||
* Increase the planned size for tracks in aGrowableTracks that aren't
|
||
* marked with a eSkipGrowUnlimited flag beyond their limit.
|
||
* This implements the "Distribute space beyond growth limits" step in
|
||
* https://drafts.csswg.org/css-grid/#distribute-extra-space
|
||
*/
|
||
void GrowSelectedTracksUnlimited(
|
||
nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aGrowableTracks, uint32_t aNumGrowable,
|
||
const FitContentClamper& aFitContentClamper) const {
|
||
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 &&
|
||
aNumGrowable <= aGrowableTracks.Length());
|
||
nscoord space = aAvailableSpace;
|
||
DebugOnly<bool> didClamp = false;
|
||
while (aNumGrowable) {
|
||
nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1);
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
if (sz.mState & TrackSize::eSkipGrowUnlimited) {
|
||
continue; // an excluded track
|
||
}
|
||
nscoord delta = spacePerTrack;
|
||
nscoord newBase = sz.mBase + delta;
|
||
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
|
||
aFitContentClamper)) {
|
||
// Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
|
||
if (aFitContentClamper(track, sz.mBase, &newBase)) {
|
||
didClamp = true;
|
||
delta = newBase - sz.mBase;
|
||
MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
|
||
sz.mState |= TrackSize::eSkipGrowUnlimited1;
|
||
--aNumGrowable;
|
||
}
|
||
}
|
||
sz.mBase = newBase;
|
||
space -= delta;
|
||
MOZ_ASSERT(space >= 0);
|
||
if (space == 0) {
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(didClamp,
|
||
"we don't exit the loop above except by return, "
|
||
"unless we clamped some track's size");
|
||
}
|
||
|
||
/**
|
||
* Distribute aAvailableSpace to the planned base size for aGrowableTracks
|
||
* up to their limits, then distribute the remaining space beyond the limits.
|
||
*/
|
||
template <TrackSizingPhase phase>
|
||
void DistributeToTrackSizes(nscoord aAvailableSpace,
|
||
nsTArray<TrackSize>& aPlan,
|
||
nsTArray<TrackSize>& aItemPlan,
|
||
nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aSelector,
|
||
const FitContentClamper& aFitContentClamper) {
|
||
InitializeItemPlan<phase>(aItemPlan, aGrowableTracks);
|
||
nscoord space = GrowTracksToLimit(aAvailableSpace, aItemPlan,
|
||
aGrowableTracks, aFitContentClamper);
|
||
if (space > 0) {
|
||
uint32_t numGrowable =
|
||
MarkExcludedTracks<phase>(aItemPlan, aGrowableTracks, aSelector);
|
||
GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks,
|
||
numGrowable, aFitContentClamper);
|
||
}
|
||
for (uint32_t track : aGrowableTracks) {
|
||
nscoord& plannedSize = aPlan[track].mBase;
|
||
nscoord itemIncurredSize = aItemPlan[track].mBase;
|
||
if (plannedSize < itemIncurredSize) {
|
||
plannedSize = itemIncurredSize;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Distribute aAvailableSize to the tracks. This implements 12.6 at:
|
||
* http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
|
||
*/
|
||
void DistributeFreeSpace(nscoord aAvailableSize) {
|
||
const uint32_t numTracks = mSizes.Length();
|
||
if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
|
||
return;
|
||
}
|
||
if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mBase = sz.mLimit;
|
||
}
|
||
} else {
|
||
// Compute free space and count growable tracks.
|
||
nscoord space = aAvailableSize;
|
||
uint32_t numGrowable = numTracks;
|
||
for (const TrackSize& sz : mSizes) {
|
||
space -= sz.mBase;
|
||
MOZ_ASSERT(sz.mBase <= sz.mLimit);
|
||
if (sz.mBase == sz.mLimit) {
|
||
--numGrowable;
|
||
}
|
||
}
|
||
// Distribute the free space evenly to the growable tracks. If not exactly
|
||
// divisable the remainder is added to the leading tracks.
|
||
while (space > 0 && numGrowable) {
|
||
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
|
||
for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
|
||
TrackSize& sz = mSizes[i];
|
||
if (sz.mBase == sz.mLimit) {
|
||
continue;
|
||
}
|
||
nscoord newBase = sz.mBase + spacePerTrack;
|
||
if (newBase >= sz.mLimit) {
|
||
space -= sz.mLimit - sz.mBase;
|
||
sz.mBase = sz.mLimit;
|
||
--numGrowable;
|
||
} else {
|
||
space -= spacePerTrack;
|
||
sz.mBase = newBase;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Implements "12.7.1. Find the Size of an 'fr'".
|
||
* http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
|
||
* (The returned value is a 'nscoord' divided by a factor - a floating type
|
||
* is used to avoid intermediary rounding errors.)
|
||
*/
|
||
float FindFrUnitSize(const LineRange& aRange,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aSpaceToFill) const;
|
||
|
||
/**
|
||
* Implements the "find the used flex fraction" part of StretchFlexibleTracks.
|
||
* (The returned value is a 'nscoord' divided by a factor - a floating type
|
||
* is used to avoid intermediary rounding errors.)
|
||
*/
|
||
float FindUsedFlexFraction(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize) const;
|
||
|
||
/**
|
||
* Implements "12.7. Stretch Flexible Tracks"
|
||
* http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
|
||
*/
|
||
void StretchFlexibleTracks(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize);
|
||
|
||
/**
|
||
* Implements "12.3. Track Sizing Algorithm"
|
||
* http://dev.w3.org/csswg/css-grid/#algo-track-sizing
|
||
*/
|
||
void CalculateSizes(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aContentBoxSize, LineRange GridArea::*aRange,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Apply 'align/justify-content', whichever is relevant for this axis.
|
||
* https://drafts.csswg.org/css-align-3/#propdef-align-content
|
||
*/
|
||
void AlignJustifyContent(const nsStylePosition* aStyle,
|
||
StyleContentDistribution aAligmentStyleValue,
|
||
WritingMode aWM, nscoord aContentBoxSize,
|
||
bool aIsSubgridded);
|
||
|
||
nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const {
|
||
if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
|
||
// https://drafts.csswg.org/css-grid/#grid-definition
|
||
// "... the explicit grid still contains one grid line in each axis."
|
||
MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
|
||
return nscoord(0);
|
||
}
|
||
MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
|
||
if (aSide == GridLineSide::BeforeGridGap) {
|
||
if (aLine == 0) {
|
||
return nscoord(0);
|
||
}
|
||
const TrackSize& sz = mSizes[aLine - 1];
|
||
return sz.mPosition + sz.mBase;
|
||
}
|
||
if (aLine == mSizes.Length()) {
|
||
return mContentBoxSize;
|
||
}
|
||
return mSizes[aLine].mPosition;
|
||
}
|
||
|
||
nscoord SumOfGridTracksAndGaps() {
|
||
return SumOfGridTracks() + SumOfGridGaps();
|
||
}
|
||
|
||
nscoord SumOfGridTracks() const {
|
||
nscoord result = 0;
|
||
for (const TrackSize& size : mSizes) {
|
||
result += size.mBase;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
nscoord SumOfGridGaps() const {
|
||
auto len = mSizes.Length();
|
||
return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
|
||
}
|
||
|
||
/**
|
||
* Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
|
||
* gap before aRow to zero (and shift all rows after it by the removed gap).
|
||
*/
|
||
void BreakBeforeRow(uint32_t aRow) {
|
||
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
|
||
"Should only be fragmenting in the block axis (between rows)");
|
||
nscoord prevRowEndPos = 0;
|
||
if (aRow != 0) {
|
||
auto& prevSz = mSizes[aRow - 1];
|
||
prevRowEndPos = prevSz.mPosition + prevSz.mBase;
|
||
}
|
||
auto& sz = mSizes[aRow];
|
||
const nscoord gap = sz.mPosition - prevRowEndPos;
|
||
sz.mState |= TrackSize::eBreakBefore;
|
||
if (gap != 0) {
|
||
for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
|
||
mSizes[i].mPosition -= gap;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Set the size of aRow to aSize and adjust the position of all rows after it.
|
||
*/
|
||
void ResizeRow(uint32_t aRow, nscoord aNewSize) {
|
||
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
|
||
"Should only be fragmenting in the block axis (between rows)");
|
||
MOZ_ASSERT(aNewSize >= 0);
|
||
auto& sz = mSizes[aRow];
|
||
nscoord delta = aNewSize - sz.mBase;
|
||
NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
|
||
sz.mBase = aNewSize;
|
||
const uint32_t numRows = mSizes.Length();
|
||
for (uint32_t r = aRow + 1; r < numRows; ++r) {
|
||
mSizes[r].mPosition += delta;
|
||
}
|
||
}
|
||
|
||
nscoord ResolveSize(const LineRange& aRange) const {
|
||
MOZ_ASSERT(mCanResolveLineRangeSize);
|
||
MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
|
||
nscoord pos, size;
|
||
aRange.ToPositionAndLength(mSizes, &pos, &size);
|
||
return size;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void Dump() const;
|
||
#endif
|
||
|
||
CopyableAutoTArray<TrackSize, 32> mSizes;
|
||
nscoord mContentBoxSize;
|
||
nscoord mGridGap;
|
||
// The first(last)-baseline for the first(last) track in this axis.
|
||
PerBaseline<nscoord> mBaseline;
|
||
// The union of the track min/max-sizing state bits in this axis.
|
||
TrackSize::StateBits mStateUnion;
|
||
LogicalAxis mAxis;
|
||
// Used for aligning a baseline-aligned subtree of items. The only possible
|
||
// values are StyleAlignFlags::{START,END,CENTER,AUTO}. AUTO means there are
|
||
// no baseline-aligned items in any track in that axis.
|
||
// There is one alignment value for each BaselineSharingGroup.
|
||
PerBaseline<StyleAlignFlags> mBaselineSubtreeAlign;
|
||
// True if track positions and sizes are final in this axis.
|
||
bool mCanResolveLineRangeSize;
|
||
// True if this axis has masonry layout.
|
||
bool mIsMasonry;
|
||
};
|
||
|
||
#ifdef DEBUG
|
||
void nsGridContainerFrame::Tracks::Dump() const {
|
||
printf("%zu %s %s ", mSizes.Length(), mIsMasonry ? "masonry" : "grid",
|
||
mAxis == eLogicalAxisBlock ? "rows" : "columns");
|
||
TrackSize::DumpStateBits(mStateUnion);
|
||
printf("\n");
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
printf(" %d: ", i);
|
||
mSizes[i].Dump();
|
||
printf("\n");
|
||
}
|
||
double px = AppUnitsPerCSSPixel();
|
||
printf("Baselines: %.2fpx %2fpx\n",
|
||
mBaseline[BaselineSharingGroup::First] / px,
|
||
mBaseline[BaselineSharingGroup::Last] / px);
|
||
printf("Gap: %.2fpx\n", mGridGap / px);
|
||
printf("ContentBoxSize: %.2fpx\n", mContentBoxSize / px);
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* Grid data shared by all continuations, owned by the first-in-flow.
|
||
* The data is initialized from the first-in-flow's GridReflowInput at
|
||
* the end of its reflow. Fragmentation will modify mRows.mSizes -
|
||
* the mPosition to remove the row gap at the break boundary, the mState
|
||
* by setting the eBreakBefore flag, and mBase is modified when we decide
|
||
* to grow a row. mOriginalRowData is setup by the first-in-flow and
|
||
* not modified after that. It's used for undoing the changes to mRows.
|
||
* mCols, mGridItems, mAbsPosItems are used for initializing the grid
|
||
* reflow input for continuations, see GridReflowInput::Initialize below.
|
||
*/
|
||
struct nsGridContainerFrame::SharedGridData {
|
||
SharedGridData()
|
||
: mCols(eLogicalAxisInline),
|
||
mRows(eLogicalAxisBlock),
|
||
mGenerateComputedGridInfo(false) {}
|
||
Tracks mCols;
|
||
Tracks mRows;
|
||
struct RowData {
|
||
nscoord mBase; // the original track size
|
||
nscoord mGap; // the original gap before a track
|
||
};
|
||
nsTArray<RowData> mOriginalRowData;
|
||
nsTArray<GridItemInfo> mGridItems;
|
||
nsTArray<GridItemInfo> mAbsPosItems;
|
||
bool mGenerateComputedGridInfo;
|
||
|
||
/**
|
||
* Only set on the first-in-flow. Continuations will Initialize() their
|
||
* GridReflowInput from it.
|
||
*/
|
||
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
|
||
};
|
||
|
||
struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput {
|
||
GridReflowInput(nsGridContainerFrame* aFrame, const ReflowInput& aRI)
|
||
: GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI,
|
||
aRI.mStylePosition, aRI.GetWritingMode()) {}
|
||
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRC)
|
||
: GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
|
||
aFrame->GetWritingMode()) {}
|
||
|
||
/**
|
||
* Initialize our track sizes and grid item info using the shared
|
||
* state from aGridContainerFrame first-in-flow.
|
||
*/
|
||
void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
|
||
nscoord aConsumedBSize) {
|
||
MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
|
||
"don't call this on the first-in-flow");
|
||
MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
|
||
"shouldn't have any item data yet");
|
||
|
||
// Get the SharedGridData from the first-in-flow. Also calculate the number
|
||
// of fragments before this so that we can figure out our start row below.
|
||
uint32_t fragment = 0;
|
||
nsIFrame* firstInFlow = aGridContainerFrame;
|
||
for (auto pif = aGridContainerFrame->GetPrevInFlow(); pif;
|
||
pif = pif->GetPrevInFlow()) {
|
||
++fragment;
|
||
firstInFlow = pif;
|
||
}
|
||
mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop());
|
||
MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");
|
||
|
||
// Find the start row for this fragment and undo breaks after that row
|
||
// since the breaks might be different from the last reflow.
|
||
auto& rowSizes = mSharedGridData->mRows.mSizes;
|
||
const uint32_t numRows = rowSizes.Length();
|
||
mStartRow = numRows;
|
||
for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
|
||
if (rowSizes[row].mState & TrackSize::eBreakBefore) {
|
||
if (fragment == ++breakCount) {
|
||
mStartRow = row;
|
||
mFragBStart = rowSizes[row].mPosition;
|
||
// Restore the original size for |row| and grid gaps / state after it.
|
||
const auto& origRowData = mSharedGridData->mOriginalRowData;
|
||
rowSizes[row].mBase = origRowData[row].mBase;
|
||
nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
|
||
while (++row < numRows) {
|
||
auto& sz = rowSizes[row];
|
||
const auto& orig = origRowData[row];
|
||
sz.mPosition = prevEndPos + orig.mGap;
|
||
sz.mBase = orig.mBase;
|
||
sz.mState &= ~TrackSize::eBreakBefore;
|
||
prevEndPos = sz.mPosition + sz.mBase;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (mStartRow == numRows ||
|
||
aGridContainerFrame->IsMasonry(eLogicalAxisBlock)) {
|
||
// All of the grid's rows fit inside of previous grid-container fragments,
|
||
// or it's a masonry axis.
|
||
mFragBStart = aConsumedBSize;
|
||
}
|
||
|
||
// Copy the shared track state.
|
||
// XXX consider temporarily swapping the array elements instead and swapping
|
||
// XXX them back after we're done reflowing, for better performance.
|
||
// XXX (bug 1252002)
|
||
mCols = mSharedGridData->mCols;
|
||
mRows = mSharedGridData->mRows;
|
||
|
||
if (firstInFlow->GetProperty(UsedTrackSizes::Prop())) {
|
||
auto* prop = aGridContainerFrame->GetProperty(UsedTrackSizes::Prop());
|
||
if (!prop) {
|
||
prop = new UsedTrackSizes();
|
||
aGridContainerFrame->SetProperty(UsedTrackSizes::Prop(), prop);
|
||
}
|
||
prop->mCanResolveLineRangeSize = {true, true};
|
||
prop->mSizes[eLogicalAxisInline].Assign(mCols.mSizes);
|
||
prop->mSizes[eLogicalAxisBlock].Assign(mRows.mSizes);
|
||
}
|
||
|
||
// Copy item data from each child's first-in-flow data in mSharedGridData.
|
||
// XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
|
||
mIter.Reset();
|
||
for (; !mIter.AtEnd(); mIter.Next()) {
|
||
nsIFrame* child = *mIter;
|
||
nsIFrame* childFirstInFlow = child->FirstInFlow();
|
||
DebugOnly<size_t> len = mGridItems.Length();
|
||
for (auto& itemInfo : mSharedGridData->mGridItems) {
|
||
if (itemInfo.mFrame == childFirstInFlow) {
|
||
auto item =
|
||
mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
|
||
// Copy the item's baseline data so that the item's last fragment can
|
||
// do 'last baseline' alignment if necessary.
|
||
item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits;
|
||
item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits;
|
||
item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0];
|
||
item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1];
|
||
item->mState[0] |= itemInfo.mState[0] & ItemState::eAutoPlacement;
|
||
item->mState[1] |= itemInfo.mState[1] & ItemState::eAutoPlacement;
|
||
break;
|
||
}
|
||
}
|
||
MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
|
||
}
|
||
|
||
// XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
|
||
nsFrameList absPosChildren(aGridContainerFrame->GetChildList(
|
||
aGridContainerFrame->GetAbsoluteListID()));
|
||
for (auto f : absPosChildren) {
|
||
nsIFrame* childFirstInFlow = f->FirstInFlow();
|
||
DebugOnly<size_t> len = mAbsPosItems.Length();
|
||
for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
|
||
if (itemInfo.mFrame == childFirstInFlow) {
|
||
mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
|
||
break;
|
||
}
|
||
}
|
||
MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
|
||
}
|
||
|
||
// Copy in the computed grid info state bit
|
||
if (mSharedGridData->mGenerateComputedGridInfo) {
|
||
aGridContainerFrame->SetShouldGenerateComputedInfo(true);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Calculate our track sizes in the given axis.
|
||
*/
|
||
void CalculateTrackSizesForAxis(LogicalAxis aAxis, const Grid& aGrid,
|
||
nscoord aCBSize,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Calculate our track sizes.
|
||
*/
|
||
void CalculateTrackSizes(const Grid& aGrid, const LogicalSize& aContentBox,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Return the percentage basis for a grid item in its writing-mode.
|
||
* If aAxis is eLogicalAxisInline then we return NS_UNCONSTRAINEDSIZE in
|
||
* both axes since we know all track sizes are indefinite at this point
|
||
* (we calculate column sizes before row sizes). Otherwise, assert that
|
||
* column sizes are known and calculate the size for aGridItem.mArea.mCols
|
||
* and use NS_UNCONSTRAINEDSIZE in the other axis.
|
||
* @param aAxis the axis we're currently calculating track sizes for
|
||
*/
|
||
LogicalSize PercentageBasisFor(LogicalAxis aAxis,
|
||
const GridItemInfo& aGridItem) const;
|
||
|
||
/**
|
||
* Return the containing block for a grid item occupying aArea.
|
||
*/
|
||
LogicalRect ContainingBlockFor(const GridArea& aArea) const;
|
||
|
||
/**
|
||
* Return the containing block for an abs.pos. grid item occupying aArea.
|
||
* Any 'auto' lines in the grid area will be aligned with grid container
|
||
* containing block on that side.
|
||
* @param aGridOrigin the origin of the grid
|
||
* @param aGridCB the grid container containing block (its padding area)
|
||
*/
|
||
LogicalRect ContainingBlockForAbsPos(const GridArea& aArea,
|
||
const LogicalPoint& aGridOrigin,
|
||
const LogicalRect& aGridCB) const;
|
||
|
||
/**
|
||
* Apply `align/justify-content` alignment in our masonry axis.
|
||
* This aligns the "masonry box" within our content box size.
|
||
*/
|
||
void AlignJustifyContentInMasonryAxis(nscoord aMasonryBoxSize,
|
||
nscoord aContentBoxSize);
|
||
/**
|
||
* Apply `align/justify-tracks` alignment in our masonry axis.
|
||
*/
|
||
void AlignJustifyTracksInMasonryAxis(const LogicalSize& aContentSize,
|
||
const nsSize& aContainerSize);
|
||
|
||
// Helper for CollectSubgridItemsForAxis.
|
||
static void CollectSubgridForAxis(LogicalAxis aAxis, WritingMode aContainerWM,
|
||
const LineRange& aRangeInAxis,
|
||
const LineRange& aRangeInOppositeAxis,
|
||
const GridItemInfo& aItem,
|
||
const nsTArray<GridItemInfo>& aItems,
|
||
nsTArray<GridItemInfo>& aResult) {
|
||
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
|
||
bool itemIsSubgridInOppositeAxis = aItem.IsSubgrid(oppositeAxis);
|
||
auto subgridWM = aItem.mFrame->GetWritingMode();
|
||
bool isOrthogonal = subgridWM.IsOrthogonalTo(aContainerWM);
|
||
bool isSameDirInAxis =
|
||
subgridWM.ParallelAxisStartsOnSameSide(aAxis, aContainerWM);
|
||
bool isSameDirInOppositeAxis =
|
||
subgridWM.ParallelAxisStartsOnSameSide(oppositeAxis, aContainerWM);
|
||
if (isOrthogonal) {
|
||
// We'll Transpose the area below so these needs to be transposed as well.
|
||
std::swap(isSameDirInAxis, isSameDirInOppositeAxis);
|
||
}
|
||
uint32_t offsetInAxis = aRangeInAxis.mStart;
|
||
uint32_t gridEndInAxis = aRangeInAxis.Extent();
|
||
uint32_t offsetInOppositeAxis = aRangeInOppositeAxis.mStart;
|
||
uint32_t gridEndInOppositeAxis = aRangeInOppositeAxis.Extent();
|
||
for (const auto& subgridItem : aItems) {
|
||
auto newItem = aResult.AppendElement(
|
||
isOrthogonal ? subgridItem.Transpose() : subgridItem);
|
||
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
|
||
newItem->ReverseDirection(aAxis, gridEndInAxis);
|
||
}
|
||
newItem->mArea.LineRangeForAxis(aAxis).Translate(offsetInAxis);
|
||
if (itemIsSubgridInOppositeAxis) {
|
||
if (MOZ_UNLIKELY(!isSameDirInOppositeAxis)) {
|
||
newItem->ReverseDirection(oppositeAxis, gridEndInOppositeAxis);
|
||
}
|
||
LineRange& range = newItem->mArea.LineRangeForAxis(oppositeAxis);
|
||
range.Translate(offsetInOppositeAxis);
|
||
}
|
||
if (newItem->IsSubgrid(aAxis)) {
|
||
auto* subgrid =
|
||
subgridItem.SubgridFrame()->GetProperty(Subgrid::Prop());
|
||
CollectSubgridForAxis(aAxis, aContainerWM,
|
||
newItem->mArea.LineRangeForAxis(aAxis),
|
||
newItem->mArea.LineRangeForAxis(oppositeAxis),
|
||
*newItem, subgrid->mGridItems, aResult);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Copy all descendant items from all our subgrid children that are subgridded
|
||
// in aAxis recursively into aResult. All item grid area's and state are
|
||
// translated to our coordinates.
|
||
void CollectSubgridItemsForAxis(LogicalAxis aAxis,
|
||
nsTArray<GridItemInfo>& aResult) const {
|
||
for (const auto& item : mGridItems) {
|
||
if (item.IsSubgrid(aAxis)) {
|
||
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
|
||
auto* subgrid = item.SubgridFrame()->GetProperty(Subgrid::Prop());
|
||
CollectSubgridForAxis(aAxis, mWM, item.mArea.LineRangeForAxis(aAxis),
|
||
item.mArea.LineRangeForAxis(oppositeAxis), item,
|
||
subgrid->mGridItems, aResult);
|
||
}
|
||
}
|
||
}
|
||
|
||
Tracks& TracksFor(LogicalAxis aAxis) {
|
||
return aAxis == eLogicalAxisBlock ? mRows : mCols;
|
||
}
|
||
const Tracks& TracksFor(LogicalAxis aAxis) const {
|
||
return aAxis == eLogicalAxisBlock ? mRows : mCols;
|
||
}
|
||
|
||
CSSOrderAwareFrameIterator mIter;
|
||
const nsStylePosition* const mGridStyle;
|
||
Tracks mCols;
|
||
Tracks mRows;
|
||
TrackSizingFunctions mColFunctions;
|
||
TrackSizingFunctions mRowFunctions;
|
||
/**
|
||
* Info about each (normal flow) grid item.
|
||
*/
|
||
nsTArray<GridItemInfo> mGridItems;
|
||
/**
|
||
* Info about each grid-aligned abs.pos. child.
|
||
*/
|
||
nsTArray<GridItemInfo> mAbsPosItems;
|
||
|
||
/**
|
||
* @note mReflowInput may be null when using the 2nd ctor above. In this case
|
||
* we'll construct a dummy parent reflow input if we need it to calculate
|
||
* min/max-content contributions when sizing tracks.
|
||
*/
|
||
const ReflowInput* const mReflowInput;
|
||
gfxContext& mRenderingContext;
|
||
nsGridContainerFrame* const mFrame;
|
||
SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow.
|
||
/** Computed border+padding with mSkipSides applied. */
|
||
LogicalMargin mBorderPadding;
|
||
/**
|
||
* BStart of this fragment in "grid space" (i.e. the concatenation of content
|
||
* areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition,
|
||
* or, if this fragment starts after the last row, the ConsumedBSize().
|
||
*/
|
||
nscoord mFragBStart;
|
||
/** The start row for this fragment. */
|
||
uint32_t mStartRow;
|
||
/**
|
||
* The start row for the next fragment, if any. If mNextFragmentStartRow ==
|
||
* mStartRow then there are no rows in this fragment.
|
||
*/
|
||
uint32_t mNextFragmentStartRow;
|
||
/** Our tentative ApplySkipSides bits. */
|
||
LogicalSides mSkipSides;
|
||
const WritingMode mWM;
|
||
/** Initialized lazily, when we find the fragmentainer. */
|
||
bool mInFragmentainer;
|
||
|
||
private:
|
||
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRenderingContext,
|
||
const ReflowInput* aReflowInput,
|
||
const nsStylePosition* aGridStyle, const WritingMode& aWM)
|
||
: mIter(aFrame, kPrincipalList),
|
||
mGridStyle(aGridStyle),
|
||
mCols(eLogicalAxisInline),
|
||
mRows(eLogicalAxisBlock),
|
||
mColFunctions(mGridStyle->mGridTemplateColumns,
|
||
mGridStyle->mGridAutoColumns,
|
||
aFrame->IsSubgrid(eLogicalAxisInline)),
|
||
mRowFunctions(mGridStyle->mGridTemplateRows, mGridStyle->mGridAutoRows,
|
||
aFrame->IsSubgrid(eLogicalAxisBlock)),
|
||
mReflowInput(aReflowInput),
|
||
mRenderingContext(aRenderingContext),
|
||
mFrame(aFrame),
|
||
mSharedGridData(nullptr),
|
||
mBorderPadding(aWM),
|
||
mFragBStart(0),
|
||
mStartRow(0),
|
||
mNextFragmentStartRow(0),
|
||
mSkipSides(aFrame->GetWritingMode()),
|
||
mWM(aWM),
|
||
mInFragmentainer(false) {
|
||
MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
|
||
if (aReflowInput) {
|
||
mBorderPadding = aReflowInput->ComputedLogicalBorderPadding(mWM);
|
||
mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
|
||
mBorderPadding.ApplySkipSides(mSkipSides);
|
||
}
|
||
mCols.mIsMasonry = aFrame->IsMasonry(eLogicalAxisInline);
|
||
mRows.mIsMasonry = aFrame->IsMasonry(eLogicalAxisBlock);
|
||
MOZ_ASSERT(!(mCols.mIsMasonry && mRows.mIsMasonry),
|
||
"can't have masonry layout in both axes");
|
||
}
|
||
};
|
||
|
||
using GridReflowInput = nsGridContainerFrame::GridReflowInput;
|
||
|
||
/**
|
||
* The Grid implements grid item placement and the state of the grid -
|
||
* the size of the explicit/implicit grid, which cells are occupied etc.
|
||
*/
|
||
struct MOZ_STACK_CLASS nsGridContainerFrame::Grid {
|
||
explicit Grid(const Grid* aParentGrid = nullptr) : mParentGrid(aParentGrid) {}
|
||
|
||
/**
|
||
* Place all child frames into the grid and expand the (implicit) grid as
|
||
* needed. The allocated GridAreas are stored in the GridAreaProperty
|
||
* frame property on the child frame.
|
||
* @param aRepeatSizing the container's [min-|max-]*size - used to determine
|
||
* the number of repeat(auto-fill/fit) tracks.
|
||
*/
|
||
void PlaceGridItems(GridReflowInput& aState,
|
||
const RepeatTrackSizingInput& aRepeatSizing);
|
||
|
||
void SubgridPlaceGridItems(GridReflowInput& aParentState, Grid* aParentGrid,
|
||
const GridItemInfo& aGridItem);
|
||
|
||
/**
|
||
* As above but for an abs.pos. child. Any 'auto' lines will be represented
|
||
* by kAutoLine in the LineRange result.
|
||
* @param aGridStart the first line in the final, but untranslated grid
|
||
* @param aGridEnd the last line in the final, but untranslated grid
|
||
*/
|
||
LineRange ResolveAbsPosLineRange(const StyleGridLine& aStart,
|
||
const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
|
||
int32_t aGridStart, int32_t aGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a GridArea for abs.pos. item with non-auto lines placed at
|
||
* a definite line (1-based) with placement errors resolved. One or both
|
||
* positions may still be 'auto'.
|
||
* @param aChild the abs.pos. grid item to place
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
GridArea PlaceAbsPos(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Find the first column in row aLockedRow starting at aStartCol where aArea
|
||
* could be placed without overlapping other items. The returned column may
|
||
* cause aArea to overflow the current implicit grid bounds if placed there.
|
||
*/
|
||
uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
|
||
const GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first column (in row aArea->mRows.mStart) starting at
|
||
* aStartCol without overlapping other items. The resulting aArea may
|
||
* overflow the current implicit grid bounds.
|
||
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
|
||
* Pre-condition: aArea->mRows.IsDefinite() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea,
|
||
uint32_t aClampMaxColLine) const;
|
||
|
||
/**
|
||
* Find the first row in column aLockedCol starting at aStartRow where aArea
|
||
* could be placed without overlapping other items. The returned row may
|
||
* cause aArea to overflow the current implicit grid bounds if placed there.
|
||
*/
|
||
uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
|
||
const GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first row (in column aArea->mCols.mStart) starting at
|
||
* aStartRow without overlapping other items. The resulting aArea may
|
||
* overflow the current implicit grid bounds.
|
||
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
|
||
* Pre-condition: aArea->mCols.IsDefinite() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea,
|
||
uint32_t aClampMaxRowLine) const;
|
||
|
||
/**
|
||
* Place aArea in the first column starting at aStartCol,aStartRow without
|
||
* causing it to overlap other items or overflow mGridColEnd.
|
||
* If there's no such column in aStartRow, continue in position 1,aStartRow+1.
|
||
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
|
||
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
|
||
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoAutoInRowOrder(uint32_t aStartCol, uint32_t aStartRow,
|
||
GridArea* aArea, uint32_t aClampMaxColLine,
|
||
uint32_t aClampMaxRowLine) const;
|
||
|
||
/**
|
||
* Place aArea in the first row starting at aStartCol,aStartRow without
|
||
* causing it to overlap other items or overflow mGridRowEnd.
|
||
* If there's no such row in aStartCol, continue in position aStartCol+1,1.
|
||
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
|
||
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
|
||
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoAutoInColOrder(uint32_t aStartCol, uint32_t aStartRow,
|
||
GridArea* aArea, uint32_t aClampMaxColLine,
|
||
uint32_t aClampMaxRowLine) const;
|
||
|
||
/**
|
||
* Return aLine if it's inside the aMin..aMax range (inclusive),
|
||
* otherwise return kAutoLine.
|
||
*/
|
||
static int32_t AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax) {
|
||
MOZ_ASSERT(aMin <= aMax);
|
||
if (aLine < aMin || aLine > aMax) {
|
||
return kAutoLine;
|
||
}
|
||
return aLine;
|
||
}
|
||
|
||
/**
|
||
* Inflate the implicit grid to include aArea.
|
||
* @param aArea may be definite or auto
|
||
*/
|
||
void InflateGridFor(const GridArea& aArea) {
|
||
mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
|
||
mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
|
||
MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
|
||
mGridRowEnd <= kTranslatedMaxLine);
|
||
}
|
||
|
||
/**
|
||
* Calculates the empty tracks in a repeat(auto-fit).
|
||
* @param aOutNumEmptyLines Outputs the number of tracks which are empty.
|
||
* @param aSizingFunctions Sizing functions for the relevant axis.
|
||
* @param aNumGridLines Number of grid lines for the relevant axis.
|
||
* @param aIsEmptyFunc Functor to check if a cell is empty. This should be
|
||
* mCellMap.IsColEmpty or mCellMap.IsRowEmpty, depending on the axis.
|
||
*/
|
||
template <typename IsEmptyFuncT>
|
||
static Maybe<nsTArray<uint32_t>> CalculateAdjustForAutoFitElements(
|
||
uint32_t* aOutNumEmptyTracks, TrackSizingFunctions& aSizingFunctions,
|
||
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc);
|
||
|
||
/**
|
||
* Return a line number for (non-auto) aLine, per:
|
||
* http://dev.w3.org/csswg/css-grid/#line-placement
|
||
* @param aLine style data for the line (must be non-auto)
|
||
* @param aNth a number of lines to find from aFromIndex, negative if the
|
||
* search should be in reverse order. In the case aLine has
|
||
* a specified line name, it's permitted to pass in zero which
|
||
* will be treated as one.
|
||
* @param aFromIndex the zero-based index to start counting from
|
||
* @param aLineNameList the explicit named lines
|
||
* @param aSide the axis+edge we're resolving names for (e.g. if we're
|
||
resolving a grid-row-start line, pass eLogicalSideBStart)
|
||
* @param aExplicitGridEnd the last line in the explicit grid
|
||
* @param aStyle the StylePosition() for the grid container
|
||
* @return a definite line (1-based), clamped to
|
||
* the mClampMinLine..mClampMaxLine range
|
||
*/
|
||
int32_t ResolveLine(const StyleGridLine& aLine, int32_t aNth,
|
||
uint32_t aFromIndex, const LineNameMap& aNameMap,
|
||
LogicalSide aSide, uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Helper method for ResolveLineRange.
|
||
* @see ResolveLineRange
|
||
* @return a pair (start,end) of lines
|
||
*/
|
||
typedef std::pair<int32_t, int32_t> LinePair;
|
||
LinePair ResolveLineRangeHelper(const StyleGridLine& aStart,
|
||
const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a LineRange based on the given style data. Non-auto lines
|
||
* are resolved to a definite line number (1-based) per:
|
||
* http://dev.w3.org/csswg/css-grid/#line-placement
|
||
* with placement errors corrected per:
|
||
* http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
* @param aStyle the StylePosition() for the grid container
|
||
* @param aStart style data for the start line
|
||
* @param aEnd style data for the end line
|
||
* @param aLineNameList the explicit named lines
|
||
* @param aAxis the axis we're resolving names in
|
||
* @param aExplicitGridEnd the last line in the explicit grid
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
LineRange ResolveLineRange(const StyleGridLine& aStart,
|
||
const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap, LogicalAxis aAxis,
|
||
uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a GridArea with non-auto lines placed at a definite line (1-based)
|
||
* with placement errors resolved. One or both positions may still
|
||
* be 'auto'.
|
||
* @param aChild the grid item
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
GridArea PlaceDefinite(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle);
|
||
|
||
bool HasImplicitNamedArea(nsAtom* aName) const {
|
||
return mAreas && mAreas->has(aName);
|
||
}
|
||
|
||
// Return true if aString ends in aSuffix and has at least one character
|
||
// before the suffix. Assign aIndex to where the suffix starts.
|
||
static bool IsNameWithSuffix(nsAtom* aString, const nsString& aSuffix,
|
||
uint32_t* aIndex) {
|
||
if (StringEndsWith(nsDependentAtomString(aString), aSuffix)) {
|
||
*aIndex = aString->GetLength() - aSuffix.Length();
|
||
return *aIndex != 0;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool IsNameWithEndSuffix(nsAtom* aString, uint32_t* aIndex) {
|
||
return IsNameWithSuffix(aString, u"-end"_ns, aIndex);
|
||
}
|
||
|
||
static bool IsNameWithStartSuffix(nsAtom* aString, uint32_t* aIndex) {
|
||
return IsNameWithSuffix(aString, u"-start"_ns, aIndex);
|
||
}
|
||
|
||
// Return the relevant parent LineNameMap for the given subgrid axis aAxis.
|
||
const LineNameMap* ParentLineMapForAxis(bool aIsOrthogonal,
|
||
LogicalAxis aAxis) const {
|
||
if (!mParentGrid) {
|
||
return nullptr;
|
||
}
|
||
bool isRows = aIsOrthogonal == (aAxis == eLogicalAxisInline);
|
||
return isRows ? mParentGrid->mRowNameMap : mParentGrid->mColNameMap;
|
||
}
|
||
|
||
void SetLineMaps(const LineNameMap* aColNameMap,
|
||
const LineNameMap* aRowNameMap) {
|
||
mColNameMap = aColNameMap;
|
||
mRowNameMap = aRowNameMap;
|
||
}
|
||
|
||
/**
|
||
* A CellMap holds state for each cell in the grid.
|
||
* It's row major. It's sparse in the sense that it only has enough rows to
|
||
* cover the last row that has a grid item. Each row only has enough entries
|
||
* to cover columns that are occupied *on that row*, i.e. it's not a full
|
||
* matrix covering the entire implicit grid. An absent Cell means that it's
|
||
* unoccupied by any grid item.
|
||
*/
|
||
struct CellMap {
|
||
struct Cell {
|
||
constexpr Cell() : mIsOccupied(false) {}
|
||
bool mIsOccupied : 1;
|
||
};
|
||
|
||
void Fill(const GridArea& aGridArea) {
|
||
MOZ_ASSERT(aGridArea.IsDefinite());
|
||
MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
|
||
MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
|
||
const auto numRows = aGridArea.mRows.mEnd;
|
||
const auto numCols = aGridArea.mCols.mEnd;
|
||
mCells.EnsureLengthAtLeast(numRows);
|
||
for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
|
||
nsTArray<Cell>& cellsInRow = mCells[i];
|
||
cellsInRow.EnsureLengthAtLeast(numCols);
|
||
for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
|
||
cellsInRow[j].mIsOccupied = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
uint32_t IsEmptyCol(uint32_t aCol) const {
|
||
for (auto& row : mCells) {
|
||
if (aCol < row.Length() && row[aCol].mIsOccupied) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
uint32_t IsEmptyRow(uint32_t aRow) const {
|
||
if (aRow >= mCells.Length()) {
|
||
return true;
|
||
}
|
||
for (const Cell& cell : mCells[aRow]) {
|
||
if (cell.mIsOccupied) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
#ifdef DEBUG
|
||
void Dump() const {
|
||
const size_t numRows = mCells.Length();
|
||
for (size_t i = 0; i < numRows; ++i) {
|
||
const nsTArray<Cell>& cellsInRow = mCells[i];
|
||
const size_t numCols = cellsInRow.Length();
|
||
printf("%lu:\t", (unsigned long)i + 1);
|
||
for (size_t j = 0; j < numCols; ++j) {
|
||
printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
|
||
}
|
||
printf("\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
nsTArray<nsTArray<Cell>> mCells;
|
||
};
|
||
|
||
/**
|
||
* State for each cell in the grid.
|
||
*/
|
||
CellMap mCellMap;
|
||
/**
|
||
* @see HasImplicitNamedArea.
|
||
*/
|
||
ImplicitNamedAreas* mAreas;
|
||
/**
|
||
* The last column grid line (1-based) in the explicit grid.
|
||
* (i.e. the number of explicit columns + 1)
|
||
*/
|
||
uint32_t mExplicitGridColEnd;
|
||
/**
|
||
* The last row grid line (1-based) in the explicit grid.
|
||
* (i.e. the number of explicit rows + 1)
|
||
*/
|
||
uint32_t mExplicitGridRowEnd;
|
||
// Same for the implicit grid, except these become zero-based after
|
||
// resolving definite lines.
|
||
uint32_t mGridColEnd;
|
||
uint32_t mGridRowEnd;
|
||
|
||
/**
|
||
* Offsets from the start of the implicit grid to the start of the translated
|
||
* explicit grid. They are zero if there are no implicit lines before 1,1.
|
||
* e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
|
||
* corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
|
||
* grid.
|
||
*/
|
||
uint32_t mExplicitGridOffsetCol;
|
||
uint32_t mExplicitGridOffsetRow;
|
||
|
||
/**
|
||
* Our parent grid if any.
|
||
*/
|
||
const Grid* mParentGrid;
|
||
|
||
/**
|
||
* Our LineNameMaps.
|
||
*/
|
||
const LineNameMap* mColNameMap;
|
||
const LineNameMap* mRowNameMap;
|
||
};
|
||
|
||
/**
|
||
* Compute margin+border+padding for aGridItem.mFrame (a subgrid) and store it
|
||
* on its Subgrid property (and return that property).
|
||
* aPercentageBasis is in the grid item's writing-mode.
|
||
*/
|
||
static Subgrid* SubgridComputeMarginBorderPadding(
|
||
const GridItemInfo& aGridItem, const LogicalSize& aPercentageBasis) {
|
||
auto* subgridFrame = aGridItem.SubgridFrame();
|
||
auto cbWM = aGridItem.mFrame->GetParent()->GetWritingMode();
|
||
auto* subgrid = subgridFrame->GetProperty(Subgrid::Prop());
|
||
auto wm = subgridFrame->GetWritingMode();
|
||
auto pmPercentageBasis = cbWM.IsOrthogonalTo(wm) ? aPercentageBasis.BSize(wm)
|
||
: aPercentageBasis.ISize(wm);
|
||
SizeComputationInput sz(subgridFrame, nullptr, cbWM, pmPercentageBasis);
|
||
subgrid->mMarginBorderPadding =
|
||
sz.ComputedLogicalMargin(cbWM) + sz.ComputedLogicalBorderPadding(cbWM);
|
||
|
||
if (aGridItem.mFrame != subgridFrame) {
|
||
nsIScrollableFrame* scrollFrame = aGridItem.mFrame->GetScrollTargetFrame();
|
||
if (scrollFrame) {
|
||
MOZ_ASSERT(
|
||
sz.ComputedLogicalMargin(cbWM) == LogicalMargin(cbWM) &&
|
||
sz.ComputedLogicalBorder(cbWM) == LogicalMargin(cbWM),
|
||
"A scrolled inner frame should not have any margin or border!");
|
||
|
||
// Add the margin and border from the (outer) scroll frame.
|
||
SizeComputationInput szScrollFrame(aGridItem.mFrame, nullptr, cbWM,
|
||
pmPercentageBasis);
|
||
subgrid->mMarginBorderPadding +=
|
||
szScrollFrame.ComputedLogicalMargin(cbWM) +
|
||
szScrollFrame.ComputedLogicalBorder(cbWM);
|
||
|
||
nsMargin ssz = scrollFrame->GetActualScrollbarSizes();
|
||
subgrid->mMarginBorderPadding += LogicalMargin(cbWM, ssz);
|
||
}
|
||
|
||
if (aGridItem.mFrame->IsFieldSetFrame()) {
|
||
const auto* f = static_cast<nsFieldSetFrame*>(aGridItem.mFrame);
|
||
const auto* inner = f->GetInner();
|
||
auto wm = inner->GetWritingMode();
|
||
LogicalPoint pos = inner->GetLogicalPosition(aGridItem.mFrame->GetSize());
|
||
// The legend is always on the BStart side and it inflates the fieldset's
|
||
// "border area" size. The inner frame's b-start pos equals that size.
|
||
LogicalMargin offsets(wm, pos.B(wm), 0, 0, 0);
|
||
subgrid->mMarginBorderPadding += offsets.ConvertTo(cbWM, wm);
|
||
}
|
||
}
|
||
return subgrid;
|
||
}
|
||
|
||
static void CopyUsedTrackSizes(nsTArray<TrackSize>& aResult,
|
||
const nsGridContainerFrame* aUsedTrackSizesFrame,
|
||
const UsedTrackSizes* aUsedTrackSizes,
|
||
const nsGridContainerFrame* aSubgridFrame,
|
||
const Subgrid* aSubgrid,
|
||
LogicalAxis aSubgridAxis) {
|
||
MOZ_ASSERT(aSubgridFrame->ParentGridContainerForSubgrid() ==
|
||
aUsedTrackSizesFrame);
|
||
aResult.SetLength(aSubgridAxis == eLogicalAxisInline ? aSubgrid->mGridColEnd
|
||
: aSubgrid->mGridRowEnd);
|
||
auto parentAxis =
|
||
aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aSubgridAxis) : aSubgridAxis;
|
||
const auto& parentSizes = aUsedTrackSizes->mSizes[parentAxis];
|
||
MOZ_ASSERT(aUsedTrackSizes->mCanResolveLineRangeSize[parentAxis]);
|
||
if (parentSizes.IsEmpty()) {
|
||
return;
|
||
}
|
||
const auto& range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
|
||
const auto cbwm = aUsedTrackSizesFrame->GetWritingMode();
|
||
const auto wm = aSubgridFrame->GetWritingMode();
|
||
// Recompute the MBP to resolve percentages against the resolved track sizes.
|
||
if (parentAxis == eLogicalAxisInline) {
|
||
// Find the subgrid's grid item frame in its parent grid container. This
|
||
// is usually the same as aSubgridFrame but it may also have a ScrollFrame,
|
||
// FieldSetFrame etc. We just loop until we see the first ancestor
|
||
// GridContainerFrame and pick the last frame we saw before that.
|
||
// Note that all subgrids are inside a parent (sub)grid container.
|
||
const nsIFrame* outerGridItemFrame = aSubgridFrame;
|
||
for (nsIFrame* parent = aSubgridFrame->GetParent();
|
||
parent != aUsedTrackSizesFrame; parent = parent->GetParent()) {
|
||
MOZ_ASSERT(!parent->IsGridContainerFrame());
|
||
outerGridItemFrame = parent;
|
||
}
|
||
auto sizeInAxis = range.ToLength(aUsedTrackSizes->mSizes[parentAxis]);
|
||
LogicalSize pmPercentageBasis =
|
||
aSubgrid->mIsOrthogonal ? LogicalSize(wm, nscoord(0), sizeInAxis)
|
||
: LogicalSize(wm, sizeInAxis, nscoord(0));
|
||
GridItemInfo info(const_cast<nsIFrame*>(outerGridItemFrame),
|
||
aSubgrid->mArea);
|
||
SubgridComputeMarginBorderPadding(info, pmPercentageBasis);
|
||
}
|
||
const LogicalMargin& mbp = aSubgrid->mMarginBorderPadding;
|
||
nscoord startMBP;
|
||
nscoord endMBP;
|
||
if (MOZ_LIKELY(cbwm.ParallelAxisStartsOnSameSide(parentAxis, wm))) {
|
||
startMBP = mbp.Start(parentAxis, cbwm);
|
||
endMBP = mbp.End(parentAxis, cbwm);
|
||
uint32_t i = range.mStart;
|
||
nscoord startPos = parentSizes[i].mPosition + startMBP;
|
||
for (auto& sz : aResult) {
|
||
sz = parentSizes[i++];
|
||
sz.mPosition -= startPos;
|
||
}
|
||
} else {
|
||
startMBP = mbp.End(parentAxis, cbwm);
|
||
endMBP = mbp.Start(parentAxis, cbwm);
|
||
uint32_t i = range.mEnd - 1;
|
||
const auto& parentEnd = parentSizes[i];
|
||
nscoord parentEndPos = parentEnd.mPosition + parentEnd.mBase - startMBP;
|
||
for (auto& sz : aResult) {
|
||
sz = parentSizes[i--];
|
||
sz.mPosition = parentEndPos - (sz.mPosition + sz.mBase);
|
||
}
|
||
}
|
||
auto& startTrack = aResult[0];
|
||
startTrack.mPosition = 0;
|
||
startTrack.mBase -= startMBP;
|
||
if (MOZ_UNLIKELY(startTrack.mBase < nscoord(0))) {
|
||
// Our MBP doesn't fit in the start track. Adjust the track position
|
||
// to maintain track alignment with our parent.
|
||
startTrack.mPosition = startTrack.mBase;
|
||
startTrack.mBase = nscoord(0);
|
||
}
|
||
auto& endTrack = aResult.LastElement();
|
||
endTrack.mBase -= endMBP;
|
||
if (MOZ_UNLIKELY(endTrack.mBase < nscoord(0))) {
|
||
endTrack.mBase = nscoord(0);
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::UsedTrackSizes::ResolveTrackSizesForAxis(
|
||
nsGridContainerFrame* aFrame, LogicalAxis aAxis, gfxContext& aRC) {
|
||
if (mCanResolveLineRangeSize[aAxis]) {
|
||
return;
|
||
}
|
||
if (!aFrame->IsSubgrid()) {
|
||
// We can't resolve sizes in this axis at this point. aFrame is the top grid
|
||
// container, which will store its final track sizes later once they're
|
||
// resolved in this axis (in GridReflowInput::CalculateTrackSizesForAxis).
|
||
// The single caller of this method only needs track sizes for
|
||
// calculating a CB size and it will treat it as indefinite when
|
||
// this happens.
|
||
return;
|
||
}
|
||
auto* parent = aFrame->ParentGridContainerForSubgrid();
|
||
auto* parentSizes = parent->GetUsedTrackSizes();
|
||
if (!parentSizes) {
|
||
parentSizes = new UsedTrackSizes();
|
||
parent->SetProperty(UsedTrackSizes::Prop(), parentSizes);
|
||
}
|
||
auto* subgrid = aFrame->GetProperty(Subgrid::Prop());
|
||
const auto parentAxis =
|
||
subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
|
||
parentSizes->ResolveTrackSizesForAxis(parent, parentAxis, aRC);
|
||
if (!parentSizes->mCanResolveLineRangeSize[parentAxis]) {
|
||
if (aFrame->IsSubgrid(aAxis)) {
|
||
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
|
||
NS_UNCONSTRAINEDSIZE);
|
||
}
|
||
return;
|
||
}
|
||
if (aFrame->IsSubgrid(aAxis)) {
|
||
CopyUsedTrackSizes(mSizes[aAxis], parent, parentSizes, aFrame, subgrid,
|
||
aAxis);
|
||
mCanResolveLineRangeSize[aAxis] = true;
|
||
} else {
|
||
const auto& range = subgrid->mArea.LineRangeForAxis(parentAxis);
|
||
nscoord contentBoxSize = range.ToLength(parentSizes->mSizes[parentAxis]);
|
||
auto parentWM = aFrame->GetParent()->GetWritingMode();
|
||
contentBoxSize -=
|
||
subgrid->mMarginBorderPadding.StartEnd(parentAxis, parentWM);
|
||
contentBoxSize = std::max(nscoord(0), contentBoxSize);
|
||
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
|
||
contentBoxSize);
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::UsedTrackSizes::ResolveSubgridTrackSizesForAxis(
|
||
nsGridContainerFrame* aFrame, LogicalAxis aAxis, Subgrid* aSubgrid,
|
||
gfxContext& aRC, nscoord aContentBoxSize) {
|
||
GridReflowInput state(aFrame, aRC);
|
||
state.mGridItems = aSubgrid->mGridItems.Clone();
|
||
Grid grid;
|
||
grid.mGridColEnd = aSubgrid->mGridColEnd;
|
||
grid.mGridRowEnd = aSubgrid->mGridRowEnd;
|
||
state.CalculateTrackSizesForAxis(aAxis, grid, aContentBoxSize,
|
||
SizingConstraint::NoConstraint);
|
||
const auto& tracks = aAxis == eLogicalAxisInline ? state.mCols : state.mRows;
|
||
mSizes[aAxis].Assign(tracks.mSizes);
|
||
mCanResolveLineRangeSize[aAxis] = tracks.mCanResolveLineRangeSize;
|
||
MOZ_ASSERT(mCanResolveLineRangeSize[aAxis]);
|
||
}
|
||
|
||
void nsGridContainerFrame::GridReflowInput::CalculateTrackSizesForAxis(
|
||
LogicalAxis aAxis, const Grid& aGrid, nscoord aContentBoxSize,
|
||
SizingConstraint aConstraint) {
|
||
auto& tracks = aAxis == eLogicalAxisInline ? mCols : mRows;
|
||
const auto& sizingFunctions =
|
||
aAxis == eLogicalAxisInline ? mColFunctions : mRowFunctions;
|
||
const auto& gapStyle = aAxis == eLogicalAxisInline ? mGridStyle->mColumnGap
|
||
: mGridStyle->mRowGap;
|
||
if (tracks.mIsMasonry) {
|
||
// See comment on nsGridContainerFrame::MasonryLayout().
|
||
tracks.Initialize(sizingFunctions, gapStyle, 2, aContentBoxSize);
|
||
tracks.mCanResolveLineRangeSize = true;
|
||
return;
|
||
}
|
||
uint32_t gridEnd =
|
||
aAxis == eLogicalAxisInline ? aGrid.mGridColEnd : aGrid.mGridRowEnd;
|
||
Maybe<TrackSizingFunctions> fallbackTrackSizing;
|
||
|
||
bool useParentGaps = false;
|
||
const bool isSubgriddedAxis = mFrame->IsSubgrid(aAxis);
|
||
if (MOZ_LIKELY(!isSubgriddedAxis)) {
|
||
tracks.Initialize(sizingFunctions, gapStyle, gridEnd, aContentBoxSize);
|
||
} else {
|
||
tracks.mGridGap =
|
||
nsLayoutUtils::ResolveGapToLength(gapStyle, aContentBoxSize);
|
||
tracks.mContentBoxSize = aContentBoxSize;
|
||
const auto* subgrid = mFrame->GetProperty(Subgrid::Prop());
|
||
tracks.mSizes.SetLength(gridEnd);
|
||
auto* parent = mFrame->ParentGridContainerForSubgrid();
|
||
auto parentAxis = subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
|
||
const auto* parentSizes = parent->GetUsedTrackSizes();
|
||
if (parentSizes && parentSizes->mCanResolveLineRangeSize[parentAxis]) {
|
||
CopyUsedTrackSizes(tracks.mSizes, parent, parentSizes, mFrame, subgrid,
|
||
aAxis);
|
||
useParentGaps = gapStyle.IsNormal();
|
||
} else {
|
||
fallbackTrackSizing.emplace(TrackSizingFunctions::ForSubgridFallback(
|
||
mFrame, subgrid, parent, parentAxis));
|
||
tracks.Initialize(*fallbackTrackSizing, gapStyle, gridEnd,
|
||
aContentBoxSize);
|
||
}
|
||
}
|
||
|
||
// We run the Track Sizing Algorithm in non-subgridded axes, and in some
|
||
// cases in a subgridded axis when our parent track sizes aren't resolved yet.
|
||
if (MOZ_LIKELY(!isSubgriddedAxis) || fallbackTrackSizing.isSome()) {
|
||
const size_t origGridItemCount = mGridItems.Length();
|
||
if (mFrame->HasSubgridItems(aAxis)) {
|
||
CollectSubgridItemsForAxis(aAxis, mGridItems);
|
||
}
|
||
tracks.CalculateSizes(
|
||
*this, mGridItems,
|
||
fallbackTrackSizing ? *fallbackTrackSizing : sizingFunctions,
|
||
aContentBoxSize,
|
||
aAxis == eLogicalAxisInline ? &GridArea::mCols : &GridArea::mRows,
|
||
aConstraint);
|
||
// XXXmats we're losing the baseline state of subgrid descendants that
|
||
// CollectSubgridItemsForAxis added here. We need to propagate that
|
||
// state into the subgrid's Reflow somehow...
|
||
mGridItems.TruncateLength(origGridItemCount);
|
||
}
|
||
|
||
if (aContentBoxSize != NS_UNCONSTRAINEDSIZE) {
|
||
auto alignment = mGridStyle->UsedContentAlignment(tracks.mAxis);
|
||
tracks.AlignJustifyContent(mGridStyle, alignment, mWM, aContentBoxSize,
|
||
isSubgriddedAxis);
|
||
} else if (!useParentGaps) {
|
||
const nscoord gridGap = tracks.mGridGap;
|
||
nscoord pos = 0;
|
||
for (TrackSize& sz : tracks.mSizes) {
|
||
sz.mPosition = pos;
|
||
pos += sz.mBase + gridGap;
|
||
}
|
||
}
|
||
|
||
if (aConstraint == SizingConstraint::NoConstraint &&
|
||
(mFrame->HasSubgridItems() || mFrame->IsSubgrid())) {
|
||
mFrame->StoreUsedTrackSizes(aAxis, tracks.mSizes);
|
||
}
|
||
|
||
// positions and sizes are now final
|
||
tracks.mCanResolveLineRangeSize = true;
|
||
}
|
||
|
||
void nsGridContainerFrame::GridReflowInput::CalculateTrackSizes(
|
||
const Grid& aGrid, const LogicalSize& aContentBox,
|
||
SizingConstraint aConstraint) {
|
||
CalculateTrackSizesForAxis(eLogicalAxisInline, aGrid, aContentBox.ISize(mWM),
|
||
aConstraint);
|
||
CalculateTrackSizesForAxis(eLogicalAxisBlock, aGrid, aContentBox.BSize(mWM),
|
||
aConstraint);
|
||
}
|
||
|
||
// Align an item's margin box in its aAxis inside aCBSize.
|
||
static void AlignJustifySelf(StyleAlignFlags aAlignment, LogicalAxis aAxis,
|
||
AlignJustifyFlags aFlags, nscoord aBaselineAdjust,
|
||
nscoord aCBSize, const ReflowInput& aRI,
|
||
const LogicalSize& aChildSize,
|
||
LogicalPoint* aPos) {
|
||
MOZ_ASSERT(aAlignment != StyleAlignFlags::AUTO,
|
||
"unexpected 'auto' "
|
||
"computed value for normal flow grid item");
|
||
|
||
// NOTE: this is the resulting frame offset (border box).
|
||
nscoord offset = CSSAlignUtils::AlignJustifySelf(
|
||
aAlignment, aAxis, aFlags, aBaselineAdjust, aCBSize, aRI, aChildSize);
|
||
|
||
// Set the position (aPos) for the requested alignment.
|
||
if (offset != 0) {
|
||
WritingMode wm = aRI.GetWritingMode();
|
||
nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
|
||
pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::SameSide) ? offset : -offset;
|
||
}
|
||
}
|
||
|
||
static void AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
|
||
StyleAlignFlags aAlignSelf, nscoord aCBSize,
|
||
const WritingMode aCBWM, const ReflowInput& aRI,
|
||
const LogicalSize& aSize, AlignJustifyFlags aFlags,
|
||
LogicalPoint* aPos) {
|
||
AlignJustifyFlags flags = aFlags;
|
||
if (aAlignSelf & StyleAlignFlags::SAFE) {
|
||
flags |= AlignJustifyFlags::OverflowSafe;
|
||
}
|
||
aAlignSelf &= ~StyleAlignFlags::FLAG_BITS;
|
||
|
||
WritingMode childWM = aRI.GetWritingMode();
|
||
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) {
|
||
flags |= AlignJustifyFlags::SameSide;
|
||
}
|
||
|
||
// Grid's 'align-self' axis is never parallel to the container's inline axis.
|
||
if (aAlignSelf == StyleAlignFlags::LEFT ||
|
||
aAlignSelf == StyleAlignFlags::RIGHT) {
|
||
aAlignSelf = StyleAlignFlags::START;
|
||
}
|
||
if (MOZ_LIKELY(aAlignSelf == StyleAlignFlags::NORMAL)) {
|
||
aAlignSelf = StyleAlignFlags::STRETCH;
|
||
}
|
||
|
||
nscoord baselineAdjust = 0;
|
||
if (aAlignSelf == StyleAlignFlags::BASELINE ||
|
||
aAlignSelf == StyleAlignFlags::LAST_BASELINE) {
|
||
aAlignSelf = aGridItem.GetSelfBaseline(aAlignSelf, eLogicalAxisBlock,
|
||
&baselineAdjust);
|
||
// Adjust the baseline alignment value if the baseline affects the opposite
|
||
// side of what AlignJustifySelf expects.
|
||
auto state = aGridItem.mState[eLogicalAxisBlock];
|
||
if (aAlignSelf == StyleAlignFlags::LAST_BASELINE &&
|
||
!GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
|
||
aAlignSelf = StyleAlignFlags::BASELINE;
|
||
} else if (aAlignSelf == StyleAlignFlags::BASELINE &&
|
||
GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
|
||
aAlignSelf = StyleAlignFlags::LAST_BASELINE;
|
||
}
|
||
}
|
||
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
|
||
AlignJustifySelf(aAlignSelf, axis, flags, baselineAdjust, aCBSize, aRI, aSize,
|
||
aPos);
|
||
}
|
||
|
||
static void JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
|
||
StyleAlignFlags aJustifySelf, nscoord aCBSize,
|
||
const WritingMode aCBWM, const ReflowInput& aRI,
|
||
const LogicalSize& aSize, AlignJustifyFlags aFlags,
|
||
LogicalPoint* aPos) {
|
||
AlignJustifyFlags flags = aFlags;
|
||
if (aJustifySelf & StyleAlignFlags::SAFE) {
|
||
flags |= AlignJustifyFlags::OverflowSafe;
|
||
}
|
||
aJustifySelf &= ~StyleAlignFlags::FLAG_BITS;
|
||
|
||
WritingMode childWM = aRI.GetWritingMode();
|
||
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) {
|
||
flags |= AlignJustifyFlags::SameSide;
|
||
}
|
||
|
||
if (MOZ_LIKELY(aJustifySelf == StyleAlignFlags::NORMAL)) {
|
||
aJustifySelf = StyleAlignFlags::STRETCH;
|
||
}
|
||
|
||
nscoord baselineAdjust = 0;
|
||
// Grid's 'justify-self' axis is always parallel to the container's inline
|
||
// axis, so justify-self:left|right always applies.
|
||
if (aJustifySelf == StyleAlignFlags::LEFT) {
|
||
aJustifySelf =
|
||
aCBWM.IsBidiLTR() ? StyleAlignFlags::START : StyleAlignFlags::END;
|
||
} else if (aJustifySelf == StyleAlignFlags::RIGHT) {
|
||
aJustifySelf =
|
||
aCBWM.IsBidiLTR() ? StyleAlignFlags::END : StyleAlignFlags::START;
|
||
} else if (aJustifySelf == StyleAlignFlags::BASELINE ||
|
||
aJustifySelf == StyleAlignFlags::LAST_BASELINE) {
|
||
aJustifySelf = aGridItem.GetSelfBaseline(aJustifySelf, eLogicalAxisInline,
|
||
&baselineAdjust);
|
||
// Adjust the baseline alignment value if the baseline affects the opposite
|
||
// side of what AlignJustifySelf expects.
|
||
auto state = aGridItem.mState[eLogicalAxisInline];
|
||
if (aJustifySelf == StyleAlignFlags::LAST_BASELINE &&
|
||
!GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
|
||
aJustifySelf = StyleAlignFlags::BASELINE;
|
||
} else if (aJustifySelf == StyleAlignFlags::BASELINE &&
|
||
GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
|
||
aJustifySelf = StyleAlignFlags::LAST_BASELINE;
|
||
}
|
||
}
|
||
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
AlignJustifySelf(aJustifySelf, axis, flags, baselineAdjust, aCBSize, aRI,
|
||
aSize, aPos);
|
||
}
|
||
|
||
static StyleAlignFlags GetAlignJustifyValue(StyleAlignFlags aAlignment,
|
||
const WritingMode aWM,
|
||
const bool aIsAlign,
|
||
bool* aOverflowSafe) {
|
||
*aOverflowSafe = bool(aAlignment & StyleAlignFlags::SAFE);
|
||
aAlignment &= ~StyleAlignFlags::FLAG_BITS;
|
||
|
||
// Map some alignment values to 'start' / 'end'.
|
||
if (aAlignment == StyleAlignFlags::LEFT ||
|
||
aAlignment == StyleAlignFlags::RIGHT) {
|
||
if (aIsAlign) {
|
||
// Grid's 'align-content' axis is never parallel to the inline axis.
|
||
return StyleAlignFlags::START;
|
||
}
|
||
bool isStart = aWM.IsBidiLTR() == (aAlignment == StyleAlignFlags::LEFT);
|
||
return isStart ? StyleAlignFlags::START : StyleAlignFlags::END;
|
||
}
|
||
if (aAlignment == StyleAlignFlags::FLEX_START) {
|
||
return StyleAlignFlags::START; // same as 'start' for Grid
|
||
}
|
||
if (aAlignment == StyleAlignFlags::FLEX_END) {
|
||
return StyleAlignFlags::END; // same as 'end' for Grid
|
||
}
|
||
return aAlignment;
|
||
}
|
||
|
||
static Maybe<StyleAlignFlags> GetAlignJustifyFallbackIfAny(
|
||
const StyleContentDistribution& aDistribution, const WritingMode aWM,
|
||
const bool aIsAlign, bool* aOverflowSafe) {
|
||
// TODO: Eventually this should look at aDistribution's fallback alignment,
|
||
// see https://github.com/w3c/csswg-drafts/issues/1002.
|
||
if (aDistribution.primary == StyleAlignFlags::STRETCH ||
|
||
aDistribution.primary == StyleAlignFlags::SPACE_BETWEEN) {
|
||
return Some(StyleAlignFlags::START);
|
||
}
|
||
if (aDistribution.primary == StyleAlignFlags::SPACE_AROUND ||
|
||
aDistribution.primary == StyleAlignFlags::SPACE_EVENLY) {
|
||
return Some(StyleAlignFlags::CENTER);
|
||
}
|
||
return Nothing();
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
// Frame class boilerplate
|
||
// =======================
|
||
|
||
NS_QUERYFRAME_HEAD(nsGridContainerFrame)
|
||
NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
|
||
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
|
||
|
||
NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
|
||
|
||
nsContainerFrame* NS_NewGridContainerFrame(PresShell* aPresShell,
|
||
ComputedStyle* aStyle) {
|
||
return new (aPresShell)
|
||
nsGridContainerFrame(aStyle, aPresShell->GetPresContext());
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
// nsGridContainerFrame Method Implementations
|
||
// ===========================================
|
||
|
||
/*static*/ const nsRect& nsGridContainerFrame::GridItemCB(nsIFrame* aChild) {
|
||
MOZ_ASSERT(aChild->IsAbsolutelyPositioned());
|
||
nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect());
|
||
MOZ_ASSERT(cb,
|
||
"this method must only be called on grid items, and the grid "
|
||
"container should've reflowed this item by now and set up cb");
|
||
return *cb;
|
||
}
|
||
|
||
void nsGridContainerFrame::AddImplicitNamedAreas(
|
||
Span<LineNameList> aLineNameLists) {
|
||
// http://dev.w3.org/csswg/css-grid/#implicit-named-areas
|
||
// Note: recording these names for fast lookup later is just an optimization.
|
||
const uint32_t len = std::min(aLineNameLists.Length(), size_t(kMaxLine));
|
||
nsTHashSet<nsString> currentStarts;
|
||
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
|
||
for (uint32_t i = 0; i < len; ++i) {
|
||
for (const auto& nameIdent : aLineNameLists[i].AsSpan()) {
|
||
nsAtom* name = nameIdent.AsAtom();
|
||
uint32_t indexOfSuffix;
|
||
if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
|
||
Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
|
||
// Extract the name that was found earlier.
|
||
nsDependentSubstring areaName(nsDependentAtomString(name), 0,
|
||
indexOfSuffix);
|
||
|
||
// Lazily create the ImplicitNamedAreas.
|
||
if (!areas) {
|
||
areas = new ImplicitNamedAreas;
|
||
SetProperty(ImplicitNamedAreasProperty(), areas);
|
||
}
|
||
|
||
RefPtr<nsAtom> name = NS_Atomize(areaName);
|
||
auto addPtr = areas->lookupForAdd(name);
|
||
if (!addPtr) {
|
||
if (!areas->add(
|
||
addPtr, name,
|
||
NamedArea{StyleAtom(do_AddRef(name)), {0, 0}, {0, 0}})) {
|
||
MOZ_CRASH("OOM while adding grid name lists");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::InitImplicitNamedAreas(
|
||
const nsStylePosition* aStyle) {
|
||
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
|
||
if (areas) {
|
||
// Clear it, but reuse the hashtable itself for now. We'll remove it
|
||
// below if it isn't needed anymore.
|
||
areas->clear();
|
||
}
|
||
auto Add = [&](const GridTemplate& aTemplate, bool aIsSubgrid) {
|
||
AddImplicitNamedAreas(aTemplate.LineNameLists(aIsSubgrid));
|
||
for (auto& value : aTemplate.TrackListValues()) {
|
||
if (value.IsTrackRepeat()) {
|
||
AddImplicitNamedAreas(value.AsTrackRepeat().line_names.AsSpan());
|
||
}
|
||
}
|
||
};
|
||
Add(aStyle->mGridTemplateColumns, IsSubgrid(eLogicalAxisInline));
|
||
Add(aStyle->mGridTemplateRows, IsSubgrid(eLogicalAxisBlock));
|
||
if (areas && areas->count() == 0) {
|
||
RemoveProperty(ImplicitNamedAreasProperty());
|
||
}
|
||
}
|
||
|
||
int32_t nsGridContainerFrame::Grid::ResolveLine(
|
||
const StyleGridLine& aLine, int32_t aNth, uint32_t aFromIndex,
|
||
const LineNameMap& aNameMap, LogicalSide aSide, uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle) {
|
||
MOZ_ASSERT(!aLine.IsAuto());
|
||
int32_t line = 0;
|
||
if (aLine.LineName()->IsEmpty()) {
|
||
MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
|
||
line = int32_t(aFromIndex) + aNth;
|
||
} else {
|
||
if (aNth == 0) {
|
||
// <integer> was omitted; treat it as 1.
|
||
aNth = 1;
|
||
}
|
||
bool isNameOnly = !aLine.is_span && aLine.line_num == 0;
|
||
if (isNameOnly) {
|
||
AutoTArray<uint32_t, 16> implicitLines;
|
||
aNameMap.FindNamedAreas(aLine.ident.AsAtom(), aSide, implicitLines);
|
||
if (!implicitLines.IsEmpty() ||
|
||
aNameMap.HasImplicitNamedArea(aLine.LineName())) {
|
||
// aName is a named area - look for explicit lines named
|
||
// <name>-start/-end depending on which side we're resolving.
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-slot
|
||
nsAutoString lineName(nsDependentAtomString(aLine.LineName()));
|
||
if (IsStart(aSide)) {
|
||
lineName.AppendLiteral("-start");
|
||
} else {
|
||
lineName.AppendLiteral("-end");
|
||
}
|
||
RefPtr<nsAtom> name = NS_Atomize(lineName);
|
||
line = aNameMap.FindNamedLine(name, &aNth, aFromIndex, implicitLines);
|
||
}
|
||
}
|
||
|
||
if (line == 0) {
|
||
// If LineName() ends in -start/-end, try the prefix as a named area.
|
||
AutoTArray<uint32_t, 16> implicitLines;
|
||
uint32_t index;
|
||
bool useStart = IsNameWithStartSuffix(aLine.LineName(), &index);
|
||
if (useStart || IsNameWithEndSuffix(aLine.LineName(), &index)) {
|
||
auto side = MakeLogicalSide(
|
||
GetAxis(aSide), useStart ? eLogicalEdgeStart : eLogicalEdgeEnd);
|
||
RefPtr<nsAtom> name = NS_Atomize(nsDependentSubstring(
|
||
nsDependentAtomString(aLine.LineName()), 0, index));
|
||
aNameMap.FindNamedAreas(name, side, implicitLines);
|
||
}
|
||
line = aNameMap.FindNamedLine(aLine.LineName(), &aNth, aFromIndex,
|
||
implicitLines);
|
||
}
|
||
|
||
if (line == 0) {
|
||
MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
|
||
int32_t edgeLine;
|
||
if (aLine.is_span) {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
|
||
// 'span <custom-ident> N'
|
||
edgeLine = IsStart(aSide) ? 1 : aExplicitGridEnd;
|
||
} else {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-int
|
||
// '<custom-ident> N'
|
||
edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
|
||
}
|
||
// "If not enough lines with that name exist, all lines in the implicit
|
||
// grid are assumed to have that name..."
|
||
line = edgeLine + aNth;
|
||
}
|
||
}
|
||
return clamped(line, aNameMap.mClampMinLine, aNameMap.mClampMaxLine);
|
||
}
|
||
|
||
nsGridContainerFrame::Grid::LinePair
|
||
nsGridContainerFrame::Grid::ResolveLineRangeHelper(
|
||
const StyleGridLine& aStart, const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle) {
|
||
MOZ_ASSERT(int32_t(kAutoLine) > kMaxLine);
|
||
|
||
if (aStart.is_span) {
|
||
if (aEnd.is_span || aEnd.IsAuto()) {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
if (aStart.LineName()->IsEmpty()) {
|
||
// span <integer> / span *
|
||
// span <integer> / auto
|
||
return LinePair(kAutoLine, aStart.line_num);
|
||
}
|
||
// span <custom-ident> / span *
|
||
// span <custom-ident> / auto
|
||
return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
|
||
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
|
||
auto end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
|
||
aExplicitGridEnd, aStyle);
|
||
int32_t span = aStart.line_num == 0 ? 1 : aStart.line_num;
|
||
if (end <= 1) {
|
||
// The end is at or before the first explicit line, thus all lines before
|
||
// it match <custom-ident> since they're implicit.
|
||
int32_t start = std::max(end - span, aNameMap.mClampMinLine);
|
||
return LinePair(start, end);
|
||
}
|
||
auto start = ResolveLine(aStart, -span, end, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeStart),
|
||
aExplicitGridEnd, aStyle);
|
||
return LinePair(start, end);
|
||
}
|
||
|
||
int32_t start = kAutoLine;
|
||
if (aStart.IsAuto()) {
|
||
if (aEnd.IsAuto()) {
|
||
// auto / auto
|
||
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
if (aEnd.is_span) {
|
||
if (aEnd.LineName()->IsEmpty()) {
|
||
// auto / span <integer>
|
||
MOZ_ASSERT(aEnd.line_num != 0);
|
||
return LinePair(start, aEnd.line_num);
|
||
}
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
// auto / span <custom-ident>
|
||
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
} else {
|
||
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
|
||
start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeStart),
|
||
aExplicitGridEnd, aStyle);
|
||
if (aEnd.IsAuto()) {
|
||
// A "definite line / auto" should resolve the auto to 'span 1'.
|
||
// The error handling in ResolveLineRange will make that happen and also
|
||
// clamp the end line correctly if we return "start / start".
|
||
return LinePair(start, start);
|
||
}
|
||
}
|
||
|
||
uint32_t from;
|
||
int32_t nth = aEnd.line_num == 0 ? 1 : aEnd.line_num;
|
||
if (aEnd.is_span) {
|
||
if (MOZ_UNLIKELY(start < 0)) {
|
||
if (aEnd.LineName()->IsEmpty()) {
|
||
return LinePair(start, start + nth);
|
||
}
|
||
from = 0;
|
||
} else {
|
||
if (start >= int32_t(aExplicitGridEnd)) {
|
||
// The start is at or after the last explicit line, thus all lines
|
||
// after it match <custom-ident> since they're implicit.
|
||
return LinePair(start, std::min(start + nth, aNameMap.mClampMaxLine));
|
||
}
|
||
from = start;
|
||
}
|
||
} else {
|
||
from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
|
||
}
|
||
auto end = ResolveLine(aEnd, nth, from, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
|
||
aExplicitGridEnd, aStyle);
|
||
if (start == int32_t(kAutoLine)) {
|
||
// auto / definite line
|
||
start = std::max(aNameMap.mClampMinLine, end - 1);
|
||
}
|
||
return LinePair(start, end);
|
||
}
|
||
|
||
nsGridContainerFrame::LineRange nsGridContainerFrame::Grid::ResolveLineRange(
|
||
const StyleGridLine& aStart, const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle) {
|
||
LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAxis,
|
||
aExplicitGridEnd, aStyle);
|
||
MOZ_ASSERT(r.second != int32_t(kAutoLine));
|
||
|
||
if (r.first == int32_t(kAutoLine)) {
|
||
// r.second is a span, clamp it to aNameMap.mClampMaxLine - 1 so that
|
||
// the returned range has a HypotheticalEnd <= aNameMap.mClampMaxLine.
|
||
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
|
||
r.second = std::min(r.second, aNameMap.mClampMaxLine - 1);
|
||
} else {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
if (r.first > r.second) {
|
||
std::swap(r.first, r.second);
|
||
} else if (r.first == r.second) {
|
||
if (MOZ_UNLIKELY(r.first == aNameMap.mClampMaxLine)) {
|
||
r.first = aNameMap.mClampMaxLine - 1;
|
||
}
|
||
r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
|
||
}
|
||
}
|
||
return LineRange(r.first, r.second);
|
||
}
|
||
|
||
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceDefinite(
|
||
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
|
||
const nsStylePosition* itemStyle = aChild->StylePosition();
|
||
return GridArea(
|
||
ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
|
||
aColLineNameMap, eLogicalAxisInline, mExplicitGridColEnd,
|
||
aStyle),
|
||
ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
|
||
aRowLineNameMap, eLogicalAxisBlock, mExplicitGridRowEnd,
|
||
aStyle));
|
||
}
|
||
|
||
nsGridContainerFrame::LineRange
|
||
nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
|
||
const StyleGridLine& aStart, const StyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
|
||
int32_t aGridStart, int32_t aGridEnd, const nsStylePosition* aStyle) {
|
||
if (aStart.IsAuto()) {
|
||
if (aEnd.IsAuto()) {
|
||
return LineRange(kAutoLine, kAutoLine);
|
||
}
|
||
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
|
||
int32_t end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
|
||
aExplicitGridEnd, aStyle);
|
||
if (aEnd.is_span) {
|
||
++end;
|
||
}
|
||
// A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
|
||
end = AutoIfOutside(end, aGridStart, aGridEnd);
|
||
return LineRange(kAutoLine, end);
|
||
}
|
||
|
||
if (aEnd.IsAuto()) {
|
||
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
|
||
int32_t start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
|
||
MakeLogicalSide(aAxis, eLogicalEdgeStart),
|
||
aExplicitGridEnd, aStyle);
|
||
if (aStart.is_span) {
|
||
start = std::max(aGridEnd - start, aGridStart);
|
||
}
|
||
start = AutoIfOutside(start, aGridStart, aGridEnd);
|
||
return LineRange(start, kAutoLine);
|
||
}
|
||
|
||
LineRange r =
|
||
ResolveLineRange(aStart, aEnd, aNameMap, aAxis, aExplicitGridEnd, aStyle);
|
||
if (r.IsAuto()) {
|
||
MOZ_ASSERT(aStart.is_span && aEnd.is_span,
|
||
"span / span is the only case "
|
||
"leading to IsAuto here -- we dealt with the other cases above");
|
||
// The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this
|
||
// case should result in "auto / auto" unlike normal flow grid items.
|
||
return LineRange(kAutoLine, kAutoLine);
|
||
}
|
||
|
||
return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
|
||
AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
|
||
}
|
||
|
||
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceAbsPos(
|
||
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
|
||
const nsStylePosition* itemStyle = aChild->StylePosition();
|
||
int32_t gridColStart = 1 - mExplicitGridOffsetCol;
|
||
int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
|
||
return GridArea(ResolveAbsPosLineRange(
|
||
itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
|
||
aColLineNameMap, eLogicalAxisInline, mExplicitGridColEnd,
|
||
gridColStart, mGridColEnd, aStyle),
|
||
ResolveAbsPosLineRange(
|
||
itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
|
||
aRowLineNameMap, eLogicalAxisBlock, mExplicitGridRowEnd,
|
||
gridRowStart, mGridRowEnd, aStyle));
|
||
}
|
||
|
||
uint32_t nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol,
|
||
uint32_t aLockedRow,
|
||
const GridArea* aArea) const {
|
||
const uint32_t extent = aArea->mCols.Extent();
|
||
const uint32_t iStart = aLockedRow;
|
||
const uint32_t iEnd = iStart + aArea->mRows.Extent();
|
||
uint32_t candidate = aStartCol;
|
||
for (uint32_t i = iStart; i < iEnd;) {
|
||
if (i >= mCellMap.mCells.Length()) {
|
||
break;
|
||
}
|
||
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
|
||
const uint32_t len = cellsInRow.Length();
|
||
const uint32_t lastCandidate = candidate;
|
||
// Find the first gap in the current row that's at least 'extent' wide.
|
||
// ('gap' tracks how wide the current column gap is.)
|
||
for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
|
||
if (!cellsInRow[j].mIsOccupied) {
|
||
++gap;
|
||
continue;
|
||
}
|
||
candidate = j + 1;
|
||
gap = 0;
|
||
}
|
||
if (lastCandidate < candidate && i != iStart) {
|
||
// Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
|
||
// restart from the beginning with the new 'candidate'.
|
||
i = iStart;
|
||
} else {
|
||
++i;
|
||
}
|
||
}
|
||
return candidate;
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
|
||
GridArea* aArea,
|
||
uint32_t aClampMaxColLine) const {
|
||
MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
|
||
uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
|
||
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
uint32_t nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol,
|
||
uint32_t aStartRow,
|
||
const GridArea* aArea) const {
|
||
const uint32_t extent = aArea->mRows.Extent();
|
||
const uint32_t jStart = aLockedCol;
|
||
const uint32_t jEnd = jStart + aArea->mCols.Extent();
|
||
const uint32_t iEnd = mCellMap.mCells.Length();
|
||
uint32_t candidate = aStartRow;
|
||
// Find the first gap in the rows that's at least 'extent' tall.
|
||
// ('gap' tracks how tall the current row gap is.)
|
||
for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
|
||
++gap; // tentative, but we may reset it below if a column is occupied
|
||
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
|
||
const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
|
||
// Check if the current row is unoccupied from jStart to jEnd.
|
||
for (uint32_t j = jStart; j < clampedJEnd; ++j) {
|
||
if (cellsInRow[j].mIsOccupied) {
|
||
// Couldn't fit 'extent' rows at 'candidate' here; we hit something
|
||
// at row 'i'. So, try the row after 'i' as our next candidate.
|
||
candidate = i + 1;
|
||
gap = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return candidate;
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
|
||
GridArea* aArea,
|
||
uint32_t aClampMaxRowLine) const {
|
||
MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
|
||
uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
|
||
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(
|
||
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
|
||
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
|
||
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
|
||
const uint32_t colExtent = aArea->mCols.Extent();
|
||
const uint32_t gridRowEnd = mGridRowEnd;
|
||
const uint32_t gridColEnd = mGridColEnd;
|
||
uint32_t col = aStartCol;
|
||
uint32_t row = aStartRow;
|
||
for (; row < gridRowEnd; ++row) {
|
||
col = FindAutoCol(col, row, aArea);
|
||
if (col + colExtent <= gridColEnd) {
|
||
break;
|
||
}
|
||
col = 0;
|
||
}
|
||
MOZ_ASSERT(row < gridRowEnd || col == 0,
|
||
"expected column 0 for placing in a new row");
|
||
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
|
||
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(
|
||
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
|
||
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
|
||
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
|
||
const uint32_t rowExtent = aArea->mRows.Extent();
|
||
const uint32_t gridRowEnd = mGridRowEnd;
|
||
const uint32_t gridColEnd = mGridColEnd;
|
||
uint32_t col = aStartCol;
|
||
uint32_t row = aStartRow;
|
||
for (; col < gridColEnd; ++col) {
|
||
row = FindAutoRow(col, row, aArea);
|
||
if (row + rowExtent <= gridRowEnd) {
|
||
break;
|
||
}
|
||
row = 0;
|
||
}
|
||
MOZ_ASSERT(col < gridColEnd || row == 0,
|
||
"expected row 0 for placing in a new column");
|
||
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
|
||
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
template <typename IsEmptyFuncT>
|
||
Maybe<nsTArray<uint32_t>>
|
||
nsGridContainerFrame::Grid::CalculateAdjustForAutoFitElements(
|
||
uint32_t* const aOutNumEmptyLines, TrackSizingFunctions& aSizingFunctions,
|
||
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc) {
|
||
Maybe<nsTArray<uint32_t>> trackAdjust;
|
||
uint32_t& numEmptyLines = *aOutNumEmptyLines;
|
||
numEmptyLines = 0;
|
||
if (aSizingFunctions.NumRepeatTracks() > 0) {
|
||
MOZ_ASSERT(aSizingFunctions.mHasRepeatAuto);
|
||
// Since this loop is concerned with just the repeat tracks, we
|
||
// iterate from 0..NumRepeatTracks() which is the natural range of
|
||
// mRemoveRepeatTracks. This means we have to add
|
||
// (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based
|
||
// index for arrays like mCellMap/aIsEmptyFunc and trackAdjust. We'll then
|
||
// fill out the trackAdjust array for all the remaining lines.
|
||
const uint32_t repeatStart = (aSizingFunctions.mExplicitGridOffset +
|
||
aSizingFunctions.mRepeatAutoStart);
|
||
const uint32_t numRepeats = aSizingFunctions.NumRepeatTracks();
|
||
for (uint32_t i = 0; i < numRepeats; ++i) {
|
||
if (numEmptyLines) {
|
||
MOZ_ASSERT(trackAdjust.isSome());
|
||
(*trackAdjust)[repeatStart + i] = numEmptyLines;
|
||
}
|
||
if (aIsEmptyFunc(repeatStart + i)) {
|
||
++numEmptyLines;
|
||
if (trackAdjust.isNothing()) {
|
||
trackAdjust.emplace(aNumGridLines);
|
||
trackAdjust->SetLength(aNumGridLines);
|
||
PodZero(trackAdjust->Elements(), trackAdjust->Length());
|
||
}
|
||
|
||
aSizingFunctions.mRemovedRepeatTracks[i] = true;
|
||
}
|
||
}
|
||
// Fill out the trackAdjust array for all the tracks after the repeats.
|
||
if (numEmptyLines) {
|
||
for (uint32_t line = repeatStart + numRepeats; line < aNumGridLines;
|
||
++line) {
|
||
(*trackAdjust)[line] = numEmptyLines;
|
||
}
|
||
}
|
||
}
|
||
|
||
return trackAdjust;
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::SubgridPlaceGridItems(
|
||
GridReflowInput& aParentState, Grid* aParentGrid,
|
||
const GridItemInfo& aGridItem) {
|
||
MOZ_ASSERT(aGridItem.mArea.IsDefinite() ||
|
||
aGridItem.mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
|
||
"the subgrid's lines should be resolved by now");
|
||
if (aGridItem.IsSubgrid(eLogicalAxisInline)) {
|
||
aParentState.mFrame->AddStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM);
|
||
}
|
||
if (aGridItem.IsSubgrid(eLogicalAxisBlock)) {
|
||
aParentState.mFrame->AddStateBits(NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
|
||
}
|
||
auto* childGrid = aGridItem.SubgridFrame();
|
||
const auto* pos = childGrid->StylePosition();
|
||
childGrid->NormalizeChildLists();
|
||
GridReflowInput state(childGrid, aParentState.mRenderingContext);
|
||
childGrid->InitImplicitNamedAreas(pos);
|
||
|
||
const bool isOrthogonal = aParentState.mWM.IsOrthogonalTo(state.mWM);
|
||
// Record the subgrid's GridArea in a frame property.
|
||
auto* subgrid = childGrid->GetProperty(Subgrid::Prop());
|
||
if (!subgrid) {
|
||
subgrid = new Subgrid(aGridItem.mArea, isOrthogonal, aParentState.mWM);
|
||
childGrid->SetProperty(Subgrid::Prop(), subgrid);
|
||
} else {
|
||
subgrid->mArea = aGridItem.mArea;
|
||
subgrid->mIsOrthogonal = isOrthogonal;
|
||
subgrid->mGridItems.Clear();
|
||
subgrid->mAbsPosItems.Clear();
|
||
}
|
||
|
||
// Abs.pos. subgrids may have kAutoLine in their area. Map those to the edge
|
||
// line in the parent's grid (zero-based line numbers).
|
||
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mStart == kAutoLine)) {
|
||
subgrid->mArea.mCols.mStart = 0;
|
||
}
|
||
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mEnd == kAutoLine)) {
|
||
subgrid->mArea.mCols.mEnd = aParentGrid->mGridColEnd - 1;
|
||
}
|
||
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mStart == kAutoLine)) {
|
||
subgrid->mArea.mRows.mStart = 0;
|
||
}
|
||
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mEnd == kAutoLine)) {
|
||
subgrid->mArea.mRows.mEnd = aParentGrid->mGridRowEnd - 1;
|
||
}
|
||
|
||
MOZ_ASSERT((subgrid->mArea.mCols.Extent() > 0 &&
|
||
subgrid->mArea.mRows.Extent() > 0) ||
|
||
state.mGridItems.IsEmpty(),
|
||
"subgrid needs at least one track for its items");
|
||
|
||
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
|
||
// https://drafts.csswg.org/css-grid/#auto-repeat
|
||
// They're only used for auto-repeat in a non-subgridded axis so we skip
|
||
// computing them otherwise.
|
||
RepeatTrackSizingInput repeatSizing(state.mWM);
|
||
if (!childGrid->IsColSubgrid() && state.mColFunctions.mHasRepeatAuto) {
|
||
repeatSizing.InitFromStyle(eLogicalAxisInline, state.mWM,
|
||
state.mFrame->Style());
|
||
}
|
||
if (!childGrid->IsRowSubgrid() && state.mRowFunctions.mHasRepeatAuto) {
|
||
repeatSizing.InitFromStyle(eLogicalAxisBlock, state.mWM,
|
||
state.mFrame->Style());
|
||
}
|
||
|
||
PlaceGridItems(state, repeatSizing);
|
||
|
||
subgrid->mGridItems = std::move(state.mGridItems);
|
||
subgrid->mAbsPosItems = std::move(state.mAbsPosItems);
|
||
subgrid->mGridColEnd = mGridColEnd;
|
||
subgrid->mGridRowEnd = mGridRowEnd;
|
||
}
|
||
|
||
void nsGridContainerFrame::Grid::PlaceGridItems(
|
||
GridReflowInput& aState, const RepeatTrackSizingInput& aSizes) {
|
||
MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");
|
||
|
||
mAreas = aState.mFrame->GetImplicitNamedAreas();
|
||
|
||
if (aState.mFrame->HasSubgridItems() || aState.mFrame->IsSubgrid()) {
|
||
if (auto* uts = aState.mFrame->GetUsedTrackSizes()) {
|
||
uts->mCanResolveLineRangeSize = {false, false};
|
||
uts->mSizes[eLogicalAxisInline].ClearAndRetainStorage();
|
||
uts->mSizes[eLogicalAxisBlock].ClearAndRetainStorage();
|
||
}
|
||
}
|
||
|
||
// SubgridPlaceGridItems will set these if we find any subgrid items.
|
||
aState.mFrame->RemoveStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
|
||
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#grid-definition
|
||
// Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
|
||
// This is determined by the larger of the number of rows/columns defined
|
||
// by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
|
||
// Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
|
||
// Note that this is for a grid with a 1,1 origin. We'll change that
|
||
// to a 0,0 based grid after placing definite lines.
|
||
const nsStylePosition* const gridStyle = aState.mGridStyle;
|
||
const auto* areas = gridStyle->mGridTemplateAreas.IsNone()
|
||
? nullptr
|
||
: &*gridStyle->mGridTemplateAreas.AsAreas();
|
||
const LineNameMap* parentLineNameMap = nullptr;
|
||
const LineRange* subgridRange = nullptr;
|
||
bool subgridAxisIsSameDirection = true;
|
||
if (!aState.mFrame->IsColSubgrid()) {
|
||
aState.mColFunctions.InitRepeatTracks(
|
||
gridStyle->mColumnGap, aSizes.mMin.ISize(aState.mWM),
|
||
aSizes.mSize.ISize(aState.mWM), aSizes.mMax.ISize(aState.mWM));
|
||
uint32_t areaCols = areas ? areas->width + 1 : 1;
|
||
mExplicitGridColEnd = aState.mColFunctions.ComputeExplicitGridEnd(areaCols);
|
||
} else {
|
||
const auto* subgrid = aState.mFrame->GetProperty(Subgrid::Prop());
|
||
subgridRange = &subgrid->SubgridCols();
|
||
uint32_t extent = subgridRange->Extent();
|
||
mExplicitGridColEnd = extent + 1; // the grid is 1-based at this point
|
||
parentLineNameMap =
|
||
ParentLineMapForAxis(subgrid->mIsOrthogonal, eLogicalAxisInline);
|
||
auto parentWM =
|
||
aState.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
|
||
subgridAxisIsSameDirection =
|
||
aState.mWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, parentWM);
|
||
}
|
||
mGridColEnd = mExplicitGridColEnd;
|
||
LineNameMap colLineNameMap(gridStyle, mAreas, aState.mColFunctions,
|
||
parentLineNameMap, subgridRange,
|
||
subgridAxisIsSameDirection);
|
||
|
||
if (!aState.mFrame->IsRowSubgrid()) {
|
||
aState.mRowFunctions.InitRepeatTracks(
|
||
gridStyle->mRowGap, aSizes.mMin.BSize(aState.mWM),
|
||
aSizes.mSize.BSize(aState.mWM), aSizes.mMax.BSize(aState.mWM));
|
||
uint32_t areaRows = areas ? areas->strings.Length() + 1 : 1;
|
||
mExplicitGridRowEnd = aState.mRowFunctions.ComputeExplicitGridEnd(areaRows);
|
||
parentLineNameMap = nullptr;
|
||
subgridRange = nullptr;
|
||
} else {
|
||
const auto* subgrid = aState.mFrame->GetProperty(Subgrid::Prop());
|
||
subgridRange = &subgrid->SubgridRows();
|
||
uint32_t extent = subgridRange->Extent();
|
||
mExplicitGridRowEnd = extent + 1; // the grid is 1-based at this point
|
||
parentLineNameMap =
|
||
ParentLineMapForAxis(subgrid->mIsOrthogonal, eLogicalAxisBlock);
|
||
auto parentWM =
|
||
aState.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
|
||
subgridAxisIsSameDirection =
|
||
aState.mWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, parentWM);
|
||
}
|
||
mGridRowEnd = mExplicitGridRowEnd;
|
||
LineNameMap rowLineNameMap(gridStyle, mAreas, aState.mRowFunctions,
|
||
parentLineNameMap, subgridRange,
|
||
subgridAxisIsSameDirection);
|
||
|
||
const bool isSubgridOrItemInSubgrid =
|
||
aState.mFrame->IsSubgrid() || !!mParentGrid;
|
||
auto SetSubgridChildEdgeBits =
|
||
[this, isSubgridOrItemInSubgrid](GridItemInfo& aItem) -> void {
|
||
if (isSubgridOrItemInSubgrid) {
|
||
const auto& area = aItem.mArea;
|
||
if (area.mCols.mStart == 0) {
|
||
aItem.mState[eLogicalAxisInline] |= ItemState::eStartEdge;
|
||
}
|
||
if (area.mCols.mEnd == mGridColEnd) {
|
||
aItem.mState[eLogicalAxisInline] |= ItemState::eEndEdge;
|
||
}
|
||
if (area.mRows.mStart == 0) {
|
||
aItem.mState[eLogicalAxisBlock] |= ItemState::eStartEdge;
|
||
}
|
||
if (area.mRows.mEnd == mGridRowEnd) {
|
||
aItem.mState[eLogicalAxisBlock] |= ItemState::eEndEdge;
|
||
}
|
||
}
|
||
};
|
||
|
||
SetLineMaps(&colLineNameMap, &rowLineNameMap);
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#line-placement
|
||
// Resolve definite positions per spec chap 9.2.
|
||
int32_t minCol = 1;
|
||
int32_t minRow = 1;
|
||
aState.mGridItems.ClearAndRetainStorage();
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
GridItemInfo* info = aState.mGridItems.AppendElement(GridItemInfo(
|
||
child,
|
||
PlaceDefinite(child, colLineNameMap, rowLineNameMap, gridStyle)));
|
||
MOZ_ASSERT(aState.mIter.ItemIndex() == aState.mGridItems.Length() - 1,
|
||
"ItemIndex() is broken");
|
||
GridArea& area = info->mArea;
|
||
if (area.mCols.IsDefinite()) {
|
||
minCol = std::min(minCol, area.mCols.mUntranslatedStart);
|
||
}
|
||
if (area.mRows.IsDefinite()) {
|
||
minRow = std::min(minRow, area.mRows.mUntranslatedStart);
|
||
}
|
||
}
|
||
|
||
// Translate the whole grid so that the top-/left-most area is at 0,0.
|
||
mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
|
||
mExplicitGridOffsetRow = 1 - minRow;
|
||
aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
|
||
aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
|
||
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
|
||
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
|
||
const bool isRowMasonry = aState.mFrame->IsMasonry(eLogicalAxisBlock);
|
||
const bool isColMasonry = aState.mFrame->IsMasonry(eLogicalAxisInline);
|
||
const bool isMasonry = isColMasonry || isRowMasonry;
|
||
mGridColEnd += offsetToColZero;
|
||
mGridRowEnd += offsetToRowZero;
|
||
const uint32_t gridAxisTrackCount = isRowMasonry ? mGridColEnd : mGridRowEnd;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
|
||
GridArea& area = item.mArea;
|
||
if (area.mCols.IsDefinite()) {
|
||
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
|
||
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
|
||
}
|
||
if (area.mRows.IsDefinite()) {
|
||
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
|
||
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
|
||
}
|
||
if (area.IsDefinite()) {
|
||
if (isMasonry) {
|
||
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
|
||
}
|
||
if (item.IsSubgrid()) {
|
||
Grid grid(this);
|
||
grid.SubgridPlaceGridItems(aState, this, item);
|
||
}
|
||
mCellMap.Fill(area);
|
||
InflateGridFor(area);
|
||
SetSubgridChildEdgeBits(item);
|
||
}
|
||
}
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#auto-placement-algo
|
||
// Step 1, place 'auto' items that have one definite position -
|
||
// definite row (column) for grid-auto-flow:row (column).
|
||
auto flowStyle = gridStyle->mGridAutoFlow;
|
||
const bool isRowOrder =
|
||
isMasonry ? isRowMasonry : !!(flowStyle & StyleGridAutoFlow::ROW);
|
||
const bool isSparse = !(flowStyle & StyleGridAutoFlow::DENSE);
|
||
uint32_t clampMaxColLine = colLineNameMap.mClampMaxLine + offsetToColZero;
|
||
uint32_t clampMaxRowLine = rowLineNameMap.mClampMaxLine + offsetToRowZero;
|
||
// We need 1 cursor per row (or column) if placement is sparse.
|
||
{
|
||
Maybe<nsTHashMap<nsUint32HashKey, uint32_t>> cursors;
|
||
if (isSparse) {
|
||
cursors.emplace();
|
||
}
|
||
auto placeAutoMinorFunc =
|
||
isRowOrder ? &Grid::PlaceAutoCol : &Grid::PlaceAutoRow;
|
||
uint32_t clampMaxLine = isRowOrder ? clampMaxColLine : clampMaxRowLine;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
|
||
GridArea& area = item.mArea;
|
||
LineRange& major = isRowOrder ? area.mRows : area.mCols;
|
||
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
|
||
if (major.IsDefinite() && minor.IsAuto()) {
|
||
// Items with 'auto' in the minor dimension only.
|
||
const uint32_t cursor = isSparse ? cursors->Get(major.mStart) : 0;
|
||
(this->*placeAutoMinorFunc)(cursor, &area, clampMaxLine);
|
||
if (isMasonry) {
|
||
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
|
||
}
|
||
if (item.IsSubgrid()) {
|
||
Grid grid(this);
|
||
grid.SubgridPlaceGridItems(aState, this, item);
|
||
}
|
||
mCellMap.Fill(area);
|
||
SetSubgridChildEdgeBits(item);
|
||
if (isSparse) {
|
||
cursors->InsertOrUpdate(major.mStart, minor.mEnd);
|
||
}
|
||
}
|
||
InflateGridFor(area); // Step 2, inflating for auto items too
|
||
}
|
||
}
|
||
|
||
// XXX NOTE possible spec issue.
|
||
// XXX It's unclear if the remaining major-dimension auto and
|
||
// XXX auto in both dimensions should use the same cursor or not,
|
||
// XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
|
||
// XXX seems to indicate it shouldn't.
|
||
// XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
|
||
// XXX now says it should (but didn't in earlier versions)
|
||
|
||
// Step 3, place the remaining grid items
|
||
uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
|
||
uint32_t cursorMinor = 0;
|
||
auto placeAutoMajorFunc =
|
||
isRowOrder ? &Grid::PlaceAutoRow : &Grid::PlaceAutoCol;
|
||
uint32_t clampMaxMajorLine = isRowOrder ? clampMaxRowLine : clampMaxColLine;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
|
||
GridArea& area = item.mArea;
|
||
MOZ_ASSERT(*aState.mIter == item.mFrame,
|
||
"iterator out of sync with aState.mGridItems");
|
||
LineRange& major = isRowOrder ? area.mRows : area.mCols;
|
||
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
|
||
if (major.IsAuto()) {
|
||
if (minor.IsDefinite()) {
|
||
// Items with 'auto' in the major dimension only.
|
||
if (isSparse) {
|
||
if (minor.mStart < cursorMinor) {
|
||
++cursorMajor;
|
||
}
|
||
cursorMinor = minor.mStart;
|
||
}
|
||
(this->*placeAutoMajorFunc)(cursorMajor, &area, clampMaxMajorLine);
|
||
if (isSparse) {
|
||
cursorMajor = major.mStart;
|
||
}
|
||
} else {
|
||
// Items with 'auto' in both dimensions.
|
||
if (isRowOrder) {
|
||
PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area,
|
||
clampMaxColLine, clampMaxRowLine);
|
||
} else {
|
||
PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area,
|
||
clampMaxColLine, clampMaxRowLine);
|
||
}
|
||
if (isSparse) {
|
||
cursorMajor = major.mStart;
|
||
cursorMinor = minor.mEnd;
|
||
#ifdef DEBUG
|
||
uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
|
||
uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
|
||
MOZ_ASSERT(cursorMajor <= gridMajorEnd,
|
||
"we shouldn't need to place items further than 1 track "
|
||
"past the current end of the grid, in major dimension");
|
||
MOZ_ASSERT(cursorMinor <= gridMinorEnd,
|
||
"we shouldn't add implicit minor tracks for auto/auto");
|
||
#endif
|
||
}
|
||
}
|
||
if (isMasonry) {
|
||
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
|
||
}
|
||
if (item.IsSubgrid()) {
|
||
Grid grid(this);
|
||
grid.SubgridPlaceGridItems(aState, this, item);
|
||
}
|
||
mCellMap.Fill(area);
|
||
InflateGridFor(area);
|
||
SetSubgridChildEdgeBits(item);
|
||
// XXXmats it might be possible to optimize this a bit for masonry layout
|
||
// if this item was placed in the 2nd row && !isSparse, or the 1st row
|
||
// is full. Still gotta inflate the grid for all items though to make
|
||
// the grid large enough...
|
||
}
|
||
}
|
||
|
||
// Force all items into the 1st/2nd track and have span 1 in the masonry axis.
|
||
// (See comment on nsGridContainerFrame::MasonryLayout().)
|
||
if (isMasonry) {
|
||
auto masonryAxis = isRowMasonry ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
|
||
auto& masonryRange = item.mArea.LineRangeForAxis(masonryAxis);
|
||
masonryRange.mStart = std::min(masonryRange.mStart, 1U);
|
||
masonryRange.mEnd = masonryRange.mStart + 1U;
|
||
}
|
||
}
|
||
|
||
if (aState.mFrame->IsAbsoluteContainer()) {
|
||
// 9.4 Absolutely-positioned Grid Items
|
||
// http://dev.w3.org/csswg/css-grid/#abspos-items
|
||
// We only resolve definite lines here; we'll align auto positions to the
|
||
// grid container later during reflow.
|
||
nsFrameList children(
|
||
aState.mFrame->GetChildList(aState.mFrame->GetAbsoluteListID()));
|
||
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
|
||
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
|
||
// Untranslate the grid again temporarily while resolving abs.pos. lines.
|
||
AutoRestore<uint32_t> zeroOffsetGridColEnd(mGridColEnd);
|
||
AutoRestore<uint32_t> zeroOffsetGridRowEnd(mGridRowEnd);
|
||
mGridColEnd -= offsetToColZero;
|
||
mGridRowEnd -= offsetToRowZero;
|
||
aState.mAbsPosItems.ClearAndRetainStorage();
|
||
size_t i = 0;
|
||
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
|
||
nsIFrame* child = e.get();
|
||
GridItemInfo* info = aState.mAbsPosItems.AppendElement(GridItemInfo(
|
||
child,
|
||
PlaceAbsPos(child, colLineNameMap, rowLineNameMap, gridStyle)));
|
||
GridArea& area = info->mArea;
|
||
if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
|
||
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
|
||
if (isColMasonry) {
|
||
// XXXmats clamp any non-auto line to 0 or 1. This is intended to
|
||
// allow authors to address the start/end of the masonry box.
|
||
// This is experimental at this point though and needs author feedback
|
||
// and spec work to sort out what is desired and how it should work.
|
||
// See https://github.com/w3c/csswg-drafts/issues/4650
|
||
area.mCols.mStart = std::min(area.mCols.mStart, 1U);
|
||
}
|
||
}
|
||
if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
|
||
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
|
||
if (isColMasonry) {
|
||
// ditto
|
||
area.mCols.mEnd = std::min(area.mCols.mEnd, 1U);
|
||
}
|
||
}
|
||
if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
|
||
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
|
||
if (isRowMasonry) {
|
||
// ditto
|
||
area.mRows.mStart = std::min(area.mRows.mStart, 1U);
|
||
}
|
||
}
|
||
if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
|
||
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
|
||
if (isRowMasonry) {
|
||
// ditto
|
||
area.mRows.mEnd = std::min(area.mRows.mEnd, 1U);
|
||
}
|
||
}
|
||
if (isMasonry) {
|
||
info->MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
|
||
}
|
||
|
||
// An abs.pos. subgrid with placement auto/1 or -1/auto technically
|
||
// doesn't span any parent tracks. Inhibit subgridding in this case.
|
||
if (info->IsSubgrid(eLogicalAxisInline)) {
|
||
if (info->mArea.mCols.mStart == zeroOffsetGridColEnd.SavedValue() ||
|
||
info->mArea.mCols.mEnd == 0) {
|
||
info->InhibitSubgrid(aState.mFrame, eLogicalAxisInline);
|
||
}
|
||
}
|
||
if (info->IsSubgrid(eLogicalAxisBlock)) {
|
||
if (info->mArea.mRows.mStart == zeroOffsetGridRowEnd.SavedValue() ||
|
||
info->mArea.mRows.mEnd == 0) {
|
||
info->InhibitSubgrid(aState.mFrame, eLogicalAxisBlock);
|
||
}
|
||
}
|
||
|
||
if (info->IsSubgrid()) {
|
||
Grid grid(this);
|
||
grid.SubgridPlaceGridItems(aState, this, *info);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Count empty 'auto-fit' tracks in the repeat() range.
|
||
// |colAdjust| will have a count for each line in the grid of how many
|
||
// tracks were empty between the start of the grid and that line.
|
||
|
||
Maybe<nsTArray<uint32_t>> colAdjust;
|
||
uint32_t numEmptyCols = 0;
|
||
if (aState.mColFunctions.mHasRepeatAuto &&
|
||
gridStyle->mGridTemplateColumns.GetRepeatAutoValue()->count.IsAutoFit()) {
|
||
const auto& cellMap = mCellMap;
|
||
colAdjust = CalculateAdjustForAutoFitElements(
|
||
&numEmptyCols, aState.mColFunctions, mGridColEnd + 1,
|
||
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyCol(i); });
|
||
}
|
||
|
||
// Do similar work for the row tracks, with the same logic.
|
||
Maybe<nsTArray<uint32_t>> rowAdjust;
|
||
uint32_t numEmptyRows = 0;
|
||
if (aState.mRowFunctions.mHasRepeatAuto &&
|
||
gridStyle->mGridTemplateRows.GetRepeatAutoValue()->count.IsAutoFit()) {
|
||
const auto& cellMap = mCellMap;
|
||
rowAdjust = CalculateAdjustForAutoFitElements(
|
||
&numEmptyRows, aState.mRowFunctions, mGridRowEnd + 1,
|
||
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyRow(i); });
|
||
}
|
||
MOZ_ASSERT((numEmptyCols > 0) == colAdjust.isSome());
|
||
MOZ_ASSERT((numEmptyRows > 0) == rowAdjust.isSome());
|
||
// Remove the empty 'auto-fit' tracks we found above, if any.
|
||
if (numEmptyCols || numEmptyRows) {
|
||
// Adjust the line numbers in the grid areas.
|
||
for (auto& item : aState.mGridItems) {
|
||
if (numEmptyCols) {
|
||
item.AdjustForRemovedTracks(eLogicalAxisInline, *colAdjust);
|
||
}
|
||
if (numEmptyRows) {
|
||
item.AdjustForRemovedTracks(eLogicalAxisBlock, *rowAdjust);
|
||
}
|
||
}
|
||
for (auto& item : aState.mAbsPosItems) {
|
||
if (numEmptyCols) {
|
||
item.AdjustForRemovedTracks(eLogicalAxisInline, *colAdjust);
|
||
}
|
||
if (numEmptyRows) {
|
||
item.AdjustForRemovedTracks(eLogicalAxisBlock, *rowAdjust);
|
||
}
|
||
}
|
||
// Adjust the grid size.
|
||
mGridColEnd -= numEmptyCols;
|
||
mExplicitGridColEnd -= numEmptyCols;
|
||
mGridRowEnd -= numEmptyRows;
|
||
mExplicitGridRowEnd -= numEmptyRows;
|
||
// Adjust the track mapping to unmap the removed tracks.
|
||
auto colRepeatCount = aState.mColFunctions.NumRepeatTracks();
|
||
aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
|
||
auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks();
|
||
aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
|
||
}
|
||
|
||
// Update the line boundaries of the implicit grid areas, if needed.
|
||
if (mAreas && aState.mFrame->ShouldGenerateComputedInfo()) {
|
||
for (auto iter = mAreas->iter(); !iter.done(); iter.next()) {
|
||
auto& areaInfo = iter.get().value();
|
||
|
||
// Resolve the lines for the area. We use the name of the area as the
|
||
// name of the lines, knowing that the line placement algorithm will
|
||
// add the -start and -end suffixes as appropriate for layout.
|
||
StyleGridLine lineStartAndEnd;
|
||
lineStartAndEnd.ident = areaInfo.name;
|
||
|
||
LineRange columnLines =
|
||
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, colLineNameMap,
|
||
eLogicalAxisInline, mExplicitGridColEnd, gridStyle);
|
||
|
||
LineRange rowLines =
|
||
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, rowLineNameMap,
|
||
eLogicalAxisBlock, mExplicitGridRowEnd, gridStyle);
|
||
|
||
// Put the resolved line indices back into the area structure.
|
||
areaInfo.columns.start = columnLines.mStart + mExplicitGridOffsetCol;
|
||
areaInfo.columns.end = columnLines.mEnd + mExplicitGridOffsetCol;
|
||
areaInfo.rows.start = rowLines.mStart + mExplicitGridOffsetRow;
|
||
areaInfo.rows.end = rowLines.mEnd + mExplicitGridOffsetRow;
|
||
}
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::Initialize(
|
||
const TrackSizingFunctions& aFunctions,
|
||
const NonNegativeLengthPercentageOrNormal& aGridGap, uint32_t aNumTracks,
|
||
nscoord aContentBoxSize) {
|
||
mSizes.SetLength(aNumTracks);
|
||
PodZero(mSizes.Elements(), mSizes.Length());
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
auto& sz = mSizes[i];
|
||
mStateUnion |= sz.Initialize(aContentBoxSize, aFunctions.SizingFor(i));
|
||
if (mIsMasonry) {
|
||
sz.mBase = aContentBoxSize;
|
||
sz.mLimit = aContentBoxSize;
|
||
}
|
||
}
|
||
mGridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aContentBoxSize);
|
||
mContentBoxSize = aContentBoxSize;
|
||
}
|
||
|
||
/**
|
||
* Reflow aChild in the given aAvailableSize.
|
||
*/
|
||
static nscoord MeasuringReflow(nsIFrame* aChild,
|
||
const ReflowInput* aReflowInput, gfxContext* aRC,
|
||
const LogicalSize& aAvailableSize,
|
||
const LogicalSize& aCBSize,
|
||
nscoord aIMinSizeClamp = NS_MAXSIZE,
|
||
nscoord aBMinSizeClamp = NS_MAXSIZE) {
|
||
nsContainerFrame* parent = aChild->GetParent();
|
||
nsPresContext* pc = aChild->PresContext();
|
||
Maybe<ReflowInput> dummyParentState;
|
||
const ReflowInput* rs = aReflowInput;
|
||
if (!aReflowInput) {
|
||
MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
|
||
dummyParentState.emplace(
|
||
pc, parent, aRC,
|
||
LogicalSize(parent->GetWritingMode(), 0, NS_UNCONSTRAINEDSIZE),
|
||
ReflowInput::InitFlag::DummyParentReflowInput);
|
||
rs = dummyParentState.ptr();
|
||
}
|
||
#ifdef DEBUG
|
||
// This will suppress various ABSURD_SIZE warnings for this reflow.
|
||
parent->SetProperty(nsContainerFrame::DebugReflowingWithInfiniteISize(),
|
||
true);
|
||
#endif
|
||
auto wm = aChild->GetWritingMode();
|
||
ComputeSizeFlags csFlags = ComputeSizeFlag::UseAutoBSize;
|
||
if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) {
|
||
csFlags += ComputeSizeFlag::ShrinkWrap;
|
||
}
|
||
if (aIMinSizeClamp != NS_MAXSIZE) {
|
||
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
|
||
}
|
||
if (aBMinSizeClamp != NS_MAXSIZE) {
|
||
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
|
||
aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
|
||
aBMinSizeClamp);
|
||
} else {
|
||
aChild->RemoveProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
|
||
}
|
||
ReflowInput childRI(pc, *rs, aChild, aAvailableSize, Some(aCBSize), {}, {},
|
||
csFlags);
|
||
|
||
// Because we pass ComputeSizeFlag::UseAutoBSize, and the
|
||
// previous reflow of the child might not have, set the child's
|
||
// block-resize flag to true.
|
||
// FIXME (perf): It would be faster to do this only if the previous
|
||
// reflow of the child was not a measuring reflow, and only if the
|
||
// child does some of the things that are affected by
|
||
// ComputeSizeFlag::UseAutoBSize.
|
||
childRI.SetBResize(true);
|
||
// Not 100% sure this is needed, but be conservative for now:
|
||
childRI.mFlags.mIsBResizeForPercentages = true;
|
||
|
||
ReflowOutput childSize(childRI);
|
||
nsReflowStatus childStatus;
|
||
const nsIFrame::ReflowChildFlags flags =
|
||
nsIFrame::ReflowChildFlags::NoMoveFrame |
|
||
nsIFrame::ReflowChildFlags::NoSizeView |
|
||
nsIFrame::ReflowChildFlags::NoDeleteNextInFlowChild;
|
||
|
||
if (StaticPrefs::layout_css_grid_item_baxis_measurement_enabled()) {
|
||
bool found;
|
||
GridItemCachedBAxisMeasurement cachedMeasurement =
|
||
aChild->GetProperty(GridItemCachedBAxisMeasurement::Prop(), &found);
|
||
if (found && cachedMeasurement.IsValidFor(aChild, aCBSize)) {
|
||
childSize.BSize(wm) = cachedMeasurement.BSize();
|
||
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
|
||
LogicalPoint(wm), nsSize(), flags);
|
||
return cachedMeasurement.BSize();
|
||
}
|
||
}
|
||
|
||
parent->ReflowChild(aChild, pc, childSize, childRI, wm, LogicalPoint(wm),
|
||
nsSize(), flags, childStatus);
|
||
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
|
||
LogicalPoint(wm), nsSize(), flags);
|
||
#ifdef DEBUG
|
||
parent->RemoveProperty(nsContainerFrame::DebugReflowingWithInfiniteISize());
|
||
#endif
|
||
|
||
if (StaticPrefs::layout_css_grid_item_baxis_measurement_enabled()) {
|
||
bool found;
|
||
GridItemCachedBAxisMeasurement cachedMeasurement =
|
||
aChild->GetProperty(GridItemCachedBAxisMeasurement::Prop(), &found);
|
||
if (!found &&
|
||
GridItemCachedBAxisMeasurement::CanCacheMeasurement(aChild, aCBSize)) {
|
||
GridItemCachedBAxisMeasurement cachedMeasurement(aChild, aCBSize,
|
||
childSize.BSize(wm));
|
||
aChild->SetProperty(GridItemCachedBAxisMeasurement::Prop(),
|
||
cachedMeasurement);
|
||
} else if (found) {
|
||
if (GridItemCachedBAxisMeasurement::CanCacheMeasurement(aChild,
|
||
aCBSize)) {
|
||
cachedMeasurement.Update(aChild, aCBSize, childSize.BSize(wm));
|
||
} else {
|
||
aChild->RemoveProperty(GridItemCachedBAxisMeasurement::Prop());
|
||
}
|
||
}
|
||
}
|
||
return childSize.BSize(wm);
|
||
}
|
||
|
||
/**
|
||
* Reflow aChild in the given aAvailableSize, using aNewContentBoxSize as its
|
||
* computed size in aChildAxis.
|
||
*/
|
||
static void PostReflowStretchChild(
|
||
nsIFrame* aChild, const ReflowInput& aReflowInput,
|
||
const LogicalSize& aAvailableSize, const LogicalSize& aCBSize,
|
||
LogicalAxis aChildAxis, const nscoord aNewContentBoxSize,
|
||
nscoord aIMinSizeClamp = NS_MAXSIZE, nscoord aBMinSizeClamp = NS_MAXSIZE) {
|
||
nsPresContext* pc = aChild->PresContext();
|
||
ComputeSizeFlags csFlags;
|
||
if (aIMinSizeClamp != NS_MAXSIZE) {
|
||
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
|
||
}
|
||
if (aBMinSizeClamp != NS_MAXSIZE) {
|
||
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
|
||
aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
|
||
aBMinSizeClamp);
|
||
} else {
|
||
aChild->RemoveProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
|
||
}
|
||
ReflowInput ri(pc, aReflowInput, aChild, aAvailableSize, Some(aCBSize), {},
|
||
{}, csFlags);
|
||
if (aChildAxis == eLogicalAxisBlock) {
|
||
ri.SetComputedBSize(ri.ApplyMinMaxBSize(aNewContentBoxSize));
|
||
} else {
|
||
ri.SetComputedISize(ri.ApplyMinMaxISize(aNewContentBoxSize));
|
||
}
|
||
ReflowOutput childSize(ri);
|
||
nsReflowStatus childStatus;
|
||
const nsIFrame::ReflowChildFlags flags =
|
||
nsIFrame::ReflowChildFlags::NoMoveFrame |
|
||
nsIFrame::ReflowChildFlags::NoDeleteNextInFlowChild;
|
||
auto wm = aChild->GetWritingMode();
|
||
nsContainerFrame* parent = aChild->GetParent();
|
||
parent->ReflowChild(aChild, pc, childSize, ri, wm, LogicalPoint(wm), nsSize(),
|
||
flags, childStatus);
|
||
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &ri, wm,
|
||
LogicalPoint(wm), nsSize(), flags);
|
||
}
|
||
|
||
/**
|
||
* Return the accumulated margin+border+padding in aAxis for aFrame (a subgrid)
|
||
* and its ancestor subgrids.
|
||
*/
|
||
static LogicalMargin SubgridAccumulatedMarginBorderPadding(
|
||
nsIFrame* aFrame, const Subgrid* aSubgrid, WritingMode aResultWM,
|
||
LogicalAxis aAxis) {
|
||
MOZ_ASSERT(aFrame->IsGridContainerFrame());
|
||
auto* subgridFrame = static_cast<nsGridContainerFrame*>(aFrame);
|
||
LogicalMargin result(aSubgrid->mMarginBorderPadding);
|
||
auto* parent = subgridFrame->ParentGridContainerForSubgrid();
|
||
auto subgridCBWM = parent->GetWritingMode();
|
||
auto childRange = aSubgrid->mArea.LineRangeForAxis(aAxis);
|
||
bool skipStartSide = false;
|
||
bool skipEndSide = false;
|
||
auto axis = aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
|
||
// If aFrame's parent is also a subgrid, then add its MBP on the edges that
|
||
// are adjacent (i.e. start or end in the same track), recursively.
|
||
// ("parent" refers to the grid-frame we're currently adding MBP for,
|
||
// and "grandParent" its parent, as we walk up the chain.)
|
||
while (parent->IsSubgrid(axis)) {
|
||
auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
|
||
auto* grandParent = parent->ParentGridContainerForSubgrid();
|
||
auto parentCBWM = grandParent->GetWritingMode();
|
||
if (parentCBWM.IsOrthogonalTo(subgridCBWM)) {
|
||
axis = GetOrthogonalAxis(axis);
|
||
}
|
||
const auto& parentRange = parentSubgrid->mArea.LineRangeForAxis(axis);
|
||
bool sameDir = parentCBWM.ParallelAxisStartsOnSameSide(axis, subgridCBWM);
|
||
if (sameDir) {
|
||
skipStartSide |= childRange.mStart != 0;
|
||
skipEndSide |= childRange.mEnd != parentRange.Extent();
|
||
} else {
|
||
skipEndSide |= childRange.mStart != 0;
|
||
skipStartSide |= childRange.mEnd != parentRange.Extent();
|
||
}
|
||
if (skipStartSide && skipEndSide) {
|
||
break;
|
||
}
|
||
auto mbp =
|
||
parentSubgrid->mMarginBorderPadding.ConvertTo(subgridCBWM, parentCBWM);
|
||
if (skipStartSide) {
|
||
mbp.Start(aAxis, subgridCBWM) = nscoord(0);
|
||
}
|
||
if (skipEndSide) {
|
||
mbp.End(aAxis, subgridCBWM) = nscoord(0);
|
||
}
|
||
result += mbp;
|
||
parent = grandParent;
|
||
childRange = parentRange;
|
||
}
|
||
return result.ConvertTo(aResultWM, subgridCBWM);
|
||
}
|
||
|
||
/**
|
||
* Return the [min|max]-content contribution of aChild to its parent (i.e.
|
||
* the child's margin-box) in aAxis.
|
||
*/
|
||
static nscoord ContentContribution(
|
||
const GridItemInfo& aGridItem, const GridReflowInput& aState,
|
||
gfxContext* aRC, WritingMode aCBWM, LogicalAxis aAxis,
|
||
const Maybe<LogicalSize>& aPercentageBasis, IntrinsicISizeType aConstraint,
|
||
nscoord aMinSizeClamp = NS_MAXSIZE, uint32_t aFlags = 0) {
|
||
nsIFrame* child = aGridItem.mFrame;
|
||
|
||
nscoord extraMargin = 0;
|
||
nsGridContainerFrame::Subgrid* subgrid = nullptr;
|
||
if (child->GetParent() != aState.mFrame) {
|
||
// |child| is a subgrid descendant, so it contributes its subgrids'
|
||
// margin+border+padding for any edge tracks that it spans.
|
||
auto* subgridFrame = child->GetParent();
|
||
subgrid = subgridFrame->GetProperty(Subgrid::Prop());
|
||
const auto itemEdgeBits = aGridItem.mState[aAxis] & ItemState::eEdgeBits;
|
||
if (itemEdgeBits) {
|
||
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
|
||
subgridFrame, subgrid, aCBWM, aAxis);
|
||
if (itemEdgeBits & ItemState::eStartEdge) {
|
||
extraMargin += mbp.Start(aAxis, aCBWM);
|
||
}
|
||
if (itemEdgeBits & ItemState::eEndEdge) {
|
||
extraMargin += mbp.End(aAxis, aCBWM);
|
||
}
|
||
}
|
||
// It also contributes (half of) the subgrid's gap on its edges (if any)
|
||
// subtracted by the non-subgrid ancestor grid container's gap.
|
||
// Note that this can also be negative since it's considered a margin.
|
||
if (itemEdgeBits != ItemState::eEdgeBits) {
|
||
auto subgridAxis = aCBWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
|
||
? GetOrthogonalAxis(aAxis)
|
||
: aAxis;
|
||
auto& gapStyle = subgridAxis == eLogicalAxisBlock
|
||
? subgridFrame->StylePosition()->mRowGap
|
||
: subgridFrame->StylePosition()->mColumnGap;
|
||
if (!gapStyle.IsNormal()) {
|
||
auto subgridExtent = subgridAxis == eLogicalAxisBlock
|
||
? subgrid->mGridRowEnd
|
||
: subgrid->mGridColEnd;
|
||
if (subgridExtent > 1) {
|
||
nscoord subgridGap =
|
||
nsLayoutUtils::ResolveGapToLength(gapStyle, NS_UNCONSTRAINEDSIZE);
|
||
auto& tracks =
|
||
aAxis == eLogicalAxisBlock ? aState.mRows : aState.mCols;
|
||
auto gapDelta = subgridGap - tracks.mGridGap;
|
||
if (!itemEdgeBits) {
|
||
extraMargin += gapDelta;
|
||
} else {
|
||
extraMargin += gapDelta / 2;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
|
||
nscoord size = nsLayoutUtils::IntrinsicForAxis(
|
||
axis, aRC, child, aConstraint, aPercentageBasis,
|
||
aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED, aMinSizeClamp);
|
||
auto childWM = child->GetWritingMode();
|
||
const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM);
|
||
auto childAxis = isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
|
||
if (size == NS_INTRINSIC_ISIZE_UNKNOWN && childAxis == eLogicalAxisBlock) {
|
||
// We need to reflow the child to find its BSize contribution.
|
||
// XXX this will give mostly correct results for now (until bug 1174569).
|
||
nscoord availISize = INFINITE_ISIZE_COORD;
|
||
nscoord availBSize = NS_UNCONSTRAINEDSIZE;
|
||
// The next two variables are MinSizeClamp values in the child's axes.
|
||
nscoord iMinSizeClamp = NS_MAXSIZE;
|
||
nscoord bMinSizeClamp = NS_MAXSIZE;
|
||
LogicalSize cbSize(childWM, 0, NS_UNCONSTRAINEDSIZE);
|
||
// Below, we try to resolve the child's grid-area size in its inline-axis
|
||
// to use as the CB/Available size in the MeasuringReflow that follows.
|
||
if (child->GetParent() != aState.mFrame) {
|
||
// This item is a child of a subgrid descendant.
|
||
auto* subgridFrame =
|
||
static_cast<nsGridContainerFrame*>(child->GetParent());
|
||
MOZ_ASSERT(subgridFrame->IsGridContainerFrame());
|
||
auto* uts = subgridFrame->GetProperty(UsedTrackSizes::Prop());
|
||
if (!uts) {
|
||
uts = new UsedTrackSizes();
|
||
subgridFrame->SetProperty(UsedTrackSizes::Prop(), uts);
|
||
}
|
||
// The grid-item's inline-axis as expressed in the subgrid's WM.
|
||
auto subgridAxis = childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
|
||
? eLogicalAxisBlock
|
||
: eLogicalAxisInline;
|
||
uts->ResolveTrackSizesForAxis(subgridFrame, subgridAxis, *aRC);
|
||
if (uts->mCanResolveLineRangeSize[subgridAxis]) {
|
||
auto* subgrid =
|
||
subgridFrame->GetProperty(nsGridContainerFrame::Subgrid::Prop());
|
||
const GridItemInfo* originalItem = nullptr;
|
||
for (const auto& item : subgrid->mGridItems) {
|
||
if (item.mFrame == child) {
|
||
originalItem = &item;
|
||
break;
|
||
}
|
||
}
|
||
MOZ_ASSERT(originalItem, "huh?");
|
||
const auto& range = originalItem->mArea.LineRangeForAxis(subgridAxis);
|
||
nscoord pos, sz;
|
||
range.ToPositionAndLength(uts->mSizes[subgridAxis], &pos, &sz);
|
||
if (childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())) {
|
||
availBSize = sz;
|
||
cbSize.BSize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
bMinSizeClamp = sz;
|
||
}
|
||
} else {
|
||
availISize = sz;
|
||
cbSize.ISize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
iMinSizeClamp = sz;
|
||
}
|
||
}
|
||
}
|
||
} else if (aState.mCols.mCanResolveLineRangeSize) {
|
||
nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols);
|
||
if (isOrthogonal) {
|
||
availBSize = sz;
|
||
cbSize.BSize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
bMinSizeClamp = sz;
|
||
}
|
||
} else {
|
||
availISize = sz;
|
||
cbSize.ISize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
iMinSizeClamp = sz;
|
||
}
|
||
}
|
||
}
|
||
if (isOrthogonal == (aAxis == eLogicalAxisInline)) {
|
||
bMinSizeClamp = aMinSizeClamp;
|
||
} else {
|
||
iMinSizeClamp = aMinSizeClamp;
|
||
}
|
||
LogicalSize availableSize(childWM, availISize, availBSize);
|
||
if (MOZ_UNLIKELY(child->IsXULBoxFrame())) {
|
||
auto* pc = child->PresContext();
|
||
// For XUL-in-CSS-Grid (e.g. in our frontend code), we defer to XUL's
|
||
// GetPrefSize() function (which reports an answer in both axes), instead
|
||
// of actually reflowing. It's important to avoid the "measuring + final"
|
||
// two-pass reflow for XUL, because some XUL layout code may incorrectly
|
||
// optimize away the second reflow in cases where it's really needed.
|
||
// XXXdholbert We'll remove this special case in bug 1600542.
|
||
ReflowInput childRI(pc, *aState.mReflowInput, child, availableSize,
|
||
Some(cbSize));
|
||
|
||
nsBoxLayoutState state(pc, &aState.mRenderingContext, &childRI,
|
||
childRI.mReflowDepth);
|
||
nsSize physicalPrefSize = child->GetXULPrefSize(state);
|
||
auto prefSize = LogicalSize(childWM, physicalPrefSize);
|
||
size = prefSize.BSize(childWM);
|
||
|
||
// XXXdholbert This won't have percentage margins resolved.
|
||
// Hopefully we can just avoid those for XUL-content-in-css-grid?
|
||
size += childRI.ComputedLogicalMargin(childWM).BStartEnd(childWM);
|
||
} else {
|
||
size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize,
|
||
cbSize, iMinSizeClamp, bMinSizeClamp);
|
||
size += child->GetLogicalUsedMargin(childWM).BStartEnd(childWM);
|
||
}
|
||
nscoord overflow = size - aMinSizeClamp;
|
||
if (MOZ_UNLIKELY(overflow > 0)) {
|
||
nscoord contentSize = child->ContentSize(childWM).BSize(childWM);
|
||
nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
|
||
// XXXmats deal with percentages better, see bug 1300369 comment 27.
|
||
size -= contentSize - newContentSize;
|
||
}
|
||
}
|
||
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
|
||
"baseline offset should be non-negative at this point");
|
||
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
|
||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
|
||
"baseline offset should be zero when not baseline-aligned");
|
||
size += aGridItem.mBaselineOffset[aAxis];
|
||
size += extraMargin;
|
||
return std::max(size, 0);
|
||
}
|
||
|
||
struct CachedIntrinsicSizes {
|
||
Maybe<nscoord> mMinSize;
|
||
Maybe<nscoord> mMinContentContribution;
|
||
Maybe<nscoord> mMaxContentContribution;
|
||
|
||
// The item's percentage basis for intrinsic sizing purposes.
|
||
Maybe<LogicalSize> mPercentageBasis;
|
||
|
||
// "if the grid item spans only grid tracks that have a fixed max track
|
||
// sizing function, its automatic minimum size in that dimension is
|
||
// further clamped to less than or equal to the size necessary to fit its
|
||
// margin box within the resulting grid area (flooring at zero)"
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
// This is the clamp value to use for that:
|
||
nscoord mMinSizeClamp = NS_MAXSIZE;
|
||
};
|
||
|
||
static nscoord MinContentContribution(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
gfxContext* aRC, WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache) {
|
||
if (aCache->mMinContentContribution.isSome()) {
|
||
return aCache->mMinContentContribution.value();
|
||
}
|
||
if (aCache->mPercentageBasis.isNothing()) {
|
||
aCache->mPercentageBasis.emplace(
|
||
aState.PercentageBasisFor(aAxis, aGridItem));
|
||
}
|
||
nscoord s = ContentContribution(
|
||
aGridItem, aState, aRC, aCBWM, aAxis, aCache->mPercentageBasis,
|
||
IntrinsicISizeType::MinISize, aCache->mMinSizeClamp);
|
||
aCache->mMinContentContribution.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
static nscoord MaxContentContribution(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
gfxContext* aRC, WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache) {
|
||
if (aCache->mMaxContentContribution.isSome()) {
|
||
return aCache->mMaxContentContribution.value();
|
||
}
|
||
if (aCache->mPercentageBasis.isNothing()) {
|
||
aCache->mPercentageBasis.emplace(
|
||
aState.PercentageBasisFor(aAxis, aGridItem));
|
||
}
|
||
nscoord s = ContentContribution(
|
||
aGridItem, aState, aRC, aCBWM, aAxis, aCache->mPercentageBasis,
|
||
IntrinsicISizeType::PrefISize, aCache->mMinSizeClamp);
|
||
aCache->mMaxContentContribution.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
// Computes the min-size contribution for a grid item, as defined at
|
||
// https://drafts.csswg.org/css-grid/#min-size-contribution
|
||
static nscoord MinSize(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState, gfxContext* aRC,
|
||
WritingMode aCBWM, LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache) {
|
||
if (aCache->mMinSize.isSome()) {
|
||
return aCache->mMinSize.value();
|
||
}
|
||
nsIFrame* child = aGridItem.mFrame;
|
||
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
|
||
const nsStylePosition* stylePos = child->StylePosition();
|
||
StyleSize sizeStyle =
|
||
axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight;
|
||
|
||
auto ourInlineAxis = child->GetWritingMode().PhysicalAxis(eLogicalAxisInline);
|
||
// max-content and min-content should behave as initial value in block axis.
|
||
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
|
||
// for block size dimension on sizing properties (e.g. height), so we
|
||
// treat it as `auto`.
|
||
if (axis != ourInlineAxis && sizeStyle.BehavesLikeInitialValueOnBlockAxis()) {
|
||
sizeStyle = StyleSize::Auto();
|
||
}
|
||
|
||
if (!sizeStyle.IsAuto() && !sizeStyle.HasPercent()) {
|
||
nscoord s =
|
||
MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache);
|
||
aCache->mMinSize.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
if (aCache->mPercentageBasis.isNothing()) {
|
||
aCache->mPercentageBasis.emplace(
|
||
aState.PercentageBasisFor(aAxis, aGridItem));
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
// This calculates the min-content contribution from either a definite
|
||
// min-width (or min-height depending on aAxis), or the "specified /
|
||
// transferred size" for min-width:auto if overflow == visible (as min-width:0
|
||
// otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
|
||
// (which results in always taking the "content size" part below).
|
||
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
|
||
"baseline offset should be non-negative at this point");
|
||
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
|
||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
|
||
"baseline offset should be zero when not baseline-aligned");
|
||
nscoord sz = aGridItem.mBaselineOffset[aAxis] +
|
||
nsLayoutUtils::MinSizeContributionForAxis(
|
||
axis, aRC, child, IntrinsicISizeType::MinISize,
|
||
*aCache->mPercentageBasis);
|
||
const StyleSize& style =
|
||
axis == eAxisHorizontal ? stylePos->mMinWidth : stylePos->mMinHeight;
|
||
// max-content and min-content should behave as initial value in block axis.
|
||
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
|
||
// for block size dimension on sizing properties (e.g. height), so we
|
||
// treat it as `auto`.
|
||
const bool inInlineAxis = axis == ourInlineAxis;
|
||
const bool isAuto =
|
||
style.IsAuto() ||
|
||
(!inInlineAxis && style.BehavesLikeInitialValueOnBlockAxis());
|
||
if ((inInlineAxis && nsIFrame::ToExtremumLength(style)) ||
|
||
(isAuto && child->StyleDisplay()->mOverflowX == StyleOverflow::Visible)) {
|
||
// Now calculate the "content size" part and return whichever is smaller.
|
||
MOZ_ASSERT(isAuto || sz == NS_UNCONSTRAINEDSIZE);
|
||
sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
|
||
aCache->mPercentageBasis,
|
||
IntrinsicISizeType::MinISize,
|
||
aCache->mMinSizeClamp,
|
||
nsLayoutUtils::MIN_INTRINSIC_ISIZE));
|
||
}
|
||
aCache->mMinSize.emplace(sz);
|
||
return sz;
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::CalculateSizes(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions, nscoord aContentBoxSize,
|
||
LineRange GridArea::*aRange, SizingConstraint aConstraint) {
|
||
nscoord percentageBasis = aContentBoxSize;
|
||
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
|
||
percentageBasis = 0;
|
||
}
|
||
InitializeItemBaselines(aState, aGridItems);
|
||
ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
|
||
aConstraint);
|
||
if (aConstraint != SizingConstraint::MinContent) {
|
||
nscoord freeSpace = aContentBoxSize;
|
||
if (freeSpace != NS_UNCONSTRAINEDSIZE) {
|
||
freeSpace -= SumOfGridGaps();
|
||
}
|
||
DistributeFreeSpace(freeSpace);
|
||
StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
|
||
}
|
||
}
|
||
|
||
TrackSize::StateBits nsGridContainerFrame::Tracks::StateBitsForRange(
|
||
const LineRange& aRange) const {
|
||
MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
|
||
TrackSize::StateBits state = TrackSize::StateBits(0);
|
||
for (auto i : aRange.Range()) {
|
||
state |= mSizes[i].mState;
|
||
}
|
||
return state;
|
||
}
|
||
|
||
static void AddSubgridContribution(TrackSize& aSize,
|
||
nscoord aMarginBorderPadding) {
|
||
if (aSize.mState & TrackSize::eIntrinsicMinSizing) {
|
||
aSize.mBase = std::max(aSize.mBase, aMarginBorderPadding);
|
||
aSize.mLimit = std::max(aSize.mLimit, aSize.mBase);
|
||
}
|
||
// XXX maybe eFlexMaxSizing too?
|
||
// (once we implement https://github.com/w3c/csswg-drafts/issues/2177)
|
||
if (aSize.mState &
|
||
(TrackSize::eIntrinsicMaxSizing | TrackSize::eFitContent)) {
|
||
aSize.mLimit = std::max(aSize.mLimit, aMarginBorderPadding);
|
||
}
|
||
}
|
||
|
||
bool nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
|
||
GridReflowInput& aState, const TrackSizingFunctions& aFunctions,
|
||
nscoord aPercentageBasis, SizingConstraint aConstraint,
|
||
const LineRange& aRange, const GridItemInfo& aGridItem) {
|
||
CachedIntrinsicSizes cache;
|
||
TrackSize& sz = mSizes[aRange.mStart];
|
||
WritingMode wm = aState.mWM;
|
||
|
||
// min sizing
|
||
gfxContext* rc = &aState.mRenderingContext;
|
||
if (sz.mState & TrackSize::eAutoMinSizing) {
|
||
nscoord s;
|
||
// Check if we need to apply "Automatic Minimum Size" and cache it.
|
||
if (aGridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
|
||
aGridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
|
||
// Clamp it if it's spanning a definite track max-sizing function.
|
||
if (TrackSize::IsDefiniteMaxSizing(sz.mState)) {
|
||
cache.mMinSizeClamp = aFunctions.MaxSizingFor(aRange.mStart)
|
||
.AsBreadth()
|
||
.Resolve(aPercentageBasis);
|
||
aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
|
||
}
|
||
if (aConstraint != SizingConstraint::MaxContent) {
|
||
s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
} else {
|
||
s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
} else {
|
||
s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
} else if (sz.mState & TrackSize::eMinContentMinSizing) {
|
||
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
} else if (sz.mState & TrackSize::eMaxContentMinSizing) {
|
||
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
}
|
||
// max sizing
|
||
if (sz.mState & TrackSize::eMinContentMaxSizing) {
|
||
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = s;
|
||
} else {
|
||
sz.mLimit = std::max(sz.mLimit, s);
|
||
}
|
||
} else if (sz.mState &
|
||
(TrackSize::eAutoMaxSizing | TrackSize::eMaxContentMaxSizing)) {
|
||
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = s;
|
||
} else {
|
||
sz.mLimit = std::max(sz.mLimit, s);
|
||
}
|
||
if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) {
|
||
// Clamp mLimit to the fit-content() size, for §12.5.1.
|
||
nscoord fitContentClamp = aFunctions.SizingFor(aRange.mStart)
|
||
.AsFitContent()
|
||
.AsBreadth()
|
||
.Resolve(aPercentageBasis);
|
||
sz.mLimit = std::min(sz.mLimit, fitContentClamp);
|
||
}
|
||
}
|
||
if (sz.mLimit < sz.mBase) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
return sz.mState & TrackSize::eFlexMaxSizing;
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::CalculateItemBaselines(
|
||
nsTArray<ItemBaselineData>& aBaselineItems,
|
||
BaselineSharingGroup aBaselineGroup) {
|
||
if (aBaselineItems.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
// Sort the collected items on their baseline track.
|
||
std::sort(aBaselineItems.begin(), aBaselineItems.end(),
|
||
ItemBaselineData::IsBaselineTrackLessThan);
|
||
|
||
MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
|
||
const uint32_t lastTrack = mSizes.Length() - 1;
|
||
nscoord maxBaseline = 0;
|
||
nscoord maxDescent = 0;
|
||
uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
|
||
uint32_t trackStartIndex = 0;
|
||
for (uint32_t i = 0, len = aBaselineItems.Length(); true; ++i) {
|
||
// Find the maximum baseline and descent in the current track.
|
||
if (i != len) {
|
||
const ItemBaselineData& item = aBaselineItems[i];
|
||
if (currentTrack == item.mBaselineTrack) {
|
||
maxBaseline = std::max(maxBaseline, item.mBaseline);
|
||
maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
|
||
continue;
|
||
}
|
||
}
|
||
// Iterate the current track again and update the baseline offsets making
|
||
// all items baseline-aligned within this group in this track.
|
||
for (uint32_t j = trackStartIndex; j < i; ++j) {
|
||
const ItemBaselineData& item = aBaselineItems[j];
|
||
item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
|
||
MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
|
||
}
|
||
if (i != 0) {
|
||
// Store the size of this baseline-aligned subtree.
|
||
mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
|
||
maxBaseline + maxDescent;
|
||
// Record the first(last) baseline for the first(last) track.
|
||
if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::First) {
|
||
mBaseline[aBaselineGroup] = maxBaseline;
|
||
}
|
||
if (currentTrack == lastTrack &&
|
||
aBaselineGroup == BaselineSharingGroup::Last) {
|
||
mBaseline[aBaselineGroup] = maxBaseline;
|
||
}
|
||
}
|
||
if (i == len) {
|
||
break;
|
||
}
|
||
// Initialize data for the next track with baseline-aligned items.
|
||
const ItemBaselineData& item = aBaselineItems[i];
|
||
currentTrack = item.mBaselineTrack;
|
||
trackStartIndex = i;
|
||
maxBaseline = item.mBaseline;
|
||
maxDescent = item.mSize - item.mBaseline;
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::InitializeItemBaselines(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems) {
|
||
MOZ_ASSERT(!mIsMasonry);
|
||
if (aState.mFrame->IsSubgrid(mAxis)) {
|
||
// A grid container's subgridded axis doesn't have a baseline.
|
||
return;
|
||
}
|
||
nsTArray<ItemBaselineData> firstBaselineItems;
|
||
nsTArray<ItemBaselineData> lastBaselineItems;
|
||
WritingMode wm = aState.mWM;
|
||
ComputedStyle* containerSC = aState.mFrame->Style();
|
||
for (GridItemInfo& gridItem : aGridItems) {
|
||
if (gridItem.IsSubgrid(mAxis)) {
|
||
// A subgrid itself is never baseline-aligned.
|
||
continue;
|
||
}
|
||
nsIFrame* child = gridItem.mFrame;
|
||
uint32_t baselineTrack = kAutoLine;
|
||
auto state = ItemState(0);
|
||
auto childWM = child->GetWritingMode();
|
||
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
|
||
const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
|
||
// XXX update the line below to include orthogonal grid/table boxes
|
||
// XXX since they have baselines in both dimensions. And flexbox with
|
||
// XXX reversed main/cross axis?
|
||
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
|
||
if (itemHasBaselineParallelToTrack) {
|
||
// [align|justify]-self:[last ]baseline.
|
||
auto selfAlignment =
|
||
isOrthogonal ? child->StylePosition()->UsedJustifySelf(containerSC)._0
|
||
: child->StylePosition()->UsedAlignSelf(containerSC)._0;
|
||
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
|
||
if (selfAlignment == StyleAlignFlags::BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
|
||
const GridArea& area = gridItem.mArea;
|
||
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
|
||
const GridArea& area = gridItem.mArea;
|
||
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
}
|
||
|
||
// [align|justify]-content:[last ]baseline.
|
||
// https://drafts.csswg.org/css-align-3/#baseline-align-content
|
||
// "[...] and its computed 'align-self' or 'justify-self' (whichever
|
||
// affects its block axis) is 'stretch' or 'self-start' ('self-end').
|
||
// For this purpose, the 'start', 'end', 'flex-start', and 'flex-end'
|
||
// values of 'align-self' are treated as either 'self-start' or
|
||
// 'self-end', whichever they end up equivalent to.
|
||
auto alignContent = child->StylePosition()->mAlignContent.primary;
|
||
alignContent &= ~StyleAlignFlags::FLAG_BITS;
|
||
if (alignContent == StyleAlignFlags::BASELINE ||
|
||
alignContent == StyleAlignFlags::LAST_BASELINE) {
|
||
const auto selfAlignEdge = alignContent == StyleAlignFlags::BASELINE
|
||
? StyleAlignFlags::SELF_START
|
||
: StyleAlignFlags::SELF_END;
|
||
bool validCombo = selfAlignment == StyleAlignFlags::NORMAL ||
|
||
selfAlignment == StyleAlignFlags::STRETCH ||
|
||
selfAlignment == selfAlignEdge;
|
||
if (!validCombo) {
|
||
// We're doing alignment in the axis that's orthogonal to mAxis here.
|
||
LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
|
||
// |sameSide| is true if the container's start side in this axis is
|
||
// the same as the child's start side, in the child's parallel axis.
|
||
bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM);
|
||
if (selfAlignment == StyleAlignFlags::LEFT) {
|
||
selfAlignment = !isInlineAxis || wm.IsBidiLTR()
|
||
? StyleAlignFlags::START
|
||
: StyleAlignFlags::END;
|
||
} else if (selfAlignment == StyleAlignFlags::RIGHT) {
|
||
selfAlignment = isInlineAxis && wm.IsBidiLTR()
|
||
? StyleAlignFlags::END
|
||
: StyleAlignFlags::START;
|
||
}
|
||
|
||
if (selfAlignment == StyleAlignFlags::START ||
|
||
selfAlignment == StyleAlignFlags::FLEX_START) {
|
||
validCombo =
|
||
sameSide == (alignContent == StyleAlignFlags::BASELINE);
|
||
} else if (selfAlignment == StyleAlignFlags::END ||
|
||
selfAlignment == StyleAlignFlags::FLEX_END) {
|
||
validCombo =
|
||
sameSide == (alignContent == StyleAlignFlags::LAST_BASELINE);
|
||
}
|
||
}
|
||
if (validCombo) {
|
||
const GridArea& area = gridItem.mArea;
|
||
if (alignContent == StyleAlignFlags::BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
|
||
baselineTrack =
|
||
isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
|
||
baselineTrack =
|
||
(isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (state & ItemState::eIsBaselineAligned) {
|
||
// XXXmats if |child| is a descendant of a subgrid then the metrics
|
||
// below needs to account for the accumulated MPB somehow...
|
||
|
||
// XXX available size issue
|
||
LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
|
||
auto* rc = &aState.mRenderingContext;
|
||
// XXX figure out if we can avoid/merge this reflow with the main reflow.
|
||
// XXX (after bug 1174569 is sorted out)
|
||
//
|
||
// XXX How should we handle percentage padding here? (bug 1330866)
|
||
// XXX (see ::ContentContribution and how it deals with percentages)
|
||
// XXX What if the true baseline after line-breaking differs from this
|
||
// XXX hypothetical baseline based on an infinite inline size?
|
||
// XXX Maybe we should just call ::ContentContribution here instead?
|
||
// XXX For now we just pass a zero-sized CB:
|
||
LogicalSize cbSize(childWM, 0, 0);
|
||
::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize);
|
||
nscoord baseline;
|
||
nsGridContainerFrame* grid = do_QueryFrame(child);
|
||
if (state & ItemState::eFirstBaseline) {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::First, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::First, &baseline);
|
||
}
|
||
}
|
||
if (grid || nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
auto m = child->GetLogicalUsedMargin(wm);
|
||
baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm);
|
||
auto alignSize =
|
||
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
|
||
firstBaselineItems.AppendElement(ItemBaselineData(
|
||
{baselineTrack, baseline, alignSize, &gridItem}));
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
} else {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::Last, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::Last, &baseline);
|
||
}
|
||
}
|
||
if (grid || nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
auto m = child->GetLogicalUsedMargin(wm);
|
||
if (!grid) {
|
||
// Convert to distance from border-box end.
|
||
baseline = frameSize - baseline;
|
||
}
|
||
auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm));
|
||
auto alignSize =
|
||
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
|
||
lastBaselineItems.AppendElement(
|
||
ItemBaselineData({baselineTrack, descent, alignSize, &gridItem}));
|
||
state |= ItemState::eEndSideBaseline;
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(
|
||
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
|
||
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
|
||
"first/last baseline bits are mutually exclusive");
|
||
MOZ_ASSERT(
|
||
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
|
||
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
|
||
"*-self and *-content baseline bits are mutually exclusive");
|
||
MOZ_ASSERT(
|
||
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
|
||
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
|
||
"first/last bit requires self/content bit and vice versa");
|
||
gridItem.mState[mAxis] |= state;
|
||
gridItem.mBaselineOffset[mAxis] = nscoord(0);
|
||
}
|
||
|
||
if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
// TODO: CSS Align spec issue - how to align a baseline subtree in a track?
|
||
// https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::START;
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::END;
|
||
|
||
CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::First);
|
||
CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::Last);
|
||
}
|
||
|
||
// TODO: we store the wrong baseline group offset in some cases (bug 1632200)
|
||
void nsGridContainerFrame::Tracks::InitializeItemBaselinesInMasonryAxis(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
|
||
nsTArray<nscoord>& aTrackSizes,
|
||
nsTArray<ItemBaselineData>& aFirstBaselineItems,
|
||
nsTArray<ItemBaselineData>& aLastBaselineItems) {
|
||
MOZ_ASSERT(mIsMasonry);
|
||
WritingMode wm = aState.mWM;
|
||
ComputedStyle* containerSC = aState.mFrame->Style();
|
||
for (GridItemInfo& gridItem : aGridItems) {
|
||
if (gridItem.IsSubgrid(mAxis)) {
|
||
// A subgrid itself is never baseline-aligned.
|
||
continue;
|
||
}
|
||
const auto& area = gridItem.mArea;
|
||
if (aSet.mItemSet == BaselineAlignmentSet::LastItems) {
|
||
// NOTE: eIsLastItemInMasonryTrack is set also if the item is the ONLY
|
||
// item in its track; the eIsBaselineAligned check excludes it though
|
||
// since it participates in the start baseline groups in that case.
|
||
//
|
||
// XXX what if it's the only item in THAT baseline group?
|
||
// XXX should it participate in the last-item group instead then
|
||
// if there are more baseline-aligned items there?
|
||
if (!(gridItem.mState[mAxis] & ItemState::eIsLastItemInMasonryTrack) ||
|
||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
|
||
continue;
|
||
}
|
||
} else {
|
||
if (area.LineRangeForAxis(mAxis).mStart > 0 ||
|
||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
|
||
continue;
|
||
}
|
||
}
|
||
auto trackAlign =
|
||
aState.mGridStyle
|
||
->UsedTracksAlignment(
|
||
mAxis, area.LineRangeForAxis(GetOrthogonalAxis(mAxis)).mStart)
|
||
.primary;
|
||
if (!aSet.MatchTrackAlignment(trackAlign)) {
|
||
continue;
|
||
}
|
||
|
||
nsIFrame* child = gridItem.mFrame;
|
||
uint32_t baselineTrack = kAutoLine;
|
||
auto state = ItemState(0);
|
||
auto childWM = child->GetWritingMode();
|
||
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
|
||
const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
|
||
// XXX update the line below to include orthogonal grid/table boxes
|
||
// XXX since they have baselines in both dimensions. And flexbox with
|
||
// XXX reversed main/cross axis?
|
||
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
|
||
if (itemHasBaselineParallelToTrack) {
|
||
const auto* pos = child->StylePosition();
|
||
// [align|justify]-self:[last ]baseline.
|
||
auto selfAlignment = pos->UsedSelfAlignment(mAxis, containerSC);
|
||
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
|
||
if (selfAlignment == StyleAlignFlags::BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
|
||
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
|
||
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
} else {
|
||
// [align|justify]-content:[last ]baseline.
|
||
auto childAxis = isOrthogonal ? GetOrthogonalAxis(mAxis) : mAxis;
|
||
auto alignContent = pos->UsedContentAlignment(childAxis).primary;
|
||
alignContent &= ~StyleAlignFlags::FLAG_BITS;
|
||
if (alignContent == StyleAlignFlags::BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
|
||
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
|
||
baselineTrack =
|
||
(isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (state & ItemState::eIsBaselineAligned) {
|
||
// XXXmats if |child| is a descendant of a subgrid then the metrics
|
||
// below needs to account for the accumulated MPB somehow...
|
||
|
||
nscoord baseline;
|
||
nsGridContainerFrame* grid = do_QueryFrame(child);
|
||
if (state & ItemState::eFirstBaseline) {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::First, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::First, &baseline);
|
||
}
|
||
}
|
||
if (grid || nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
nscoord alignSize;
|
||
LogicalPoint pos =
|
||
child->GetLogicalNormalPosition(wm, aContainerSize);
|
||
baseline += pos.Pos(mAxis, wm);
|
||
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
|
||
state |= ItemState::eEndSideBaseline;
|
||
// Convert to distance from the track end.
|
||
baseline =
|
||
aTrackSizes[gridItem.mArea
|
||
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
|
||
.mStart] -
|
||
baseline;
|
||
}
|
||
alignSize = frameSize;
|
||
aFirstBaselineItems.AppendElement(ItemBaselineData(
|
||
{baselineTrack, baseline, alignSize, &gridItem}));
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
} else {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::Last, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::Last, &baseline);
|
||
}
|
||
}
|
||
if (grid || nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
auto m = child->GetLogicalUsedMargin(wm);
|
||
if (!grid &&
|
||
aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
|
||
// Convert to distance from border-box end.
|
||
state |= ItemState::eEndSideBaseline;
|
||
LogicalPoint pos =
|
||
child->GetLogicalNormalPosition(wm, aContainerSize);
|
||
baseline += pos.Pos(mAxis, wm);
|
||
baseline =
|
||
aTrackSizes[gridItem.mArea
|
||
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
|
||
.mStart] -
|
||
baseline;
|
||
} else if (grid && aSet.mTrackAlignmentSet ==
|
||
BaselineAlignmentSet::StartStretch) {
|
||
// Convert to distance from border-box start.
|
||
baseline = frameSize - baseline;
|
||
}
|
||
if (aSet.mItemSet == BaselineAlignmentSet::LastItems &&
|
||
aSet.mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
|
||
LogicalPoint pos =
|
||
child->GetLogicalNormalPosition(wm, aContainerSize);
|
||
baseline += pos.B(wm);
|
||
}
|
||
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
|
||
state |= ItemState::eEndSideBaseline;
|
||
}
|
||
auto descent =
|
||
baseline + ((state & ItemState::eEndSideBaseline)
|
||
? (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm))
|
||
: (isInlineAxis ? m.IStart(wm) : m.BStart(wm)));
|
||
auto alignSize =
|
||
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
|
||
aLastBaselineItems.AppendElement(
|
||
ItemBaselineData({baselineTrack, descent, alignSize, &gridItem}));
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(
|
||
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
|
||
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
|
||
"first/last baseline bits are mutually exclusive");
|
||
MOZ_ASSERT(
|
||
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
|
||
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
|
||
"*-self and *-content baseline bits are mutually exclusive");
|
||
MOZ_ASSERT(
|
||
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
|
||
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
|
||
"first/last bit requires self/content bit and vice versa");
|
||
gridItem.mState[mAxis] |= state;
|
||
gridItem.mBaselineOffset[mAxis] = nscoord(0);
|
||
}
|
||
|
||
CalculateItemBaselines(aFirstBaselineItems, BaselineSharingGroup::First);
|
||
CalculateItemBaselines(aLastBaselineItems, BaselineSharingGroup::Last);
|
||
|
||
// TODO: make sure the mBaselines (i.e. the baselines we export from
|
||
// the grid container) are offset from the correct container edge.
|
||
// Also, which of the baselines do we pick to export exactly?
|
||
|
||
MOZ_ASSERT(aFirstBaselineItems.Length() != 1 ||
|
||
aFirstBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
|
||
"a baseline group that contains only one item should not "
|
||
"produce a non-zero item baseline offset");
|
||
MOZ_ASSERT(aLastBaselineItems.Length() != 1 ||
|
||
aLastBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
|
||
"a baseline group that contains only one item should not "
|
||
"produce a non-zero item baseline offset");
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::AlignBaselineSubtree(
|
||
const GridItemInfo& aGridItem) const {
|
||
if (mIsMasonry) {
|
||
return;
|
||
}
|
||
auto state = aGridItem.mState[mAxis];
|
||
if (!(state & ItemState::eIsBaselineAligned)) {
|
||
return;
|
||
}
|
||
const GridArea& area = aGridItem.mArea;
|
||
int32_t baselineTrack;
|
||
const bool isFirstBaseline = state & ItemState::eFirstBaseline;
|
||
if (isFirstBaseline) {
|
||
baselineTrack =
|
||
mAxis == eLogicalAxisBlock ? area.mRows.mStart : area.mCols.mStart;
|
||
} else {
|
||
baselineTrack =
|
||
(mAxis == eLogicalAxisBlock ? area.mRows.mEnd : area.mCols.mEnd) - 1;
|
||
}
|
||
const TrackSize& sz = mSizes[baselineTrack];
|
||
auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::First
|
||
: BaselineSharingGroup::Last;
|
||
nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
|
||
const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
|
||
if (subtreeAlign == StyleAlignFlags::START) {
|
||
if (state & ItemState::eLastBaseline) {
|
||
aGridItem.mBaselineOffset[mAxis] += delta;
|
||
}
|
||
} else if (subtreeAlign == StyleAlignFlags::END) {
|
||
if (isFirstBaseline) {
|
||
aGridItem.mBaselineOffset[mAxis] += delta;
|
||
}
|
||
} else if (subtreeAlign == StyleAlignFlags::CENTER) {
|
||
aGridItem.mBaselineOffset[mAxis] += delta / 2;
|
||
} else {
|
||
MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
|
||
}
|
||
}
|
||
|
||
template <nsGridContainerFrame::Tracks::TrackSizingPhase phase>
|
||
bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems(
|
||
nsTArray<Step2ItemData>::iterator aIter,
|
||
const nsTArray<Step2ItemData>::iterator aIterEnd,
|
||
nsTArray<uint32_t>& aTracks, nsTArray<TrackSize>& aPlan,
|
||
nsTArray<TrackSize>& aItemPlan, TrackSize::StateBits aSelector,
|
||
const FitContentClamper& aFitContentClamper,
|
||
bool aNeedInfinitelyGrowableFlag) {
|
||
constexpr bool isMaxSizingPhase =
|
||
phase == TrackSizingPhase::IntrinsicMaximums ||
|
||
phase == TrackSizingPhase::MaxContentMaximums;
|
||
bool needToUpdateSizes = false;
|
||
InitializePlan<phase>(aPlan);
|
||
for (; aIter != aIterEnd; ++aIter) {
|
||
const Step2ItemData& item = *aIter;
|
||
if (!(item.mState & aSelector)) {
|
||
continue;
|
||
}
|
||
if (isMaxSizingPhase) {
|
||
for (auto i : item.mLineRange.Range()) {
|
||
aPlan[i].mState |= TrackSize::eModified;
|
||
}
|
||
}
|
||
nscoord space = item.SizeContributionForPhase<phase>();
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
aTracks.ClearAndRetainStorage();
|
||
space = CollectGrowable<phase>(space, item.mLineRange, aSelector, aTracks);
|
||
if (space > 0) {
|
||
DistributeToTrackSizes<phase>(space, aPlan, aItemPlan, aTracks, aSelector,
|
||
aFitContentClamper);
|
||
needToUpdateSizes = true;
|
||
}
|
||
}
|
||
if (isMaxSizingPhase) {
|
||
needToUpdateSizes = true;
|
||
}
|
||
if (needToUpdateSizes) {
|
||
CopyPlanToSize<phase>(aPlan, aNeedInfinitelyGrowableFlag);
|
||
}
|
||
return needToUpdateSizes;
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions, LineRange GridArea::*aRange,
|
||
nscoord aPercentageBasis, SizingConstraint aConstraint) {
|
||
// Resolve Intrinsic Track Sizes
|
||
// http://dev.w3.org/csswg/css-grid/#algo-content
|
||
// We're also setting eIsFlexing on the item state here to speed up
|
||
// FindUsedFlexFraction later.
|
||
struct PerSpanData {
|
||
PerSpanData()
|
||
: mItemCountWithSameSpan(0), mStateBits(TrackSize::StateBits(0)) {}
|
||
uint32_t mItemCountWithSameSpan;
|
||
TrackSize::StateBits mStateBits;
|
||
};
|
||
AutoTArray<PerSpanData, 16> perSpanData;
|
||
nsTArray<Step2ItemData> step2Items;
|
||
gfxContext* rc = &aState.mRenderingContext;
|
||
WritingMode wm = aState.mWM;
|
||
uint32_t maxSpan = 0; // max span of the step2Items items
|
||
// Setup track selector for step 2.2:
|
||
const auto contentBasedMinSelector =
|
||
aConstraint == SizingConstraint::MinContent
|
||
? TrackSize::eIntrinsicMinSizing
|
||
: TrackSize::eMinOrMaxContentMinSizing;
|
||
// Setup track selector for step 2.3:
|
||
const auto maxContentMinSelector =
|
||
aConstraint == SizingConstraint::MaxContent
|
||
? (TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing)
|
||
: TrackSize::eMaxContentMinSizing;
|
||
const auto orthogonalAxis = GetOrthogonalAxis(mAxis);
|
||
const bool isMasonryInOtherAxis = aState.mFrame->IsMasonry(orthogonalAxis);
|
||
for (auto& gridItem : aGridItems) {
|
||
MOZ_ASSERT(!(gridItem.mState[mAxis] &
|
||
(ItemState::eApplyAutoMinSize | ItemState::eIsFlexing |
|
||
ItemState::eClampMarginBoxMinSize)),
|
||
"Why are any of these bits set already?");
|
||
const GridArea& area = gridItem.mArea;
|
||
const LineRange& lineRange = area.*aRange;
|
||
|
||
// If we have masonry layout in the other axis then skip this item unless
|
||
// it's in the first masonry track, or has definite placement in this axis,
|
||
// or spans all tracks in this axis (since that implies it will be placed
|
||
// at line 1 regardless of layout results of other items).
|
||
if (isMasonryInOtherAxis &&
|
||
gridItem.mArea.LineRangeForAxis(orthogonalAxis).mStart != 0 &&
|
||
(gridItem.mState[mAxis] & ItemState::eAutoPlacement) &&
|
||
gridItem.mArea.LineRangeForAxis(mAxis).Extent() != mSizes.Length()) {
|
||
continue;
|
||
}
|
||
|
||
uint32_t span = lineRange.Extent();
|
||
if (MOZ_UNLIKELY(gridItem.mState[mAxis] & ItemState::eIsSubgrid)) {
|
||
auto itemWM = gridItem.mFrame->GetWritingMode();
|
||
auto percentageBasis = aState.PercentageBasisFor(mAxis, gridItem);
|
||
if (percentageBasis.ISize(itemWM) == NS_UNCONSTRAINEDSIZE) {
|
||
percentageBasis.ISize(itemWM) = nscoord(0);
|
||
}
|
||
if (percentageBasis.BSize(itemWM) == NS_UNCONSTRAINEDSIZE) {
|
||
percentageBasis.BSize(itemWM) = nscoord(0);
|
||
}
|
||
auto* subgrid =
|
||
SubgridComputeMarginBorderPadding(gridItem, percentageBasis);
|
||
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
|
||
gridItem.SubgridFrame(), subgrid, wm, mAxis);
|
||
if (span == 1) {
|
||
AddSubgridContribution(mSizes[lineRange.mStart],
|
||
mbp.StartEnd(mAxis, wm));
|
||
} else {
|
||
AddSubgridContribution(mSizes[lineRange.mStart], mbp.Start(mAxis, wm));
|
||
AddSubgridContribution(mSizes[lineRange.mEnd - 1], mbp.End(mAxis, wm));
|
||
}
|
||
continue;
|
||
}
|
||
|
||
if (span == 1) {
|
||
// Step 1. Size tracks to fit non-spanning items.
|
||
if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
|
||
aConstraint, lineRange, gridItem)) {
|
||
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
|
||
}
|
||
} else {
|
||
TrackSize::StateBits state = StateBitsForRange(lineRange);
|
||
|
||
// Check if we need to apply "Automatic Minimum Size" and cache it.
|
||
if ((state & TrackSize::eAutoMinSizing) &&
|
||
gridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
|
||
gridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
|
||
}
|
||
|
||
if (state & TrackSize::eFlexMaxSizing) {
|
||
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
|
||
} else if (state & (TrackSize::eIntrinsicMinSizing |
|
||
TrackSize::eIntrinsicMaxSizing)) {
|
||
// Collect data for Step 2.
|
||
maxSpan = std::max(maxSpan, span);
|
||
if (span >= perSpanData.Length()) {
|
||
perSpanData.SetLength(2 * span);
|
||
}
|
||
perSpanData[span].mItemCountWithSameSpan++;
|
||
perSpanData[span].mStateBits |= state;
|
||
CachedIntrinsicSizes cache;
|
||
// Calculate data for "Automatic Minimum Size" clamping, if needed.
|
||
if (TrackSize::IsDefiniteMaxSizing(state) &&
|
||
(gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize)) {
|
||
nscoord minSizeClamp = 0;
|
||
for (auto i : lineRange.Range()) {
|
||
minSizeClamp += aFunctions.MaxSizingFor(i).AsBreadth().Resolve(
|
||
aPercentageBasis);
|
||
}
|
||
minSizeClamp += mGridGap * (span - 1);
|
||
cache.mMinSizeClamp = minSizeClamp;
|
||
gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
|
||
}
|
||
// Collect the various grid item size contributions we need.
|
||
nscoord minSize = 0;
|
||
if (state & TrackSize::eIntrinsicMinSizing) { // for 2.1
|
||
minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
nscoord minContent = 0;
|
||
if (state & (contentBasedMinSelector | // for 2.2
|
||
TrackSize::eIntrinsicMaxSizing)) { // for 2.5
|
||
minContent =
|
||
MinContentContribution(gridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
nscoord maxContent = 0;
|
||
if (state & (maxContentMinSelector | // for 2.3
|
||
TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
|
||
maxContent =
|
||
MaxContentContribution(gridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
step2Items.AppendElement(
|
||
Step2ItemData({span, state, lineRange, minSize, minContent,
|
||
maxContent, gridItem.mFrame}));
|
||
}
|
||
}
|
||
MOZ_ASSERT(!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) ||
|
||
(gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize),
|
||
"clamping only applies to Automatic Minimum Size");
|
||
}
|
||
|
||
// Step 2.
|
||
if (maxSpan) {
|
||
auto fitContentClamper = [&aFunctions, aPercentageBasis](uint32_t aTrack,
|
||
nscoord aMinSize,
|
||
nscoord* aSize) {
|
||
nscoord fitContentLimit = ::ResolveToDefiniteSize(
|
||
aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
|
||
if (*aSize > fitContentLimit) {
|
||
*aSize = std::max(aMinSize, fitContentLimit);
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
// Sort the collected items on span length, shortest first. There's no need
|
||
// for a stable sort here since the sizing isn't order dependent within
|
||
// a group of items with the same span length.
|
||
std::sort(step2Items.begin(), step2Items.end(),
|
||
Step2ItemData::IsSpanLessThan);
|
||
|
||
nsTArray<uint32_t> tracks(maxSpan);
|
||
nsTArray<TrackSize> plan(mSizes.Length());
|
||
plan.SetLength(mSizes.Length());
|
||
nsTArray<TrackSize> itemPlan(mSizes.Length());
|
||
itemPlan.SetLength(mSizes.Length());
|
||
// Start / end iterator for items of the same span length:
|
||
auto spanGroupStart = step2Items.begin();
|
||
auto spanGroupEnd = spanGroupStart;
|
||
const auto end = step2Items.end();
|
||
for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) {
|
||
const uint32_t span = spanGroupStart->mSpan;
|
||
spanGroupEnd = spanGroupStart + perSpanData[span].mItemCountWithSameSpan;
|
||
TrackSize::StateBits stateBitsForSpan = perSpanData[span].mStateBits;
|
||
bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
|
||
TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing);
|
||
if (stateBitsForSpan & selector) {
|
||
// Step 2.1 MinSize to intrinsic min-sizing.
|
||
updatedBase =
|
||
GrowSizeForSpanningItems<TrackSizingPhase::IntrinsicMinimums>(
|
||
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
|
||
}
|
||
|
||
selector = contentBasedMinSelector;
|
||
if (stateBitsForSpan & selector) {
|
||
// Step 2.2 MinContentContribution to min-/max-content (and 'auto' when
|
||
// sizing under a min-content constraint) min-sizing.
|
||
updatedBase |=
|
||
GrowSizeForSpanningItems<TrackSizingPhase::ContentBasedMinimums>(
|
||
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
|
||
}
|
||
|
||
selector = maxContentMinSelector;
|
||
if (stateBitsForSpan & selector) {
|
||
// Step 2.3 MaxContentContribution to max-content (and 'auto' when
|
||
// sizing under a max-content constraint) min-sizing.
|
||
updatedBase |=
|
||
GrowSizeForSpanningItems<TrackSizingPhase::MaxContentMinimums>(
|
||
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
|
||
}
|
||
|
||
if (updatedBase) {
|
||
// Step 2.4
|
||
for (TrackSize& sz : mSizes) {
|
||
if (sz.mBase > sz.mLimit) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
|
||
selector = TrackSize::eIntrinsicMaxSizing;
|
||
if (stateBitsForSpan & selector) {
|
||
const bool willRunStep2_6 =
|
||
stateBitsForSpan & TrackSize::eAutoOrMaxContentMaxSizing;
|
||
// Step 2.5 MinContentContribution to intrinsic max-sizing.
|
||
GrowSizeForSpanningItems<TrackSizingPhase::IntrinsicMaximums>(
|
||
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
|
||
fitContentClamper, willRunStep2_6);
|
||
|
||
if (willRunStep2_6) {
|
||
// Step 2.6 MaxContentContribution to max-content max-sizing.
|
||
selector = TrackSize::eAutoOrMaxContentMaxSizing;
|
||
GrowSizeForSpanningItems<TrackSizingPhase::MaxContentMaximums>(
|
||
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
|
||
fitContentClamper);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Step 3.
|
||
for (TrackSize& sz : mSizes) {
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
|
||
float nsGridContainerFrame::Tracks::FindFrUnitSize(
|
||
const LineRange& aRange, const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions, nscoord aSpaceToFill) const {
|
||
MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
|
||
float flexFactorSum = 0.0f;
|
||
nscoord leftOverSpace = aSpaceToFill;
|
||
for (auto i : aRange.Range()) {
|
||
const TrackSize& sz = mSizes[i];
|
||
if (sz.mState & TrackSize::eFlexMaxSizing) {
|
||
flexFactorSum += aFunctions.MaxSizingFor(i).AsFr();
|
||
} else {
|
||
leftOverSpace -= sz.mBase;
|
||
if (leftOverSpace <= 0) {
|
||
return 0.0f;
|
||
}
|
||
}
|
||
}
|
||
bool restart;
|
||
float hypotheticalFrSize;
|
||
nsTArray<uint32_t> flexTracks(aFlexTracks.Clone());
|
||
uint32_t numFlexTracks = flexTracks.Length();
|
||
do {
|
||
restart = false;
|
||
hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
|
||
for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
|
||
uint32_t track = flexTracks[i];
|
||
if (track == kAutoLine) {
|
||
continue; // Track marked as inflexible in a prev. iter of this loop.
|
||
}
|
||
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
|
||
const nscoord base = mSizes[track].mBase;
|
||
if (flexFactor * hypotheticalFrSize < base) {
|
||
// 12.7.1.4: Treat this track as inflexible.
|
||
flexTracks[i] = kAutoLine;
|
||
flexFactorSum -= flexFactor;
|
||
leftOverSpace -= base;
|
||
--numFlexTracks;
|
||
if (numFlexTracks == 0 || leftOverSpace <= 0) {
|
||
return 0.0f;
|
||
}
|
||
restart = true;
|
||
// break; XXX (bug 1176621 comment 16) measure which is more common
|
||
}
|
||
}
|
||
} while (restart);
|
||
return hypotheticalFrSize;
|
||
}
|
||
|
||
float nsGridContainerFrame::Tracks::FindUsedFlexFraction(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) const {
|
||
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
|
||
// Use all of the grid tracks and a 'space to fill' of the available space.
|
||
const TranslatedLineRange range(0, mSizes.Length());
|
||
return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
|
||
}
|
||
|
||
// The used flex fraction is the maximum of:
|
||
// ... each flexible track's base size divided by its flex factor (which is
|
||
// floored at 1).
|
||
float fr = 0.0f;
|
||
for (uint32_t track : aFlexTracks) {
|
||
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
|
||
float possiblyDividedBaseSize = (flexFactor > 1.0f)
|
||
? mSizes[track].mBase / flexFactor
|
||
: mSizes[track].mBase;
|
||
fr = std::max(fr, possiblyDividedBaseSize);
|
||
}
|
||
WritingMode wm = aState.mWM;
|
||
gfxContext* rc = &aState.mRenderingContext;
|
||
// ... the result of 'finding the size of an fr' for each item that spans
|
||
// a flex track with its max-content contribution as 'space to fill'
|
||
for (const GridItemInfo& item : aGridItems) {
|
||
if (item.mState[mAxis] & ItemState::eIsFlexing) {
|
||
// XXX optimize: bug 1194446
|
||
auto pb = Some(aState.PercentageBasisFor(mAxis, item));
|
||
nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis, pb,
|
||
IntrinsicISizeType::PrefISize);
|
||
const LineRange& range =
|
||
mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
|
||
MOZ_ASSERT(range.Extent() >= 1);
|
||
const auto spannedGaps = range.Extent() - 1;
|
||
if (spannedGaps > 0) {
|
||
spaceToFill -= mGridGap * spannedGaps;
|
||
}
|
||
if (spaceToFill <= 0) {
|
||
continue;
|
||
}
|
||
// ... and all its spanned tracks as input.
|
||
nsTArray<uint32_t> itemFlexTracks;
|
||
for (auto i : range.Range()) {
|
||
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
|
||
itemFlexTracks.AppendElement(i);
|
||
}
|
||
}
|
||
float itemFr =
|
||
FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
|
||
fr = std::max(fr, itemFr);
|
||
}
|
||
}
|
||
return fr;
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::StretchFlexibleTracks(
|
||
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) {
|
||
if (aAvailableSize <= 0) {
|
||
return;
|
||
}
|
||
nsTArray<uint32_t> flexTracks(mSizes.Length());
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
|
||
flexTracks.AppendElement(i);
|
||
}
|
||
}
|
||
if (flexTracks.IsEmpty()) {
|
||
return;
|
||
}
|
||
nscoord minSize = 0;
|
||
nscoord maxSize = NS_UNCONSTRAINEDSIZE;
|
||
if (aState.mReflowInput) {
|
||
auto* ri = aState.mReflowInput;
|
||
minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize()
|
||
: ri->ComputedMinISize();
|
||
maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize()
|
||
: ri->ComputedMaxISize();
|
||
}
|
||
Maybe<CopyableAutoTArray<TrackSize, 32>> origSizes;
|
||
bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
|
||
aAvailableSize == NS_UNCONSTRAINEDSIZE;
|
||
// We iterate twice at most. The 2nd time if the grid size changed after
|
||
// applying a min/max-size (can only occur if aAvailableSize is indefinite).
|
||
while (true) {
|
||
float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks, aFunctions,
|
||
aAvailableSize);
|
||
if (fr != 0.0f) {
|
||
for (uint32_t i : flexTracks) {
|
||
float flexFactor = aFunctions.MaxSizingFor(i).AsFr();
|
||
nscoord flexLength = NSToCoordRound(flexFactor * fr);
|
||
nscoord& base = mSizes[i].mBase;
|
||
if (flexLength > base) {
|
||
if (applyMinMax && origSizes.isNothing()) {
|
||
origSizes.emplace(mSizes);
|
||
}
|
||
base = flexLength;
|
||
}
|
||
}
|
||
}
|
||
if (applyMinMax) {
|
||
applyMinMax = false;
|
||
// https://drafts.csswg.org/css-grid/#algo-flex-tracks
|
||
// "If using this flex fraction would cause the grid to be smaller than
|
||
// the grid container’s min-width/height (or larger than the grid
|
||
// container’s max-width/height), then redo this step, treating the free
|
||
// space as definite [...]"
|
||
const auto sumOfGridGaps = SumOfGridGaps();
|
||
nscoord newSize = SumOfGridTracks() + sumOfGridGaps;
|
||
if (newSize > maxSize) {
|
||
aAvailableSize = maxSize;
|
||
} else if (newSize < minSize) {
|
||
aAvailableSize = minSize;
|
||
}
|
||
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
|
||
aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
|
||
// Restart with the original track sizes and definite aAvailableSize.
|
||
if (origSizes.isSome()) {
|
||
mSizes = std::move(*origSizes);
|
||
origSizes.reset();
|
||
} // else, no mSizes[].mBase were changed above so it's still correct
|
||
if (aAvailableSize == 0) {
|
||
break; // zero available size wouldn't change any sizes though...
|
||
}
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::Tracks::AlignJustifyContent(
|
||
const nsStylePosition* aStyle, StyleContentDistribution aAligmentStyleValue,
|
||
WritingMode aWM, nscoord aContentBoxSize, bool aIsSubgriddedAxis) {
|
||
const bool isAlign = mAxis == eLogicalAxisBlock;
|
||
// Align-/justify-content doesn't apply in a subgridded axis.
|
||
// Gap properties do apply though so we need to stretch/position the tracks
|
||
// to center-align the gaps with the parent's gaps.
|
||
if (MOZ_UNLIKELY(aIsSubgriddedAxis)) {
|
||
auto& gap = isAlign ? aStyle->mRowGap : aStyle->mColumnGap;
|
||
if (gap.IsNormal()) {
|
||
return;
|
||
}
|
||
auto len = mSizes.Length();
|
||
if (len <= 1) {
|
||
return;
|
||
}
|
||
// This stores the gap deltas between the subgrid gap and the gaps in
|
||
// the used track sizes (as encoded in its tracks' mPosition):
|
||
nsTArray<nscoord> gapDeltas;
|
||
const size_t numGaps = len - 1;
|
||
gapDeltas.SetLength(numGaps);
|
||
for (size_t i = 0; i < numGaps; ++i) {
|
||
TrackSize& sz1 = mSizes[i];
|
||
TrackSize& sz2 = mSizes[i + 1];
|
||
nscoord currentGap = sz2.mPosition - (sz1.mPosition + sz1.mBase);
|
||
gapDeltas[i] = mGridGap - currentGap;
|
||
}
|
||
// Recompute the tracks' size/position so that they end up with
|
||
// a subgrid-gap centered on the original track gap.
|
||
nscoord currentPos = mSizes[0].mPosition;
|
||
nscoord lastHalfDelta(0);
|
||
for (size_t i = 0; i < numGaps; ++i) {
|
||
TrackSize& sz = mSizes[i];
|
||
nscoord delta = gapDeltas[i];
|
||
nscoord halfDelta;
|
||
nscoord roundingError = NSCoordDivRem(delta, 2, &halfDelta);
|
||
auto newSize = sz.mBase - (halfDelta + roundingError) - lastHalfDelta;
|
||
lastHalfDelta = halfDelta;
|
||
if (newSize >= 0) {
|
||
sz.mBase = newSize;
|
||
sz.mPosition = currentPos;
|
||
currentPos += newSize + mGridGap;
|
||
} else {
|
||
sz.mBase = nscoord(0);
|
||
sz.mPosition = currentPos + newSize;
|
||
currentPos = sz.mPosition + mGridGap;
|
||
}
|
||
}
|
||
auto& lastTrack = mSizes.LastElement();
|
||
auto newSize = lastTrack.mBase - lastHalfDelta;
|
||
if (newSize >= 0) {
|
||
lastTrack.mBase = newSize;
|
||
lastTrack.mPosition = currentPos;
|
||
} else {
|
||
lastTrack.mBase = nscoord(0);
|
||
lastTrack.mPosition = currentPos + newSize;
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (mSizes.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
bool overflowSafe;
|
||
auto alignment = ::GetAlignJustifyValue(aAligmentStyleValue.primary, aWM,
|
||
isAlign, &overflowSafe);
|
||
if (alignment == StyleAlignFlags::NORMAL) {
|
||
alignment = StyleAlignFlags::STRETCH;
|
||
// we may need a fallback for 'stretch' below
|
||
aAligmentStyleValue = {alignment};
|
||
}
|
||
|
||
// Compute the free space and count auto-sized tracks.
|
||
size_t numAutoTracks = 0;
|
||
nscoord space;
|
||
if (alignment != StyleAlignFlags::START) {
|
||
nscoord trackSizeSum = 0;
|
||
if (aIsSubgriddedAxis) {
|
||
numAutoTracks = mSizes.Length();
|
||
} else {
|
||
for (const TrackSize& sz : mSizes) {
|
||
trackSizeSum += sz.mBase;
|
||
if (sz.mState & TrackSize::eAutoMaxSizing) {
|
||
++numAutoTracks;
|
||
}
|
||
}
|
||
}
|
||
space = aContentBoxSize - trackSizeSum - SumOfGridGaps();
|
||
// Use the fallback value instead when applicable.
|
||
if (space < 0 ||
|
||
(alignment == StyleAlignFlags::SPACE_BETWEEN && mSizes.Length() == 1)) {
|
||
auto fallback = ::GetAlignJustifyFallbackIfAny(aAligmentStyleValue, aWM,
|
||
isAlign, &overflowSafe);
|
||
if (fallback) {
|
||
alignment = *fallback;
|
||
}
|
||
}
|
||
if (space == 0 || (space < 0 && overflowSafe)) {
|
||
// XXX check that this makes sense also for [last ]baseline (bug 1151204).
|
||
alignment = StyleAlignFlags::START;
|
||
}
|
||
}
|
||
|
||
// Optimize the cases where we just need to set each track's position.
|
||
nscoord pos = 0;
|
||
bool distribute = true;
|
||
if (alignment == StyleAlignFlags::BASELINE ||
|
||
alignment == StyleAlignFlags::LAST_BASELINE) {
|
||
NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
|
||
alignment = StyleAlignFlags::START;
|
||
}
|
||
if (alignment == StyleAlignFlags::START) {
|
||
distribute = false;
|
||
} else if (alignment == StyleAlignFlags::END) {
|
||
pos = space;
|
||
distribute = false;
|
||
} else if (alignment == StyleAlignFlags::CENTER) {
|
||
pos = space / 2;
|
||
distribute = false;
|
||
} else if (alignment == StyleAlignFlags::STRETCH) {
|
||
distribute = numAutoTracks != 0;
|
||
}
|
||
if (!distribute) {
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
pos += sz.mBase + mGridGap;
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Distribute free space to/between tracks and set their position.
|
||
MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
|
||
nscoord between, roundingError;
|
||
if (alignment == StyleAlignFlags::STRETCH) {
|
||
MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
|
||
// The outer loop typically only runs once - it repeats only in a masonry
|
||
// axis when some stretchable items reach their `max-size`.
|
||
// It's O(n^2) worst case; if all items are stretchable with a `max-size`
|
||
// and exactly one item reaches its `max-size` each round.
|
||
while (space) {
|
||
pos = 0;
|
||
nscoord spacePerTrack;
|
||
roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
|
||
space = 0;
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
|
||
pos += sz.mBase + mGridGap;
|
||
continue;
|
||
}
|
||
nscoord stretch = spacePerTrack;
|
||
if (roundingError) {
|
||
roundingError -= 1;
|
||
stretch += 1;
|
||
}
|
||
nscoord newBase = sz.mBase + stretch;
|
||
if (mIsMasonry && (sz.mState & TrackSize::eClampToLimit)) {
|
||
auto clampedSize = std::min(newBase, sz.mLimit);
|
||
auto sizeOverLimit = newBase - clampedSize;
|
||
if (sizeOverLimit > 0) {
|
||
newBase = clampedSize;
|
||
sz.mState &= ~(sz.mState & TrackSize::eAutoMaxSizing);
|
||
// This repeats the outer loop to distribute the superfluous space:
|
||
space += sizeOverLimit;
|
||
if (--numAutoTracks == 0) {
|
||
// ... except if we don't have any stretchable items left.
|
||
space = 0;
|
||
}
|
||
}
|
||
}
|
||
sz.mBase = newBase;
|
||
pos += newBase + mGridGap;
|
||
}
|
||
}
|
||
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
|
||
return;
|
||
}
|
||
if (alignment == StyleAlignFlags::SPACE_BETWEEN) {
|
||
MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
|
||
roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
|
||
} else if (alignment == StyleAlignFlags::SPACE_AROUND) {
|
||
roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
|
||
pos = between / 2;
|
||
} else if (alignment == StyleAlignFlags::SPACE_EVENLY) {
|
||
roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
|
||
pos = between;
|
||
} else {
|
||
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
|
||
between = 0; // just to avoid a compiler warning
|
||
roundingError = 0; // just to avoid a compiler warning
|
||
}
|
||
between += mGridGap;
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
nscoord spacing = between;
|
||
if (roundingError) {
|
||
roundingError -= 1;
|
||
spacing += 1;
|
||
}
|
||
pos += sz.mBase + spacing;
|
||
}
|
||
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
|
||
}
|
||
|
||
void nsGridContainerFrame::LineRange::ToPositionAndLength(
|
||
const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos,
|
||
nscoord* aLength) const {
|
||
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
|
||
"expected a definite LineRange");
|
||
MOZ_ASSERT(mStart < mEnd);
|
||
nscoord startPos = aTrackSizes[mStart].mPosition;
|
||
const TrackSize& sz = aTrackSizes[mEnd - 1];
|
||
*aPos = startPos;
|
||
*aLength = (sz.mPosition + sz.mBase) - startPos;
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::LineRange::ToLength(
|
||
const nsTArray<TrackSize>& aTrackSizes) const {
|
||
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
|
||
"expected a definite LineRange");
|
||
MOZ_ASSERT(mStart < mEnd);
|
||
nscoord startPos = aTrackSizes[mStart].mPosition;
|
||
const TrackSize& sz = aTrackSizes[mEnd - 1];
|
||
return (sz.mPosition + sz.mBase) - startPos;
|
||
}
|
||
|
||
void nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
|
||
const Tracks& aTracks, nscoord aGridOrigin, nscoord* aPos,
|
||
nscoord* aLength) const {
|
||
// kAutoLine for abspos children contributes the corresponding edge
|
||
// of the grid container's padding-box.
|
||
if (mEnd == kAutoLine) {
|
||
if (mStart == kAutoLine) {
|
||
// done
|
||
} else {
|
||
const nscoord endPos = *aPos + *aLength;
|
||
auto side = mStart == aTracks.mSizes.Length()
|
||
? GridLineSide::BeforeGridGap
|
||
: GridLineSide::AfterGridGap;
|
||
nscoord startPos = aTracks.GridLineEdge(mStart, side);
|
||
*aPos = aGridOrigin + startPos;
|
||
*aLength = std::max(endPos - *aPos, 0);
|
||
}
|
||
} else {
|
||
if (mStart == kAutoLine) {
|
||
auto side =
|
||
mEnd == 0 ? GridLineSide::AfterGridGap : GridLineSide::BeforeGridGap;
|
||
nscoord endPos = aTracks.GridLineEdge(mEnd, side);
|
||
*aLength = std::max(aGridOrigin + endPos, 0);
|
||
} else if (MOZ_LIKELY(mStart != mEnd)) {
|
||
nscoord pos;
|
||
ToPositionAndLength(aTracks.mSizes, &pos, aLength);
|
||
*aPos = aGridOrigin + pos;
|
||
} else {
|
||
// The grid area only covers removed 'auto-fit' tracks.
|
||
nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::BeforeGridGap);
|
||
*aPos = aGridOrigin + pos;
|
||
*aLength = nscoord(0);
|
||
}
|
||
}
|
||
}
|
||
|
||
LogicalSize nsGridContainerFrame::GridReflowInput::PercentageBasisFor(
|
||
LogicalAxis aAxis, const GridItemInfo& aGridItem) const {
|
||
auto wm = aGridItem.mFrame->GetWritingMode();
|
||
const auto* itemParent = aGridItem.mFrame->GetParent();
|
||
if (MOZ_UNLIKELY(itemParent != mFrame)) {
|
||
// The item comes from a descendant subgrid. Use the subgrid's
|
||
// used track sizes to resolve the grid area size, if present.
|
||
MOZ_ASSERT(itemParent->IsGridContainerFrame());
|
||
auto* subgridFrame = static_cast<const nsGridContainerFrame*>(itemParent);
|
||
MOZ_ASSERT(subgridFrame->IsSubgrid());
|
||
if (auto* uts = subgridFrame->GetUsedTrackSizes()) {
|
||
auto subgridWM = subgridFrame->GetWritingMode();
|
||
LogicalSize cbSize(subgridWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
|
||
if (!subgridFrame->IsSubgrid(eLogicalAxisInline) &&
|
||
uts->mCanResolveLineRangeSize[eLogicalAxisInline]) {
|
||
// NOTE: At this point aGridItem.mArea is in this->mFrame coordinates
|
||
// and thus may have been transposed. The range values in a non-
|
||
// subgridded axis still has its original values in subgridFrame's
|
||
// coordinates though.
|
||
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? eLogicalAxisBlock
|
||
: eLogicalAxisInline;
|
||
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
|
||
cbSize.ISize(subgridWM) =
|
||
range.ToLength(uts->mSizes[eLogicalAxisInline]);
|
||
}
|
||
if (!subgridFrame->IsSubgrid(eLogicalAxisBlock) &&
|
||
uts->mCanResolveLineRangeSize[eLogicalAxisBlock]) {
|
||
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? eLogicalAxisInline
|
||
: eLogicalAxisBlock;
|
||
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
|
||
cbSize.BSize(subgridWM) =
|
||
range.ToLength(uts->mSizes[eLogicalAxisBlock]);
|
||
}
|
||
return cbSize.ConvertTo(wm, subgridWM);
|
||
}
|
||
|
||
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
|
||
}
|
||
|
||
if (aAxis == eLogicalAxisInline || !mCols.mCanResolveLineRangeSize) {
|
||
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
|
||
}
|
||
// Note: for now, we only resolve transferred percentages to row sizing.
|
||
// We may need to adjust these assertions once we implement bug 1300366.
|
||
MOZ_ASSERT(!mRows.mCanResolveLineRangeSize);
|
||
nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes);
|
||
nscoord rowSize = NS_UNCONSTRAINEDSIZE;
|
||
return !wm.IsOrthogonalTo(mWM) ? LogicalSize(wm, colSize, rowSize)
|
||
: LogicalSize(wm, rowSize, colSize);
|
||
}
|
||
|
||
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockFor(
|
||
const GridArea& aArea) const {
|
||
nscoord i, b, iSize, bSize;
|
||
MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
|
||
MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
|
||
aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
|
||
aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
|
||
return LogicalRect(mWM, i, b, iSize, bSize);
|
||
}
|
||
|
||
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
|
||
const GridArea& aArea, const LogicalPoint& aGridOrigin,
|
||
const LogicalRect& aGridCB) const {
|
||
nscoord i = aGridCB.IStart(mWM);
|
||
nscoord b = aGridCB.BStart(mWM);
|
||
nscoord iSize = aGridCB.ISize(mWM);
|
||
nscoord bSize = aGridCB.BSize(mWM);
|
||
aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM), &i,
|
||
&iSize);
|
||
aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM), &b,
|
||
&bSize);
|
||
return LogicalRect(mWM, i, b, iSize, bSize);
|
||
}
|
||
|
||
void nsGridContainerFrame::GridReflowInput::AlignJustifyContentInMasonryAxis(
|
||
nscoord aMasonryBoxSize, nscoord aContentBoxSize) {
|
||
if (aContentBoxSize == NS_UNCONSTRAINEDSIZE) {
|
||
aContentBoxSize = aMasonryBoxSize;
|
||
}
|
||
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
|
||
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
|
||
"unexpected masonry axis tracks");
|
||
const auto masonryAxis = masonryAxisTracks.mAxis;
|
||
const auto contentAlignment = mGridStyle->UsedContentAlignment(masonryAxis);
|
||
if (contentAlignment.primary == StyleAlignFlags::NORMAL ||
|
||
contentAlignment.primary == StyleAlignFlags::STRETCH) {
|
||
// Stretch the "masonry box" to the full content box if it's smaller.
|
||
nscoord cbSize = std::max(aMasonryBoxSize, aContentBoxSize);
|
||
for (auto& sz : masonryAxisTracks.mSizes) {
|
||
sz.mBase = cbSize;
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Save our current track sizes; replace them with one track sized to
|
||
// the masonry box and align that within our content box.
|
||
auto savedTrackSizes(std::move(masonryAxisTracks.mSizes));
|
||
masonryAxisTracks.mSizes.AppendElement(savedTrackSizes[0]);
|
||
masonryAxisTracks.mSizes[0].mBase = aMasonryBoxSize;
|
||
masonryAxisTracks.AlignJustifyContent(mGridStyle, contentAlignment, mWM,
|
||
aContentBoxSize, false);
|
||
nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
|
||
// Restore the original track sizes...
|
||
masonryAxisTracks.mSizes = std::move(savedTrackSizes);
|
||
// ...then reposition and resize all of them to the aligned result.
|
||
for (auto& sz : masonryAxisTracks.mSizes) {
|
||
sz.mPosition = masonryBoxOffset;
|
||
sz.mBase = aMasonryBoxSize;
|
||
}
|
||
}
|
||
|
||
// Note: this is called after all items have been positioned/reflowed.
|
||
// The masonry-axis tracks have the size of the "masonry box" at this point
|
||
// and are positioned according to 'align/justify-content'.
|
||
void nsGridContainerFrame::GridReflowInput::AlignJustifyTracksInMasonryAxis(
|
||
const LogicalSize& aContentSize, const nsSize& aContainerSize) {
|
||
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
|
||
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
|
||
"unexpected masonry axis tracks");
|
||
const auto masonryAxis = masonryAxisTracks.mAxis;
|
||
auto gridAxis = GetOrthogonalAxis(masonryAxis);
|
||
auto& gridAxisTracks = TracksFor(gridAxis);
|
||
AutoTArray<TrackSize, 32> savedSizes;
|
||
savedSizes.AppendElements(masonryAxisTracks.mSizes);
|
||
auto wm = mWM;
|
||
nscoord contentAreaStart = mBorderPadding.Start(masonryAxis, wm);
|
||
// The offset to the "masonry box" from our content-box start edge.
|
||
nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
|
||
nscoord alignmentContainerSize = masonryAxisTracks.mSizes[0].mBase;
|
||
|
||
for (auto i : IntegerRange(gridAxisTracks.mSizes.Length())) {
|
||
auto tracksAlignment = mGridStyle->UsedTracksAlignment(masonryAxis, i);
|
||
if (tracksAlignment.primary != StyleAlignFlags::START) {
|
||
masonryAxisTracks.mSizes.ClearAndRetainStorage();
|
||
for (const auto& item : mGridItems) {
|
||
if (item.mArea.LineRangeForAxis(gridAxis).mStart == i) {
|
||
const auto* child = item.mFrame;
|
||
LogicalRect rect = child->GetLogicalRect(wm, aContainerSize);
|
||
TrackSize sz = {0, 0, 0, {0, 0}, TrackSize::StateBits(0)};
|
||
const auto& margin = child->GetLogicalUsedMargin(wm);
|
||
sz.mPosition = rect.Start(masonryAxis, wm) -
|
||
margin.Start(masonryAxis, wm) - contentAreaStart;
|
||
sz.mBase =
|
||
rect.Size(masonryAxis, wm) + margin.StartEnd(masonryAxis, wm);
|
||
// Account for a align-self baseline offset on the end side.
|
||
// XXXmats hmm, it seems it would be a lot simpler to just store
|
||
// these baseline adjustments into the UsedMarginProperty instead
|
||
auto state = item.mState[masonryAxis];
|
||
if ((state & ItemState::eSelfBaseline) &&
|
||
(state & ItemState::eEndSideBaseline)) {
|
||
sz.mBase += item.mBaselineOffset[masonryAxis];
|
||
}
|
||
if (tracksAlignment.primary == StyleAlignFlags::STRETCH) {
|
||
const auto* pos = child->StylePosition();
|
||
auto itemAlignment =
|
||
pos->UsedSelfAlignment(masonryAxis, mFrame->Style());
|
||
if (child->StyleMargin()->HasAuto(masonryAxis, wm)) {
|
||
sz.mState |= TrackSize::eAutoMaxSizing;
|
||
sz.mState |= TrackSize::eItemHasAutoMargin;
|
||
} else if (pos->Size(masonryAxis, wm).IsAuto() &&
|
||
(itemAlignment == StyleAlignFlags::NORMAL ||
|
||
itemAlignment == StyleAlignFlags::STRETCH)) {
|
||
sz.mState |= TrackSize::eAutoMaxSizing;
|
||
sz.mState |= TrackSize::eItemStretchSize;
|
||
const auto& max = pos->MaxSize(masonryAxis, wm);
|
||
if (max.ConvertsToLength()) { // XXX deal with percentages
|
||
// XXX add in baselineOffset ? use actual frame size - content
|
||
// size?
|
||
nscoord boxSizingAdjust =
|
||
child->GetLogicalUsedBorderAndPadding(wm).StartEnd(
|
||
masonryAxis, wm);
|
||
if (pos->mBoxSizing == StyleBoxSizing::Border) {
|
||
boxSizingAdjust = 0;
|
||
}
|
||
sz.mLimit = nsLayoutUtils::ComputeBSizeValue(
|
||
aContentSize.Size(masonryAxis, wm), boxSizingAdjust,
|
||
max.AsLengthPercentage());
|
||
sz.mLimit += margin.StartEnd(masonryAxis, wm);
|
||
sz.mState |= TrackSize::eClampToLimit;
|
||
}
|
||
}
|
||
}
|
||
masonryAxisTracks.mSizes.AppendElement(std::move(sz));
|
||
}
|
||
}
|
||
masonryAxisTracks.AlignJustifyContent(mGridStyle, tracksAlignment, wm,
|
||
alignmentContainerSize, false);
|
||
auto iter = mGridItems.begin();
|
||
auto end = mGridItems.end();
|
||
// We limit the loop to the number of items we found in the current
|
||
// grid-axis axis track (in the outer loop) as an optimization.
|
||
for (auto r : IntegerRange(masonryAxisTracks.mSizes.Length())) {
|
||
GridItemInfo* item = nullptr;
|
||
auto& sz = masonryAxisTracks.mSizes[r];
|
||
// Find the next item in the current grid-axis axis track.
|
||
for (; iter != end; ++iter) {
|
||
if (iter->mArea.LineRangeForAxis(gridAxis).mStart == i) {
|
||
item = &*iter;
|
||
++iter;
|
||
break;
|
||
}
|
||
}
|
||
nsIFrame* child = item->mFrame;
|
||
const auto childWM = child->GetWritingMode();
|
||
auto masonryChildAxis =
|
||
childWM.IsOrthogonalTo(wm) ? gridAxis : masonryAxis;
|
||
LogicalMargin margin = child->GetLogicalUsedMargin(childWM);
|
||
bool forceReposition = false;
|
||
if (sz.mState & TrackSize::eItemStretchSize) {
|
||
auto size = child->GetLogicalSize().Size(masonryChildAxis, childWM);
|
||
auto newSize = sz.mBase - margin.StartEnd(masonryChildAxis, childWM);
|
||
if (size != newSize) {
|
||
// XXX need to pass aIMinSizeClamp aBMinSizeClamp ?
|
||
LogicalSize cb =
|
||
ContainingBlockFor(item->mArea).Size(wm).ConvertTo(childWM, wm);
|
||
LogicalSize availableSize = cb;
|
||
cb.Size(masonryChildAxis, childWM) = alignmentContainerSize;
|
||
availableSize.Size(eLogicalAxisBlock, childWM) =
|
||
NS_UNCONSTRAINEDSIZE;
|
||
const auto& bp = child->GetLogicalUsedBorderAndPadding(childWM);
|
||
newSize -= bp.StartEnd(masonryChildAxis, childWM);
|
||
::PostReflowStretchChild(child, *mReflowInput, availableSize, cb,
|
||
masonryChildAxis, newSize);
|
||
if (childWM.IsPhysicalRTL()) {
|
||
// The NormalPosition of this child is frame-size dependent so we
|
||
// need to reset its stored position below.
|
||
forceReposition = true;
|
||
}
|
||
}
|
||
} else if (sz.mState & TrackSize::eItemHasAutoMargin) {
|
||
// Re-compute the auto-margin(s) in the masonry axis.
|
||
auto size = child->GetLogicalSize().Size(masonryChildAxis, childWM);
|
||
auto spaceToFill = sz.mBase - size;
|
||
if (spaceToFill > nscoord(0)) {
|
||
const auto& marginStyle = child->StyleMargin();
|
||
if (marginStyle->mMargin.Start(masonryChildAxis, childWM)
|
||
.IsAuto()) {
|
||
if (marginStyle->mMargin.End(masonryChildAxis, childWM)
|
||
.IsAuto()) {
|
||
nscoord half;
|
||
nscoord roundingError = NSCoordDivRem(spaceToFill, 2, &half);
|
||
margin.Start(masonryChildAxis, childWM) = half;
|
||
margin.End(masonryChildAxis, childWM) = half + roundingError;
|
||
} else {
|
||
margin.Start(masonryChildAxis, childWM) = spaceToFill;
|
||
}
|
||
} else {
|
||
MOZ_ASSERT(
|
||
marginStyle->mMargin.End(masonryChildAxis, childWM).IsAuto());
|
||
margin.End(masonryChildAxis, childWM) = spaceToFill;
|
||
}
|
||
nsMargin* propValue =
|
||
child->GetProperty(nsIFrame::UsedMarginProperty());
|
||
if (propValue) {
|
||
*propValue = margin.GetPhysicalMargin(childWM);
|
||
} else {
|
||
child->AddProperty(
|
||
nsIFrame::UsedMarginProperty(),
|
||
new nsMargin(margin.GetPhysicalMargin(childWM)));
|
||
}
|
||
}
|
||
}
|
||
nscoord newPos = contentAreaStart + masonryBoxOffset + sz.mPosition +
|
||
margin.Start(masonryChildAxis, childWM);
|
||
LogicalPoint pos = child->GetLogicalNormalPosition(wm, aContainerSize);
|
||
auto delta = newPos - pos.Pos(masonryAxis, wm);
|
||
if (delta != 0 || forceReposition) {
|
||
LogicalPoint logicalDelta(wm);
|
||
logicalDelta.Pos(masonryAxis, wm) = delta;
|
||
child->MovePositionBy(wm, logicalDelta);
|
||
}
|
||
}
|
||
} else if (masonryBoxOffset != nscoord(0)) {
|
||
// TODO move placeholders too
|
||
auto delta = masonryBoxOffset;
|
||
LogicalPoint logicalDelta(wm);
|
||
logicalDelta.Pos(masonryAxis, wm) = delta;
|
||
for (const auto& item : mGridItems) {
|
||
if (item.mArea.LineRangeForAxis(gridAxis).mStart != i) {
|
||
continue;
|
||
}
|
||
item.mFrame->MovePositionBy(wm, logicalDelta);
|
||
}
|
||
}
|
||
}
|
||
masonryAxisTracks.mSizes = std::move(savedSizes);
|
||
}
|
||
|
||
/**
|
||
* Return a Fragmentainer object if we have a fragmentainer frame in our
|
||
* ancestor chain of containing block (CB) reflow inputs. We'll only
|
||
* continue traversing the ancestor chain as long as the CBs have
|
||
* the same writing-mode and have overflow:visible.
|
||
*/
|
||
Maybe<nsGridContainerFrame::Fragmentainer>
|
||
nsGridContainerFrame::GetNearestFragmentainer(
|
||
const GridReflowInput& aState) const {
|
||
Maybe<nsGridContainerFrame::Fragmentainer> data;
|
||
const ReflowInput* gridRI = aState.mReflowInput;
|
||
if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE && !GetPrevInFlow()) {
|
||
return data;
|
||
}
|
||
WritingMode wm = aState.mWM;
|
||
const ReflowInput* cbRI = gridRI->mCBReflowInput;
|
||
for (; cbRI; cbRI = cbRI->mCBReflowInput) {
|
||
nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame);
|
||
if (sf) {
|
||
break;
|
||
}
|
||
if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
|
||
break;
|
||
}
|
||
LayoutFrameType frameType = cbRI->mFrame->Type();
|
||
if ((frameType == LayoutFrameType::Canvas &&
|
||
PresContext()->IsPaginated()) ||
|
||
frameType == LayoutFrameType::ColumnSet) {
|
||
data.emplace();
|
||
data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
|
||
if (gridRI->AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
|
||
data->mToFragmentainerEnd = aState.mFragBStart +
|
||
gridRI->AvailableBSize() -
|
||
aState.mBorderPadding.BStart(wm);
|
||
} else {
|
||
// This occurs when nsColumnSetFrame reflows its last column in
|
||
// unconstrained available block-size.
|
||
data->mToFragmentainerEnd = NS_UNCONSTRAINEDSIZE;
|
||
}
|
||
const auto numRows = aState.mRows.mSizes.Length();
|
||
data->mCanBreakAtStart =
|
||
numRows > 0 && aState.mRows.mSizes[0].mPosition > 0;
|
||
nscoord bSize = gridRI->ComputedBSize();
|
||
data->mIsAutoBSize = bSize == NS_UNCONSTRAINEDSIZE;
|
||
if (data->mIsAutoBSize) {
|
||
bSize = gridRI->ComputedMinBSize();
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(bSize, gridRI->ComputedMinBSize(),
|
||
gridRI->ComputedMaxBSize());
|
||
}
|
||
nscoord gridEnd =
|
||
aState.mRows.GridLineEdge(numRows, GridLineSide::BeforeGridGap);
|
||
data->mCanBreakAtEnd = bSize > gridEnd && bSize > aState.mFragBStart;
|
||
break;
|
||
}
|
||
}
|
||
return data;
|
||
}
|
||
|
||
void nsGridContainerFrame::ReflowInFlowChild(
|
||
nsIFrame* aChild, const GridItemInfo* aGridItemInfo, nsSize aContainerSize,
|
||
const Maybe<nscoord>& aStretchBSize, const Fragmentainer* aFragmentainer,
|
||
const GridReflowInput& aState, const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus) {
|
||
nsPresContext* pc = PresContext();
|
||
ComputedStyle* containerSC = Style();
|
||
WritingMode wm = aState.mReflowInput->GetWritingMode();
|
||
const bool isGridItem = !!aGridItemInfo;
|
||
MOZ_ASSERT(isGridItem == !aChild->IsPlaceholderFrame());
|
||
LogicalRect cb(wm);
|
||
WritingMode childWM = aChild->GetWritingMode();
|
||
bool isConstrainedBSize = false;
|
||
nscoord toFragmentainerEnd;
|
||
// The part of the child's grid area that's in previous container fragments.
|
||
nscoord consumedGridAreaBSize = 0;
|
||
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
|
||
if (MOZ_LIKELY(isGridItem)) {
|
||
MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
|
||
const GridArea& area = aGridItemInfo->mArea;
|
||
MOZ_ASSERT(area.IsDefinite());
|
||
cb = aState.ContainingBlockFor(area);
|
||
if (aFragmentainer && !wm.IsOrthogonalTo(childWM)) {
|
||
// |gridAreaBOffset| is the offset of the child's grid area in this
|
||
// container fragment (if negative, that distance is the child CB size
|
||
// consumed in previous container fragments). Note that cb.BStart
|
||
// (initially) and aState.mFragBStart are in "global" grid coordinates
|
||
// (like all track positions).
|
||
nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart;
|
||
consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
|
||
cb.BStart(wm) = std::max(0, gridAreaBOffset);
|
||
if (aFragmentainer->mToFragmentainerEnd != NS_UNCONSTRAINEDSIZE) {
|
||
toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
|
||
aState.mFragBStart - cb.BStart(wm);
|
||
toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
|
||
isConstrainedBSize = true;
|
||
}
|
||
}
|
||
cb += aContentArea.Origin(wm);
|
||
aState.mRows.AlignBaselineSubtree(*aGridItemInfo);
|
||
aState.mCols.AlignBaselineSubtree(*aGridItemInfo);
|
||
// Setup [align|justify]-content:[last ]baseline related frame properties.
|
||
// These are added to the padding in SizeComputationInput::InitOffsets.
|
||
// (a negative value signals the value is for 'last baseline' and should be
|
||
// added to the (logical) end padding)
|
||
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
|
||
auto SetProp = [aGridItemInfo, aChild](LogicalAxis aGridAxis, Prop aProp) {
|
||
auto state = aGridItemInfo->mState[aGridAxis];
|
||
auto baselineAdjust = (state & ItemState::eContentBaseline)
|
||
? aGridItemInfo->mBaselineOffset[aGridAxis]
|
||
: nscoord(0);
|
||
if (baselineAdjust < nscoord(0)) {
|
||
// This happens when the subtree overflows its track.
|
||
// XXX spec issue? it's unclear how to handle this.
|
||
baselineAdjust = nscoord(0);
|
||
} else if (GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
|
||
baselineAdjust = -baselineAdjust;
|
||
}
|
||
if (baselineAdjust != nscoord(0)) {
|
||
aChild->SetProperty(aProp, baselineAdjust);
|
||
} else {
|
||
aChild->RemoveProperty(aProp);
|
||
}
|
||
};
|
||
SetProp(eLogicalAxisBlock,
|
||
isOrthogonal ? IBaselinePadProperty() : BBaselinePadProperty());
|
||
SetProp(eLogicalAxisInline,
|
||
isOrthogonal ? BBaselinePadProperty() : IBaselinePadProperty());
|
||
} else {
|
||
// By convention, for frames that perform CSS Box Alignment, we position
|
||
// placeholder children at the start corner of their alignment container,
|
||
// and in this case that's usually the grid's content-box.
|
||
// ("Usually" - the exception is when the grid *also* forms the
|
||
// abs.pos. containing block. In that case, the alignment container isn't
|
||
// the content-box -- it's some grid area instead. But that case doesn't
|
||
// require any special handling here, because we handle it later using a
|
||
// special flag (ReflowInput::InitFlag::StaticPosIsCBOrigin) which will make
|
||
// us ignore the placeholder's position entirely.)
|
||
cb = aContentArea;
|
||
aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
|
||
}
|
||
|
||
LogicalSize reflowSize(cb.Size(wm));
|
||
if (isConstrainedBSize) {
|
||
reflowSize.BSize(wm) = toFragmentainerEnd;
|
||
}
|
||
LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);
|
||
|
||
// Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
|
||
ComputeSizeFlags csFlags;
|
||
if (aGridItemInfo) {
|
||
// AlignJustifyTracksInMasonryAxis stretches items in a masonry-axis so we
|
||
// don't do that here.
|
||
auto* pos = aChild->StylePosition();
|
||
auto j = IsMasonry(eLogicalAxisInline) ? StyleAlignFlags::START
|
||
: pos->UsedJustifySelf(Style())._0;
|
||
auto a = IsMasonry(eLogicalAxisBlock) ? StyleAlignFlags::START
|
||
: pos->UsedAlignSelf(Style())._0;
|
||
bool stretch[2];
|
||
stretch[eLogicalAxisInline] =
|
||
j == StyleAlignFlags::NORMAL || j == StyleAlignFlags::STRETCH;
|
||
stretch[eLogicalAxisBlock] =
|
||
a == StyleAlignFlags::NORMAL || a == StyleAlignFlags::STRETCH;
|
||
auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
// Clamp during reflow if we're stretching in that axis.
|
||
if (stretch[childIAxis]) {
|
||
if (aGridItemInfo->mState[childIAxis] &
|
||
ItemState::eClampMarginBoxMinSize) {
|
||
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
|
||
}
|
||
} else {
|
||
csFlags += ComputeSizeFlag::ShrinkWrap;
|
||
}
|
||
|
||
auto childBAxis = GetOrthogonalAxis(childIAxis);
|
||
if (stretch[childBAxis] &&
|
||
aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
|
||
aChild->SetProperty(BClampMarginBoxMinSizeProperty(),
|
||
childCBSize.BSize(childWM));
|
||
} else {
|
||
aChild->RemoveProperty(BClampMarginBoxMinSizeProperty());
|
||
}
|
||
|
||
if ((aGridItemInfo->mState[childIAxis] & ItemState::eApplyAutoMinSize)) {
|
||
csFlags += ComputeSizeFlag::IApplyAutoMinSize;
|
||
}
|
||
}
|
||
|
||
if (!isConstrainedBSize) {
|
||
childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
|
||
}
|
||
LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
|
||
ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize,
|
||
Some(percentBasis), {}, {}, csFlags);
|
||
childRI.mFlags.mIsTopOfPage =
|
||
aFragmentainer ? aFragmentainer->mIsTopOfPage : false;
|
||
|
||
// Because we pass ComputeSizeFlag::UseAutoBSize, and the
|
||
// previous reflow of the child might not have, set the child's
|
||
// block-resize flag to true.
|
||
// FIXME (perf): It would be faster to do this only if the previous
|
||
// reflow of the child was a measuring reflow, and only if the child
|
||
// does some of the things that are affected by
|
||
// ComputeSizeFlag::UseAutoBSize.
|
||
childRI.SetBResize(true);
|
||
childRI.mFlags.mIsBResizeForPercentages = true;
|
||
|
||
// If the child is stretching in its block axis, and we might be fragmenting
|
||
// it in that axis, then setup a frame property to tell
|
||
// nsBlockFrame::ComputeFinalSize the size.
|
||
if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
|
||
bool stretch = false;
|
||
if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) &&
|
||
childRI.mStylePosition->BSize(childWM).IsAuto()) {
|
||
auto blockAxisAlignment = childRI.mStylePosition->UsedAlignSelf(Style());
|
||
if (!IsMasonry(eLogicalAxisBlock) &&
|
||
(blockAxisAlignment._0 == StyleAlignFlags::NORMAL ||
|
||
blockAxisAlignment._0 == StyleAlignFlags::STRETCH)) {
|
||
stretch = true;
|
||
}
|
||
}
|
||
if (stretch) {
|
||
aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize);
|
||
} else {
|
||
aChild->RemoveProperty(FragStretchBSizeProperty());
|
||
}
|
||
}
|
||
|
||
// We need the width of the child before we can correctly convert
|
||
// the writing-mode of its origin, so we reflow at (0, 0) using a dummy
|
||
// aContainerSize, and then pass the correct position to FinishReflowChild.
|
||
ReflowOutput childSize(childRI);
|
||
const nsSize dummyContainerSize;
|
||
|
||
// XXXdholbert The childPos that we use for ReflowChild shouldn't matter,
|
||
// since we finalize it in FinishReflowChild. However, it does matter if the
|
||
// child happens to be XUL (which sizes menu popup frames based on the
|
||
// position within the viewport, during this ReflowChild call). So we make an
|
||
// educated guess that the child will be at the origin of its containing
|
||
// block, and then use align/justify to correct that as-needed further
|
||
// down. (If the child has a different writing mode than its parent, though,
|
||
// then we can't express the CB origin until we've reflowed the child and
|
||
// determined its size. In that case, we throw up our hands and don't bother
|
||
// trying to guess the position up-front after all.)
|
||
// XXXdholbert We'll remove this special case in bug 1600542, and then we can
|
||
// go back to just setting childPos in a single call after ReflowChild.
|
||
LogicalPoint childPos(childWM);
|
||
if (MOZ_LIKELY(childWM == wm)) {
|
||
// Initially, assume the child will be at the containing block origin.
|
||
// (This may get corrected during alignment/justification below.)
|
||
childPos = cb.Origin(wm);
|
||
}
|
||
ReflowChild(aChild, pc, childSize, childRI, childWM, childPos,
|
||
dummyContainerSize, ReflowChildFlags::Default, aStatus);
|
||
if (MOZ_UNLIKELY(childWM != wm)) {
|
||
// As above: assume the child will be at the containing block origin.
|
||
// (which we can now compute in terms of the childWM, now that we know the
|
||
// child's size).
|
||
childPos = cb.Origin(wm).ConvertTo(
|
||
childWM, wm, aContainerSize - childSize.PhysicalSize());
|
||
}
|
||
// Apply align/justify-self and reflow again if that affects the size.
|
||
if (MOZ_LIKELY(isGridItem)) {
|
||
LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
|
||
auto applyItemSelfAlignment = [&](LogicalAxis aAxis, nscoord aCBSize) {
|
||
auto align =
|
||
childRI.mStylePosition->UsedSelfAlignment(aAxis, containerSC);
|
||
auto state = aGridItemInfo->mState[aAxis];
|
||
auto flags = AlignJustifyFlags::NoFlags;
|
||
if (IsMasonry(aAxis)) {
|
||
// In a masonry axis, we inhibit applying 'stretch' and auto-margins
|
||
// here since AlignJustifyTracksInMasonryAxis deals with that.
|
||
// The only other {align,justify}-{self,content} values that have an
|
||
// effect are '[last] baseline', the rest behave as 'start'.
|
||
if (MOZ_LIKELY(!(state & ItemState::eSelfBaseline))) {
|
||
align = {StyleAlignFlags::START};
|
||
} else {
|
||
auto group = (state & ItemState::eFirstBaseline)
|
||
? BaselineSharingGroup::First
|
||
: BaselineSharingGroup::Last;
|
||
auto itemStart = aGridItemInfo->mArea.LineRangeForAxis(aAxis).mStart;
|
||
aCBSize = aState.TracksFor(aAxis)
|
||
.mSizes[itemStart]
|
||
.mBaselineSubtreeSize[group];
|
||
}
|
||
flags = AlignJustifyFlags::IgnoreAutoMargins;
|
||
} else if (state & ItemState::eContentBaseline) {
|
||
align = {(state & ItemState::eFirstBaseline)
|
||
? StyleAlignFlags::SELF_START
|
||
: StyleAlignFlags::SELF_END};
|
||
}
|
||
if (aAxis == eLogicalAxisBlock) {
|
||
AlignSelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
|
||
&childPos);
|
||
} else {
|
||
JustifySelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
|
||
&childPos);
|
||
}
|
||
};
|
||
if (aStatus.IsComplete()) {
|
||
applyItemSelfAlignment(eLogicalAxisBlock,
|
||
cb.BSize(wm) - consumedGridAreaBSize);
|
||
}
|
||
applyItemSelfAlignment(eLogicalAxisInline, cb.ISize(wm));
|
||
} // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.
|
||
|
||
FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
|
||
aContainerSize, ReflowChildFlags::ApplyRelativePositioning);
|
||
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::ReflowInFragmentainer(
|
||
GridReflowInput& aState, const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
|
||
Fragmentainer& aFragmentainer, const nsSize& aContainerSize) {
|
||
MOZ_ASSERT(aStatus.IsEmpty());
|
||
MOZ_ASSERT(aState.mReflowInput);
|
||
|
||
// Collect our grid items and sort them in row order. Collect placeholders
|
||
// and put them in a separate array.
|
||
nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length());
|
||
nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length());
|
||
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
if (!child->IsPlaceholderFrame()) {
|
||
const GridItemInfo* info = &aState.mGridItems[aState.mIter.ItemIndex()];
|
||
sortedItems.AppendElement(info);
|
||
} else {
|
||
placeholders.AppendElement(child);
|
||
}
|
||
}
|
||
// NOTE: We don't need stable_sort here, except in Masonry layout. There are
|
||
// no dependencies on having content order between items on the same row in
|
||
// the code below in the non-Masonry case.
|
||
if (IsMasonry()) {
|
||
std::stable_sort(sortedItems.begin(), sortedItems.end(),
|
||
GridItemInfo::IsStartRowLessThan);
|
||
} else {
|
||
std::sort(sortedItems.begin(), sortedItems.end(),
|
||
GridItemInfo::IsStartRowLessThan);
|
||
}
|
||
|
||
// Reflow our placeholder children; they must all be complete.
|
||
for (auto child : placeholders) {
|
||
nsReflowStatus childStatus;
|
||
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(),
|
||
&aFragmentainer, aState, aContentArea, aDesiredSize,
|
||
childStatus);
|
||
MOZ_ASSERT(childStatus.IsComplete(),
|
||
"nsPlaceholderFrame should never need to be fragmented");
|
||
}
|
||
|
||
// The available size for children - we'll set this to the edge of the last
|
||
// row in most cases below, but for now use the full size.
|
||
nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
|
||
const uint32_t startRow = aState.mStartRow;
|
||
const uint32_t numRows = aState.mRows.mSizes.Length();
|
||
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
|
||
StyleBoxDecorationBreak::Clone;
|
||
nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM);
|
||
|
||
// Set |endRow| to the first row that doesn't fit.
|
||
uint32_t endRow = numRows;
|
||
for (uint32_t row = startRow; row < numRows; ++row) {
|
||
auto& sz = aState.mRows.mSizes[row];
|
||
const nscoord bEnd = sz.mPosition + sz.mBase;
|
||
nscoord remainingAvailableSize = childAvailableSize - bEnd;
|
||
if (remainingAvailableSize < 0 ||
|
||
(isBDBClone && remainingAvailableSize < bpBEnd)) {
|
||
endRow = row;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Check for forced breaks on the items if available block-size for children
|
||
// is constrained. That is, ignore forced breaks if available block-size for
|
||
// children is unconstrained since our parent expected us to be fully
|
||
// complete.
|
||
bool isForcedBreak = false;
|
||
const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput);
|
||
if (childAvailableSize != NS_UNCONSTRAINEDSIZE) {
|
||
const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
|
||
for (const GridItemInfo* info : sortedItems) {
|
||
uint32_t itemStartRow = info->mArea.mRows.mStart;
|
||
if (itemStartRow == endRow) {
|
||
break;
|
||
}
|
||
const auto* disp = info->mFrame->StyleDisplay();
|
||
if (disp->BreakBefore()) {
|
||
// Propagate break-before on the first row to the container unless we're
|
||
// already at top-of-page.
|
||
if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
if ((itemStartRow > startRow ||
|
||
(itemStartRow == startRow && !isTopOfPage)) &&
|
||
itemStartRow < endRow) {
|
||
endRow = itemStartRow;
|
||
isForcedBreak = true;
|
||
// reset any BREAK_AFTER we found on an earlier item
|
||
aStatus.Reset();
|
||
break; // we're done since the items are sorted in row order
|
||
}
|
||
}
|
||
uint32_t itemEndRow = info->mArea.mRows.mEnd;
|
||
if (disp->BreakAfter()) {
|
||
if (itemEndRow != numRows) {
|
||
if (itemEndRow > startRow && itemEndRow < endRow) {
|
||
endRow = itemEndRow;
|
||
isForcedBreak = true;
|
||
// No "break;" here since later items with break-after may have
|
||
// a shorter span.
|
||
}
|
||
} else {
|
||
// Propagate break-after on the last row to the container, we may
|
||
// still find a break-before on this row though (and reset aStatus).
|
||
aStatus.SetInlineLineBreakAfter(); // tentative
|
||
}
|
||
}
|
||
}
|
||
|
||
// Consume at least one row in each fragment until we have consumed them
|
||
// all. Except for the first row if there's a break opportunity before it.
|
||
if (startRow == endRow && startRow != numRows &&
|
||
(startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
|
||
++endRow;
|
||
}
|
||
|
||
// Honor break-inside:avoid if we can't fit all rows.
|
||
if (avoidBreakInside && endRow < numRows) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
}
|
||
|
||
// Calculate the block-size including this fragment.
|
||
nscoord bEndRow =
|
||
aState.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
|
||
nscoord bSize;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
// We only apply min-bsize once all rows are complete (when bsize is auto).
|
||
if (endRow < numRows) {
|
||
bSize = bEndRow;
|
||
auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
|
||
if (MOZ_UNLIKELY(clampedBSize != bSize)) {
|
||
// We apply max-bsize in all fragments though.
|
||
bSize = clampedBSize;
|
||
} else if (!isBDBClone) {
|
||
// The max-bsize won't make this fragment COMPLETE, so the block-end
|
||
// border will be in a later fragment.
|
||
bpBEnd = 0;
|
||
}
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(bEndRow, aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
}
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
|
||
aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
}
|
||
|
||
// Check for overflow and set aStatus INCOMPLETE if so.
|
||
bool overflow = bSize + bpBEnd > childAvailableSize;
|
||
if (overflow) {
|
||
if (avoidBreakInside) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
|
||
if (breakAfterLastRow) {
|
||
MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
|
||
nscoord availableSize = childAvailableSize;
|
||
if (isBDBClone) {
|
||
availableSize -= bpBEnd;
|
||
}
|
||
// Pretend we have at least 1px available size, otherwise we'll never make
|
||
// progress in consuming our bSize.
|
||
availableSize =
|
||
std::max(availableSize, aState.mFragBStart + AppUnitsPerCSSPixel());
|
||
// Fill the fragmentainer, but not more than our desired block-size and
|
||
// at least to the size of the last row (even if that overflows).
|
||
nscoord newBSize = std::min(bSize, availableSize);
|
||
newBSize = std::max(newBSize, bEndRow);
|
||
// If it's just the border+padding that is overflowing and we have
|
||
// box-decoration-break:clone then we are technically COMPLETE. There's
|
||
// no point in creating another zero-bsize fragment in this case.
|
||
if (newBSize < bSize || !isBDBClone) {
|
||
aStatus.SetIncomplete();
|
||
}
|
||
bSize = newBSize;
|
||
} else if (bSize <= bEndRow && startRow + 1 < endRow) {
|
||
if (endRow == numRows) {
|
||
// We have more than one row in this fragment, so we can break before
|
||
// the last row instead.
|
||
--endRow;
|
||
bEndRow =
|
||
aState.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
|
||
bSize = bEndRow;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
|
||
}
|
||
}
|
||
aStatus.SetIncomplete();
|
||
} else if (endRow < numRows) {
|
||
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
} // else - no break opportunities.
|
||
} else {
|
||
// Even though our block-size fits we need to honor forced breaks, or if
|
||
// a row doesn't fit in an auto-sized container (unless it's constrained
|
||
// by a max-bsize which make us overflow-incomplete).
|
||
if (endRow < numRows &&
|
||
(isForcedBreak || (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
|
||
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
}
|
||
}
|
||
|
||
// If we can't fit all rows then we're at least overflow-incomplete.
|
||
if (endRow < numRows) {
|
||
childAvailableSize = bEndRow;
|
||
if (aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
} else {
|
||
// Children always have the full size of the rows in this fragment.
|
||
childAvailableSize = std::max(childAvailableSize, bEndRow);
|
||
}
|
||
|
||
return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
|
||
aFragmentainer, aContainerSize, sortedItems,
|
||
startRow, endRow, bSize, childAvailableSize);
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::ReflowRowsInFragmentainer(
|
||
GridReflowInput& aState, const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
|
||
Fragmentainer& aFragmentainer, const nsSize& aContainerSize,
|
||
const nsTArray<const GridItemInfo*>& aSortedItems, uint32_t aStartRow,
|
||
uint32_t aEndRow, nscoord aBSize, nscoord aAvailableSize) {
|
||
FrameHashtable pushedItems;
|
||
FrameHashtable incompleteItems;
|
||
FrameHashtable overflowIncompleteItems;
|
||
Maybe<nsTArray<nscoord>> masonryAxisPos;
|
||
const auto rowCount = aState.mRows.mSizes.Length();
|
||
nscoord masonryAxisGap;
|
||
const auto wm = aState.mWM;
|
||
const bool isColMasonry = IsMasonry(eLogicalAxisInline);
|
||
if (isColMasonry) {
|
||
for (auto& sz : aState.mCols.mSizes) {
|
||
sz.mPosition = 0;
|
||
}
|
||
masonryAxisGap = nsLayoutUtils::ResolveGapToLength(
|
||
aState.mGridStyle->mColumnGap, aContentArea.ISize(wm));
|
||
aState.mCols.mGridGap = masonryAxisGap;
|
||
masonryAxisPos.emplace(rowCount);
|
||
masonryAxisPos->SetLength(rowCount);
|
||
PodZero(masonryAxisPos->Elements(), rowCount);
|
||
}
|
||
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
|
||
StyleBoxDecorationBreak::Clone;
|
||
bool didGrowRow = false;
|
||
// As we walk across rows, we track whether the current row is at the top
|
||
// of its grid-fragment, to help decide whether we can break before it. When
|
||
// this function starts, our row is at the top of the current fragment if:
|
||
// - we're starting with a nonzero row (i.e. we're a continuation)
|
||
// OR:
|
||
// - we're starting with the first row, & we're not allowed to break before
|
||
// it (which makes it effectively at the top of its grid-fragment).
|
||
bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
|
||
const bool isStartRowTopOfPage = isRowTopOfPage;
|
||
// Save our full available size for later.
|
||
const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
|
||
// Propagate the constrained size to our children.
|
||
aFragmentainer.mToFragmentainerEnd = aAvailableSize;
|
||
// Reflow the items in row order up to |aEndRow| and push items after that.
|
||
uint32_t row = 0;
|
||
// |i| is intentionally signed, so we can set it to -1 to restart the loop.
|
||
for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
|
||
const GridItemInfo* const info = aSortedItems[i];
|
||
nsIFrame* child = info->mFrame;
|
||
row = info->mArea.mRows.mStart;
|
||
MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
|
||
"unexpected child start row");
|
||
if (row >= aEndRow) {
|
||
pushedItems.Insert(child);
|
||
continue;
|
||
}
|
||
|
||
bool rowCanGrow = false;
|
||
nscoord maxRowSize = 0;
|
||
if (row >= aStartRow) {
|
||
if (row > aStartRow) {
|
||
isRowTopOfPage = false;
|
||
}
|
||
// Can we grow this row? Only consider span=1 items per spec...
|
||
rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
|
||
if (rowCanGrow) {
|
||
auto& sz = aState.mRows.mSizes[row];
|
||
// and only min-/max-content rows or flex rows in an auto-sized
|
||
// container
|
||
rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
|
||
((sz.mState & TrackSize::eFlexMaxSizing) &&
|
||
aFragmentainer.mIsAutoBSize);
|
||
if (rowCanGrow) {
|
||
if (isBDBClone) {
|
||
maxRowSize = gridAvailableSize - aState.mBorderPadding.BEnd(wm);
|
||
} else {
|
||
maxRowSize = gridAvailableSize;
|
||
}
|
||
maxRowSize -= sz.mPosition;
|
||
// ...and only if there is space for it to grow.
|
||
rowCanGrow = maxRowSize > sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (isColMasonry) {
|
||
const auto& cols = info->mArea.mCols;
|
||
MOZ_ASSERT((cols.mStart == 0 || cols.mStart == 1) && cols.Extent() == 1);
|
||
aState.mCols.mSizes[cols.mStart].mPosition = masonryAxisPos.ref()[row];
|
||
}
|
||
|
||
// aFragmentainer.mIsTopOfPage is propagated to the child reflow input.
|
||
// When it's false the child may request InlineBreak::Before. We set it
|
||
// to false when the row is growable (as determined in the CSS Grid
|
||
// Fragmentation spec) and there is a non-zero space between it and the
|
||
// fragmentainer end (that can be used to grow it). If the child reports
|
||
// a forced break in this case, we grow this row to fill the fragment and
|
||
// restart the loop. We also restart the loop with |aEndRow = row|
|
||
// (but without growing any row) for a InlineBreak::Before child if it spans
|
||
// beyond the last row in this fragment. This is to avoid fragmenting it.
|
||
// We only restart the loop once.
|
||
aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
|
||
nsReflowStatus childStatus;
|
||
// Pass along how much to stretch this fragment, in case it's needed.
|
||
nscoord bSize =
|
||
aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
|
||
GridLineSide::BeforeGridGap) -
|
||
aState.mRows.GridLineEdge(std::max(aStartRow, row),
|
||
GridLineSide::AfterGridGap);
|
||
ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
|
||
aState, aContentArea, aDesiredSize, childStatus);
|
||
MOZ_ASSERT(childStatus.IsInlineBreakBefore() ||
|
||
!childStatus.IsFullyComplete() || !child->GetNextInFlow(),
|
||
"fully-complete reflow should destroy any NIFs");
|
||
|
||
if (childStatus.IsInlineBreakBefore()) {
|
||
MOZ_ASSERT(
|
||
!child->GetPrevInFlow(),
|
||
"continuations should never report InlineBreak::Before status");
|
||
MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
|
||
"got IsInlineBreakBefore() at top of page");
|
||
if (!didGrowRow) {
|
||
if (rowCanGrow) {
|
||
// Grow this row and restart with the next row as |aEndRow|.
|
||
aState.mRows.ResizeRow(row, maxRowSize);
|
||
if (aState.mSharedGridData) {
|
||
aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
|
||
}
|
||
didGrowRow = true;
|
||
aEndRow = row + 1; // growing this row makes the next one not fit
|
||
i = -1; // i == 0 after the next loop increment
|
||
isRowTopOfPage = isStartRowTopOfPage;
|
||
overflowIncompleteItems.Clear();
|
||
incompleteItems.Clear();
|
||
nscoord bEndRow =
|
||
aState.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
|
||
aFragmentainer.mToFragmentainerEnd = bEndRow;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
} else if (aStatus.IsIncomplete()) {
|
||
aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
|
||
aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
aBSize = std::min(bEndRow, aBSize);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
if (!isRowTopOfPage) {
|
||
// We can break before this row - restart with it as the new end row.
|
||
aEndRow = row;
|
||
aBSize =
|
||
aState.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
|
||
i = -1; // i == 0 after the next loop increment
|
||
isRowTopOfPage = isStartRowTopOfPage;
|
||
overflowIncompleteItems.Clear();
|
||
incompleteItems.Clear();
|
||
aStatus.SetIncomplete();
|
||
continue;
|
||
}
|
||
NS_ERROR("got InlineBreak::Before at top-of-page");
|
||
childStatus.Reset();
|
||
} else {
|
||
// We got InlineBreak::Before again after growing the row - this can
|
||
// happen if the child isn't splittable, e.g. some form controls.
|
||
childStatus.Reset();
|
||
if (child->GetNextInFlow()) {
|
||
// The child already has a fragment, so we know it's splittable.
|
||
childStatus.SetIncomplete();
|
||
} // else, report that it's complete
|
||
}
|
||
} else if (childStatus.IsInlineBreakAfter()) {
|
||
MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
|
||
}
|
||
|
||
MOZ_ASSERT(!childStatus.IsInlineBreakBefore(),
|
||
"should've handled InlineBreak::Before above");
|
||
if (childStatus.IsIncomplete()) {
|
||
incompleteItems.Insert(child);
|
||
} else if (!childStatus.IsFullyComplete()) {
|
||
overflowIncompleteItems.Insert(child);
|
||
}
|
||
if (isColMasonry) {
|
||
auto childWM = child->GetWritingMode();
|
||
auto childAxis =
|
||
!childWM.IsOrthogonalTo(wm) ? eLogicalAxisInline : eLogicalAxisBlock;
|
||
auto normalPos = child->GetLogicalNormalPosition(wm, aContainerSize);
|
||
auto sz =
|
||
childAxis == eLogicalAxisBlock ? child->BSize() : child->ISize();
|
||
auto pos = normalPos.Pos(eLogicalAxisInline, wm) + sz +
|
||
child->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
|
||
masonryAxisPos.ref()[row] =
|
||
pos + masonryAxisGap - aContentArea.Start(eLogicalAxisInline, wm);
|
||
}
|
||
}
|
||
|
||
// Record a break before |aEndRow|.
|
||
aState.mNextFragmentStartRow = aEndRow;
|
||
if (aEndRow < rowCount) {
|
||
aState.mRows.BreakBeforeRow(aEndRow);
|
||
if (aState.mSharedGridData) {
|
||
aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
|
||
}
|
||
}
|
||
|
||
const bool childrenMoved = PushIncompleteChildren(
|
||
pushedItems, incompleteItems, overflowIncompleteItems);
|
||
if (childrenMoved && aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
if (!pushedItems.IsEmpty()) {
|
||
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
if (!incompleteItems.IsEmpty()) {
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
|
||
if (isColMasonry) {
|
||
nscoord maxSize = 0;
|
||
for (auto pos : masonryAxisPos.ref()) {
|
||
maxSize = std::max(maxSize, pos);
|
||
}
|
||
maxSize = std::max(nscoord(0), maxSize - masonryAxisGap);
|
||
aState.AlignJustifyContentInMasonryAxis(maxSize, aContentArea.ISize(wm));
|
||
}
|
||
|
||
return aBSize;
|
||
}
|
||
|
||
// Here's a brief overview of how Masonry layout is implemented:
|
||
// We setup two synthetic tracks in the Masonry axis so that the Reflow code
|
||
// can treat it the same as for normal grid layout. The first track is
|
||
// fixed (during item placement/layout) at the content box start and contains
|
||
// the start items for each grid-axis track. The second track contains
|
||
// all other items and is moved to the position where we want to position
|
||
// the currently laid out item (like a sliding window as we place items).
|
||
// Once item layout is done, the tracks are resized to be the size of
|
||
// the "masonry box", which is the offset from the content box start to
|
||
// the margin-box end of the item that is furthest away (this happens in
|
||
// AlignJustifyContentInMasonryAxis() called at the end of this method).
|
||
// This is to prepare for AlignJustifyTracksInMasonryAxis, which is called
|
||
// later by our caller.
|
||
// Both tracks store their first-/last-baseline group offsets as usual.
|
||
// The first-baseline of the start track, and the last-baseline of the last
|
||
// track (if they exist) are exported as the grid container's baselines, or
|
||
// we fall back to picking an item's baseline (all this is per normal grid
|
||
// layout). There's a slight difference in which items belongs to which
|
||
// group though - see InitializeItemBaselinesInMasonryAxis for details.
|
||
// This method returns the "masonry box" size (in the masonry axis).
|
||
nscoord nsGridContainerFrame::MasonryLayout(GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
SizingConstraint aConstraint,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus,
|
||
Fragmentainer* aFragmentainer,
|
||
const nsSize& aContainerSize) {
|
||
using BaselineAlignmentSet = Tracks::BaselineAlignmentSet;
|
||
|
||
auto recordAutoPlacement = [this, &aState](GridItemInfo* aItem,
|
||
LogicalAxis aGridAxis) {
|
||
// When we're auto-placing an item in a continuation we need to record
|
||
// the placement in mSharedGridData.
|
||
if (MOZ_UNLIKELY(aState.mSharedGridData && GetPrevInFlow()) &&
|
||
(aItem->mState[aGridAxis] & ItemState::eAutoPlacement)) {
|
||
auto* child = aItem->mFrame;
|
||
MOZ_RELEASE_ASSERT(!child->GetPrevInFlow(),
|
||
"continuations should never be auto-placed");
|
||
for (auto& sharedItem : aState.mSharedGridData->mGridItems) {
|
||
if (sharedItem.mFrame == child) {
|
||
sharedItem.mArea.LineRangeForAxis(aGridAxis) =
|
||
aItem->mArea.LineRangeForAxis(aGridAxis);
|
||
MOZ_ASSERT(sharedItem.mState[aGridAxis] & ItemState::eAutoPlacement);
|
||
sharedItem.mState[aGridAxis] &= ~ItemState::eAutoPlacement;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
aItem->mState[aGridAxis] &= ~ItemState::eAutoPlacement;
|
||
};
|
||
|
||
// Collect our grid items and sort them in grid order.
|
||
nsTArray<GridItemInfo*> sortedItems(aState.mGridItems.Length());
|
||
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
|
||
size_t absposIndex = 0;
|
||
const LogicalAxis masonryAxis =
|
||
IsMasonry(eLogicalAxisBlock) ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
const auto wm = aState.mWM;
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
if (MOZ_LIKELY(!child->IsPlaceholderFrame())) {
|
||
GridItemInfo* item = &aState.mGridItems[aState.mIter.ItemIndex()];
|
||
sortedItems.AppendElement(item);
|
||
} else if (aConstraint == SizingConstraint::NoConstraint) {
|
||
// (we only collect placeholders in the NoConstraint case since they
|
||
// don't affect intrinsic sizing in any way)
|
||
GridItemInfo* item = nullptr;
|
||
auto* ph = static_cast<nsPlaceholderFrame*>(child);
|
||
if (ph->GetOutOfFlowFrame()->GetParent() == this) {
|
||
item = &aState.mAbsPosItems[absposIndex++];
|
||
MOZ_RELEASE_ASSERT(item->mFrame == ph->GetOutOfFlowFrame());
|
||
auto masonryStart = item->mArea.LineRangeForAxis(masonryAxis).mStart;
|
||
// If the item was placed by the author at line 1 (masonryStart == 0)
|
||
// then include it to be placed at the masonry-box start. If it's
|
||
// auto-placed and has an `auto` inset value in the masonry axis then
|
||
// we include it to be placed after the last grid item with the same
|
||
// grid-axis start track.
|
||
// XXXmats this is all a bit experimental at this point, pending a spec
|
||
if (masonryStart == 0 ||
|
||
(masonryStart == kAutoLine && item->mFrame->StylePosition()
|
||
->mOffset.Start(masonryAxis, wm)
|
||
.IsAuto())) {
|
||
sortedItems.AppendElement(item);
|
||
} else {
|
||
item = nullptr;
|
||
}
|
||
}
|
||
if (!item) {
|
||
// It wasn't included above - just reflow it and be done with it.
|
||
nsReflowStatus childStatus;
|
||
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
|
||
aState, aContentArea, aDesiredSize, childStatus);
|
||
}
|
||
}
|
||
}
|
||
const auto masonryAutoFlow = aState.mGridStyle->mMasonryAutoFlow;
|
||
bool definiteFirst = masonryAutoFlow & NS_STYLE_MASONRY_ORDER_DEFINITE_FIRST;
|
||
if (masonryAxis == eLogicalAxisBlock) {
|
||
std::stable_sort(sortedItems.begin(), sortedItems.end(),
|
||
definiteFirst ? GridItemInfo::RowMasonryDefiniteFirst
|
||
: GridItemInfo::RowMasonryOrdered);
|
||
} else {
|
||
std::stable_sort(sortedItems.begin(), sortedItems.end(),
|
||
definiteFirst ? GridItemInfo::ColMasonryDefiniteFirst
|
||
: GridItemInfo::ColMasonryOrdered);
|
||
}
|
||
|
||
FrameHashtable pushedItems;
|
||
FrameHashtable incompleteItems;
|
||
FrameHashtable overflowIncompleteItems;
|
||
nscoord toFragmentainerEnd = nscoord_MAX;
|
||
nscoord fragStartPos = aState.mFragBStart;
|
||
const bool avoidBreakInside =
|
||
aFragmentainer && ShouldAvoidBreakInside(*aState.mReflowInput);
|
||
const bool isTopOfPageAtStart =
|
||
aFragmentainer && aFragmentainer->mIsTopOfPage;
|
||
if (aFragmentainer) {
|
||
toFragmentainerEnd = std::max(0, aFragmentainer->mToFragmentainerEnd);
|
||
}
|
||
const LogicalAxis gridAxis = GetOrthogonalAxis(masonryAxis);
|
||
const auto gridAxisTrackCount = aState.TracksFor(gridAxis).mSizes.Length();
|
||
auto& masonryTracks = aState.TracksFor(masonryAxis);
|
||
auto& masonrySizes = masonryTracks.mSizes;
|
||
MOZ_ASSERT(masonrySizes.Length() == 2);
|
||
for (auto& sz : masonrySizes) {
|
||
sz.mPosition = fragStartPos;
|
||
}
|
||
// The current running position for each grid-axis track where the next item
|
||
// should be positioned. When an item is placed we'll update the tracks it
|
||
// spans to the end of its margin box + 'gap'.
|
||
nsTArray<nscoord> currentPos(gridAxisTrackCount);
|
||
currentPos.SetLength(gridAxisTrackCount);
|
||
for (auto& sz : currentPos) {
|
||
sz = fragStartPos;
|
||
}
|
||
nsTArray<nscoord> lastPos(currentPos.Clone());
|
||
nsTArray<GridItemInfo*> lastItems(gridAxisTrackCount);
|
||
lastItems.SetLength(gridAxisTrackCount);
|
||
PodZero(lastItems.Elements(), gridAxisTrackCount);
|
||
const nscoord gap = nsLayoutUtils::ResolveGapToLength(
|
||
masonryAxis == eLogicalAxisBlock ? aState.mGridStyle->mRowGap
|
||
: aState.mGridStyle->mColumnGap,
|
||
masonryTracks.mContentBoxSize);
|
||
masonryTracks.mGridGap = gap;
|
||
uint32_t cursor = 0;
|
||
const auto containerToMasonryBoxOffset =
|
||
fragStartPos - aContentArea.Start(masonryAxis, wm);
|
||
const bool isPack = masonryAutoFlow & NS_STYLE_MASONRY_PLACEMENT_PACK;
|
||
bool didAlignStartAlignedFirstItems = false;
|
||
|
||
// Return true if any of the lastItems in aRange are baseline-aligned in
|
||
// the masonry axis.
|
||
auto lastItemHasBaselineAlignment = [&](const LineRange& aRange) {
|
||
for (auto i : aRange.Range()) {
|
||
if (auto* child = lastItems[i] ? lastItems[i]->mFrame : nullptr) {
|
||
const auto& pos = child->StylePosition();
|
||
auto selfAlignment = pos->UsedSelfAlignment(masonryAxis, this->Style());
|
||
if (selfAlignment == StyleAlignFlags::BASELINE ||
|
||
selfAlignment == StyleAlignFlags::LAST_BASELINE) {
|
||
return true;
|
||
}
|
||
auto childAxis = masonryAxis;
|
||
if (child->GetWritingMode().IsOrthogonalTo(wm)) {
|
||
childAxis = gridAxis;
|
||
}
|
||
auto contentAlignment = pos->UsedContentAlignment(childAxis).primary;
|
||
if (contentAlignment == StyleAlignFlags::BASELINE ||
|
||
contentAlignment == StyleAlignFlags::LAST_BASELINE) {
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
};
|
||
|
||
// Resolve aItem's placement, unless it's definite already. Return its
|
||
// masonry axis position with that placement.
|
||
auto placeItem = [&](GridItemInfo* aItem) -> nscoord {
|
||
auto& masonryAxisRange = aItem->mArea.LineRangeForAxis(masonryAxis);
|
||
MOZ_ASSERT(masonryAxisRange.mStart != 0, "item placement is already final");
|
||
auto& gridAxisRange = aItem->mArea.LineRangeForAxis(gridAxis);
|
||
bool isAutoPlaced = aItem->mState[gridAxis] & ItemState::eAutoPlacement;
|
||
uint32_t start = isAutoPlaced ? 0 : gridAxisRange.mStart;
|
||
if (isAutoPlaced && !isPack) {
|
||
start = cursor;
|
||
isAutoPlaced = false;
|
||
}
|
||
const uint32_t extent = gridAxisRange.Extent();
|
||
if (start + extent > gridAxisTrackCount) {
|
||
// Note that this will only happen to auto-placed items since the grid is
|
||
// always wide enough to fit other items.
|
||
start = 0;
|
||
}
|
||
// This keeps track of the smallest `maxPosForRange` value that
|
||
// we discover in the loop below:
|
||
nscoord minPos = nscoord_MAX;
|
||
MOZ_ASSERT(extent <= gridAxisTrackCount);
|
||
const uint32_t iEnd = gridAxisTrackCount + 1 - extent;
|
||
for (uint32_t i = start; i < iEnd; ++i) {
|
||
// Find the max `currentPos` value for the tracks that we would span
|
||
// if we were to use `i` as our start track:
|
||
nscoord maxPosForRange = 0;
|
||
for (auto j = i, jEnd = j + extent; j < jEnd; ++j) {
|
||
maxPosForRange = std::max(currentPos[j], maxPosForRange);
|
||
}
|
||
if (maxPosForRange < minPos) {
|
||
minPos = maxPosForRange;
|
||
start = i;
|
||
}
|
||
if (!isAutoPlaced) {
|
||
break;
|
||
}
|
||
}
|
||
gridAxisRange.mStart = start;
|
||
gridAxisRange.mEnd = start + extent;
|
||
bool isFirstItem = true;
|
||
for (uint32_t i : gridAxisRange.Range()) {
|
||
if (lastItems[i]) {
|
||
isFirstItem = false;
|
||
break;
|
||
}
|
||
}
|
||
// If this is the first item in its spanned grid tracks, then place it in
|
||
// the first masonry track. Otherwise, place it in the second masonry track.
|
||
masonryAxisRange.mStart = isFirstItem ? 0 : 1;
|
||
masonryAxisRange.mEnd = masonryAxisRange.mStart + 1;
|
||
return minPos;
|
||
};
|
||
|
||
// Handle the resulting reflow status after reflowing aItem.
|
||
// This may set aStatus to BreakBefore which the caller is expected
|
||
// to handle by returning from MasonryLayout.
|
||
// @return true if this item should consume all remaining space
|
||
auto handleChildStatus = [&](GridItemInfo* aItem,
|
||
const nsReflowStatus& aChildStatus) {
|
||
bool result = false;
|
||
if (MOZ_UNLIKELY(aFragmentainer)) {
|
||
auto* child = aItem->mFrame;
|
||
if (!aChildStatus.IsComplete() || aChildStatus.IsInlineBreakBefore() ||
|
||
aChildStatus.IsInlineBreakAfter() ||
|
||
child->StyleDisplay()->BreakAfter()) {
|
||
if (!isTopOfPageAtStart && avoidBreakInside) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return result;
|
||
}
|
||
result = true;
|
||
}
|
||
if (aChildStatus.IsInlineBreakBefore()) {
|
||
aStatus.SetIncomplete();
|
||
pushedItems.Insert(child);
|
||
} else if (aChildStatus.IsIncomplete()) {
|
||
recordAutoPlacement(aItem, gridAxis);
|
||
aStatus.SetIncomplete();
|
||
incompleteItems.Insert(child);
|
||
} else if (!aChildStatus.IsFullyComplete()) {
|
||
recordAutoPlacement(aItem, gridAxis);
|
||
overflowIncompleteItems.Insert(child);
|
||
}
|
||
}
|
||
return result;
|
||
};
|
||
|
||
// @return the distance from the masonry-box start to the end of the margin-
|
||
// box of aChild
|
||
auto offsetToMarginBoxEnd = [&](nsIFrame* aChild) {
|
||
auto childWM = aChild->GetWritingMode();
|
||
auto childAxis = !childWM.IsOrthogonalTo(wm) ? masonryAxis : gridAxis;
|
||
auto normalPos = aChild->GetLogicalNormalPosition(wm, aContainerSize);
|
||
auto sz =
|
||
childAxis == eLogicalAxisBlock ? aChild->BSize() : aChild->ISize();
|
||
return containerToMasonryBoxOffset + normalPos.Pos(masonryAxis, wm) + sz +
|
||
aChild->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
|
||
};
|
||
|
||
// Apply baseline alignment to items belonging to the given set.
|
||
nsTArray<Tracks::ItemBaselineData> firstBaselineItems;
|
||
nsTArray<Tracks::ItemBaselineData> lastBaselineItems;
|
||
auto applyBaselineAlignment = [&](BaselineAlignmentSet aSet) {
|
||
firstBaselineItems.ClearAndRetainStorage();
|
||
lastBaselineItems.ClearAndRetainStorage();
|
||
masonryTracks.InitializeItemBaselinesInMasonryAxis(
|
||
aState, aState.mGridItems, aSet, aContainerSize, currentPos,
|
||
firstBaselineItems, lastBaselineItems);
|
||
|
||
bool didBaselineAdjustment = false;
|
||
nsTArray<Tracks::ItemBaselineData>* baselineItems[] = {&firstBaselineItems,
|
||
&lastBaselineItems};
|
||
for (const auto* items : baselineItems) {
|
||
for (const auto& data : *items) {
|
||
GridItemInfo* item = data.mGridItem;
|
||
MOZ_ASSERT((item->mState[masonryAxis] & ItemState::eIsBaselineAligned));
|
||
nscoord baselineOffset = item->mBaselineOffset[masonryAxis];
|
||
if (baselineOffset == nscoord(0)) {
|
||
continue; // no adjustment needed for this item
|
||
}
|
||
didBaselineAdjustment = true;
|
||
auto* child = item->mFrame;
|
||
auto masonryAxisStart =
|
||
item->mArea.LineRangeForAxis(masonryAxis).mStart;
|
||
auto gridAxisRange = item->mArea.LineRangeForAxis(gridAxis);
|
||
masonrySizes[masonryAxisStart].mPosition =
|
||
aSet.mItemSet == BaselineAlignmentSet::LastItems
|
||
? lastPos[gridAxisRange.mStart]
|
||
: fragStartPos;
|
||
bool consumeAllSpace = false;
|
||
const auto state = item->mState[masonryAxis];
|
||
if ((state & ItemState::eContentBaseline) ||
|
||
MOZ_UNLIKELY(aFragmentainer)) {
|
||
if (MOZ_UNLIKELY(aFragmentainer)) {
|
||
aFragmentainer->mIsTopOfPage =
|
||
isTopOfPageAtStart &&
|
||
masonrySizes[masonryAxisStart].mPosition == fragStartPos;
|
||
}
|
||
nsReflowStatus childStatus;
|
||
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
|
||
aFragmentainer, aState, aContentArea, aDesiredSize,
|
||
childStatus);
|
||
consumeAllSpace = handleChildStatus(item, childStatus);
|
||
if (aStatus.IsInlineBreakBefore()) {
|
||
return false;
|
||
}
|
||
} else if (!(state & ItemState::eEndSideBaseline)) {
|
||
// `align/justify-self` baselines on the start side can be handled by
|
||
// just moving the frame (except in a fragmentainer in which case we
|
||
// reflow it above instead since it might make it INCOMPLETE).
|
||
LogicalPoint logicalDelta(wm);
|
||
logicalDelta.Pos(masonryAxis, wm) = baselineOffset;
|
||
child->MovePositionBy(wm, logicalDelta);
|
||
}
|
||
if ((state & ItemState::eEndSideBaseline) && !consumeAllSpace) {
|
||
// Account for an end-side baseline adjustment.
|
||
for (uint32_t i : gridAxisRange.Range()) {
|
||
currentPos[i] += baselineOffset;
|
||
}
|
||
} else {
|
||
nscoord pos = consumeAllSpace ? toFragmentainerEnd
|
||
: offsetToMarginBoxEnd(child);
|
||
pos += gap;
|
||
for (uint32_t i : gridAxisRange.Range()) {
|
||
currentPos[i] = pos;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return didBaselineAdjustment;
|
||
};
|
||
|
||
// Place and reflow items. We'll use two fake tracks in the masonry axis.
|
||
// The first contains items that were placed there by the regular grid
|
||
// placement algo (PlaceGridItems) and we may add some items here if there
|
||
// are still empty slots. The second track contains all other items.
|
||
// Both tracks always have the size of the content box in the masonry axis.
|
||
// The position of the first track is always at the start. The position
|
||
// of the second track is updated as we go to a position where we want
|
||
// the current item to be positioned.
|
||
for (GridItemInfo* item : sortedItems) {
|
||
auto* child = item->mFrame;
|
||
auto& masonryRange = item->mArea.LineRangeForAxis(masonryAxis);
|
||
auto& gridRange = item->mArea.LineRangeForAxis(gridAxis);
|
||
nsReflowStatus childStatus;
|
||
if (MOZ_UNLIKELY(child->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) {
|
||
auto contentArea = aContentArea;
|
||
nscoord pos = nscoord_MAX;
|
||
// XXXmats take mEnd into consideration...
|
||
if (gridRange.mStart == kAutoLine) {
|
||
for (auto p : currentPos) {
|
||
pos = std::min(p, pos);
|
||
}
|
||
} else if (gridRange.mStart < currentPos.Length()) {
|
||
pos = currentPos[gridRange.mStart];
|
||
} else if (currentPos.Length() > 0) {
|
||
pos = currentPos.LastElement();
|
||
}
|
||
if (pos == nscoord_MAX) {
|
||
pos = nscoord(0);
|
||
}
|
||
contentArea.Start(masonryAxis, wm) = pos;
|
||
child = child->GetPlaceholderFrame();
|
||
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
|
||
aState, contentArea, aDesiredSize, childStatus);
|
||
} else {
|
||
MOZ_ASSERT(gridRange.Extent() > 0 &&
|
||
gridRange.Extent() <= gridAxisTrackCount);
|
||
MOZ_ASSERT((masonryRange.mStart == 0 || masonryRange.mStart == 1) &&
|
||
masonryRange.Extent() == 1);
|
||
if (masonryRange.mStart != 0) {
|
||
masonrySizes[1].mPosition = placeItem(item);
|
||
}
|
||
|
||
// If this is the first item NOT in the first track and if any of
|
||
// the grid-axis tracks we span has a baseline-aligned item then we
|
||
// need to do that baseline alignment now since it may affect
|
||
// the placement of this and later items.
|
||
if (!didAlignStartAlignedFirstItems &&
|
||
aConstraint == SizingConstraint::NoConstraint &&
|
||
masonryRange.mStart != 0 && lastItemHasBaselineAlignment(gridRange)) {
|
||
didAlignStartAlignedFirstItems = true;
|
||
if (applyBaselineAlignment({BaselineAlignmentSet::FirstItems,
|
||
BaselineAlignmentSet::StartStretch})) {
|
||
// Baseline alignment resized some items - redo our placement.
|
||
masonrySizes[1].mPosition = placeItem(item);
|
||
}
|
||
if (aStatus.IsInlineBreakBefore()) {
|
||
return fragStartPos;
|
||
}
|
||
}
|
||
|
||
for (uint32_t i : gridRange.Range()) {
|
||
lastItems[i] = item;
|
||
}
|
||
cursor = gridRange.mEnd;
|
||
if (cursor >= gridAxisTrackCount) {
|
||
cursor = 0;
|
||
}
|
||
|
||
nscoord pos;
|
||
if (aConstraint == SizingConstraint::NoConstraint) {
|
||
const auto* disp = child->StyleDisplay();
|
||
if (MOZ_UNLIKELY(aFragmentainer)) {
|
||
aFragmentainer->mIsTopOfPage =
|
||
isTopOfPageAtStart &&
|
||
masonrySizes[masonryRange.mStart].mPosition == fragStartPos;
|
||
if (!aFragmentainer->mIsTopOfPage &&
|
||
(disp->BreakBefore() ||
|
||
masonrySizes[masonryRange.mStart].mPosition >=
|
||
toFragmentainerEnd)) {
|
||
childStatus.SetInlineLineBreakBeforeAndReset();
|
||
}
|
||
}
|
||
if (!childStatus.IsInlineBreakBefore()) {
|
||
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
|
||
aFragmentainer, aState, aContentArea, aDesiredSize,
|
||
childStatus);
|
||
}
|
||
bool consumeAllSpace = handleChildStatus(item, childStatus);
|
||
if (aStatus.IsInlineBreakBefore()) {
|
||
return fragStartPos;
|
||
}
|
||
pos =
|
||
consumeAllSpace ? toFragmentainerEnd : offsetToMarginBoxEnd(child);
|
||
} else {
|
||
LogicalSize percentBasis(
|
||
aState.PercentageBasisFor(eLogicalAxisInline, *item));
|
||
IntrinsicISizeType type = aConstraint == SizingConstraint::MaxContent
|
||
? IntrinsicISizeType::PrefISize
|
||
: IntrinsicISizeType::MinISize;
|
||
auto sz =
|
||
::ContentContribution(*item, aState, &aState.mRenderingContext, wm,
|
||
masonryAxis, Some(percentBasis), type);
|
||
pos = sz + masonrySizes[masonryRange.mStart].mPosition;
|
||
}
|
||
pos += gap;
|
||
for (uint32_t i : gridRange.Range()) {
|
||
lastPos[i] = currentPos[i];
|
||
currentPos[i] = pos;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Do the remaining baseline alignment sets.
|
||
if (aConstraint == SizingConstraint::NoConstraint) {
|
||
for (auto*& item : lastItems) {
|
||
if (item) {
|
||
item->mState[masonryAxis] |= ItemState::eIsLastItemInMasonryTrack;
|
||
}
|
||
}
|
||
BaselineAlignmentSet baselineSets[] = {
|
||
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::StartStretch},
|
||
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::EndStretch},
|
||
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::StartStretch},
|
||
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::EndStretch},
|
||
};
|
||
for (uint32_t i = 0; i < ArrayLength(baselineSets); ++i) {
|
||
if (i == 0 && didAlignStartAlignedFirstItems) {
|
||
continue;
|
||
}
|
||
applyBaselineAlignment(baselineSets[i]);
|
||
}
|
||
}
|
||
|
||
const bool childrenMoved = PushIncompleteChildren(
|
||
pushedItems, incompleteItems, overflowIncompleteItems);
|
||
if (childrenMoved && aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
if (!pushedItems.IsEmpty()) {
|
||
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
if (!incompleteItems.IsEmpty()) {
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
|
||
nscoord masonryBoxSize = 0;
|
||
for (auto pos : currentPos) {
|
||
masonryBoxSize = std::max(masonryBoxSize, pos);
|
||
}
|
||
masonryBoxSize = std::max(nscoord(0), masonryBoxSize - gap);
|
||
if (aConstraint == SizingConstraint::NoConstraint) {
|
||
aState.AlignJustifyContentInMasonryAxis(masonryBoxSize,
|
||
masonryTracks.mContentBoxSize);
|
||
}
|
||
return masonryBoxSize;
|
||
}
|
||
|
||
nsGridContainerFrame* nsGridContainerFrame::ParentGridContainerForSubgrid()
|
||
const {
|
||
MOZ_ASSERT(IsSubgrid());
|
||
nsIFrame* p = GetParent();
|
||
while (p->GetContent() == GetContent()) {
|
||
p = p->GetParent();
|
||
}
|
||
MOZ_ASSERT(p->IsGridContainerFrame());
|
||
auto* parent = static_cast<nsGridContainerFrame*>(p);
|
||
MOZ_ASSERT(parent->HasSubgridItems());
|
||
return parent;
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::ReflowChildren(GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
const nsSize& aContainerSize,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus) {
|
||
MOZ_ASSERT(aState.mReflowInput);
|
||
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
|
||
|
||
OverflowAreas ocBounds;
|
||
nsReflowStatus ocStatus;
|
||
if (GetPrevInFlow()) {
|
||
ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput,
|
||
ocBounds, ReflowChildFlags::Default,
|
||
ocStatus, MergeSortedFrameListsFor);
|
||
}
|
||
|
||
WritingMode wm = aState.mReflowInput->GetWritingMode();
|
||
nscoord bSize = aContentArea.BSize(wm);
|
||
Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState);
|
||
// MasonryLayout() can only handle fragmentation in the masonry-axis,
|
||
// so we let ReflowInFragmentainer() deal with grid-axis fragmentation
|
||
// in the else-clause below.
|
||
if (IsMasonry() &&
|
||
!(IsMasonry(eLogicalAxisInline) && fragmentainer.isSome())) {
|
||
aState.mInFragmentainer = fragmentainer.isSome();
|
||
nscoord sz = MasonryLayout(
|
||
aState, aContentArea, SizingConstraint::NoConstraint, aDesiredSize,
|
||
aStatus, fragmentainer.ptrOr(nullptr), aContainerSize);
|
||
if (IsMasonry(eLogicalAxisBlock)) {
|
||
bSize = aState.mReflowInput->ComputedBSize();
|
||
if (bSize == NS_UNCONSTRAINEDSIZE) {
|
||
bSize = NS_CSS_MINMAX(sz, aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
}
|
||
}
|
||
} else if (MOZ_UNLIKELY(fragmentainer.isSome())) {
|
||
if (IsMasonry(eLogicalAxisInline) && !GetPrevInFlow()) {
|
||
// First we do an unconstrained reflow to resolve the item placement
|
||
// which is then kept as-is in the constrained reflow below.
|
||
MasonryLayout(aState, aContentArea, SizingConstraint::NoConstraint,
|
||
aDesiredSize, aStatus, nullptr, aContainerSize);
|
||
}
|
||
aState.mInFragmentainer = true;
|
||
bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
|
||
*fragmentainer, aContainerSize);
|
||
} else {
|
||
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
const GridItemInfo* info = nullptr;
|
||
if (!child->IsPlaceholderFrame()) {
|
||
info = &aState.mGridItems[aState.mIter.ItemIndex()];
|
||
}
|
||
ReflowInFlowChild(child, info, aContainerSize, Nothing(), nullptr, aState,
|
||
aContentArea, aDesiredSize, aStatus);
|
||
MOZ_ASSERT(aStatus.IsComplete(),
|
||
"child should be complete in unconstrained reflow");
|
||
}
|
||
}
|
||
|
||
// Merge overflow container bounds and status.
|
||
aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
|
||
aStatus.MergeCompletionStatusFrom(ocStatus);
|
||
|
||
if (IsAbsoluteContainer()) {
|
||
nsFrameList children(GetChildList(GetAbsoluteListID()));
|
||
if (!children.IsEmpty()) {
|
||
// 'gridOrigin' is the origin of the grid (the start of the first track),
|
||
// with respect to the grid container's padding-box (CB).
|
||
LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding(wm));
|
||
const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
|
||
const LogicalRect gridCB(wm, 0, 0,
|
||
aContentArea.ISize(wm) + pad.IStartEnd(wm),
|
||
bSize + pad.BStartEnd(wm));
|
||
const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
|
||
size_t i = 0;
|
||
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
|
||
nsIFrame* child = e.get();
|
||
MOZ_ASSERT(i < aState.mAbsPosItems.Length());
|
||
MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child);
|
||
GridArea& area = aState.mAbsPosItems[i].mArea;
|
||
LogicalRect itemCB =
|
||
aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
|
||
// nsAbsoluteContainingBlock::Reflow uses physical coordinates.
|
||
nsRect* cb = child->GetProperty(GridItemContainingBlockRect());
|
||
if (!cb) {
|
||
cb = new nsRect;
|
||
child->SetProperty(GridItemContainingBlockRect(), cb);
|
||
}
|
||
*cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
|
||
}
|
||
// We pass a dummy rect as CB because each child has its own CB rect.
|
||
// The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
|
||
// use those instead.
|
||
nsRect dummyRect;
|
||
AbsPosReflowFlags flags =
|
||
AbsPosReflowFlags::CBWidthAndHeightChanged; // XXX could be optimized
|
||
flags |= AbsPosReflowFlags::ConstrainHeight;
|
||
flags |= AbsPosReflowFlags::IsGridContainerCB;
|
||
GetAbsoluteContainingBlock()->Reflow(
|
||
this, PresContext(), *aState.mReflowInput, aStatus, dummyRect, flags,
|
||
&aDesiredSize.mOverflowAreas);
|
||
}
|
||
}
|
||
return bSize;
|
||
}
|
||
|
||
void nsGridContainerFrame::Reflow(nsPresContext* aPresContext,
|
||
ReflowOutput& aDesiredSize,
|
||
const ReflowInput& aReflowInput,
|
||
nsReflowStatus& aStatus) {
|
||
MarkInReflow();
|
||
DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
|
||
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
|
||
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
|
||
|
||
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
|
||
return;
|
||
}
|
||
|
||
NormalizeChildLists();
|
||
|
||
#ifdef DEBUG
|
||
mDidPushItemsBitMayLie = false;
|
||
SanityCheckChildListsBeforeReflow();
|
||
#endif // DEBUG
|
||
|
||
for (auto& perAxisBaseline : mBaseline) {
|
||
for (auto& baseline : perAxisBaseline) {
|
||
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
}
|
||
}
|
||
|
||
const nsStylePosition* stylePos = aReflowInput.mStylePosition;
|
||
auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
|
||
if (MOZ_LIKELY(!prevInFlow)) {
|
||
InitImplicitNamedAreas(stylePos);
|
||
} else {
|
||
MOZ_ASSERT(prevInFlow->HasAnyStateBits(kIsSubgridBits) ==
|
||
HasAnyStateBits(kIsSubgridBits),
|
||
"continuations should have same kIsSubgridBits");
|
||
}
|
||
GridReflowInput gridReflowInput(this, aReflowInput);
|
||
if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) {
|
||
AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
|
||
} else {
|
||
RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
|
||
}
|
||
if (gridReflowInput.mIter.AtEnd() ||
|
||
aReflowInput.mStyleDisplay->IsContainLayout()) {
|
||
// We have no grid items, or we're layout-contained. So, we have no
|
||
// baseline, and our parent should synthesize a baseline if needed.
|
||
AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
|
||
} else {
|
||
RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
|
||
}
|
||
const nscoord computedBSize = aReflowInput.ComputedBSize();
|
||
const nscoord computedISize = aReflowInput.ComputedISize();
|
||
const WritingMode& wm = gridReflowInput.mWM;
|
||
const LogicalSize computedSize(wm, computedISize, computedBSize);
|
||
|
||
nscoord consumedBSize = 0;
|
||
nscoord bSize = 0;
|
||
if (MOZ_LIKELY(!prevInFlow)) {
|
||
Grid grid;
|
||
if (MOZ_LIKELY(!IsSubgrid())) {
|
||
RepeatTrackSizingInput repeatSizing(aReflowInput.ComputedMinSize(),
|
||
computedSize,
|
||
aReflowInput.ComputedMaxSize());
|
||
grid.PlaceGridItems(gridReflowInput, repeatSizing);
|
||
} else {
|
||
auto* subgrid = GetProperty(Subgrid::Prop());
|
||
MOZ_ASSERT(subgrid, "an ancestor forgot to call PlaceGridItems?");
|
||
gridReflowInput.mGridItems = subgrid->mGridItems.Clone();
|
||
gridReflowInput.mAbsPosItems = subgrid->mAbsPosItems.Clone();
|
||
grid.mGridColEnd = subgrid->mGridColEnd;
|
||
grid.mGridRowEnd = subgrid->mGridRowEnd;
|
||
}
|
||
gridReflowInput.CalculateTrackSizes(grid, computedSize,
|
||
SizingConstraint::NoConstraint);
|
||
// XXX Technically incorrect: We're ignoring our row sizes, when really
|
||
// we should use them but *they* should be computed as if we had no
|
||
// children. To be fixed in bug 1488878.
|
||
if (!aReflowInput.mStyleDisplay->IsContainSize()) {
|
||
if (IsMasonry(eLogicalAxisBlock)) {
|
||
bSize = computedBSize;
|
||
} else {
|
||
const auto& rowSizes = gridReflowInput.mRows.mSizes;
|
||
if (MOZ_LIKELY(!IsSubgrid(eLogicalAxisBlock))) {
|
||
// Note: we can't use GridLineEdge here since we haven't calculated
|
||
// the rows' mPosition yet (happens in AlignJustifyContent below).
|
||
for (const auto& sz : rowSizes) {
|
||
bSize += sz.mBase;
|
||
}
|
||
bSize += gridReflowInput.mRows.SumOfGridGaps();
|
||
} else if (computedBSize == NS_UNCONSTRAINEDSIZE) {
|
||
bSize = gridReflowInput.mRows.GridLineEdge(
|
||
rowSizes.Length(), GridLineSide::BeforeGridGap);
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
consumedBSize = CalcAndCacheConsumedBSize();
|
||
gridReflowInput.InitializeForContinuation(this, consumedBSize);
|
||
// XXX Technically incorrect: We're ignoring our row sizes, when really
|
||
// we should use them but *they* should be computed as if we had no
|
||
// children. To be fixed in bug 1488878.
|
||
if (!aReflowInput.mStyleDisplay->IsContainSize()) {
|
||
const uint32_t numRows = gridReflowInput.mRows.mSizes.Length();
|
||
bSize = gridReflowInput.mRows.GridLineEdge(numRows,
|
||
GridLineSide::AfterGridGap);
|
||
}
|
||
}
|
||
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
|
||
bSize = NS_CSS_MINMAX(bSize, aReflowInput.ComputedMinBSize(),
|
||
aReflowInput.ComputedMaxBSize());
|
||
} else {
|
||
bSize = computedBSize;
|
||
}
|
||
if (bSize != NS_UNCONSTRAINEDSIZE) {
|
||
bSize = std::max(bSize - consumedBSize, 0);
|
||
}
|
||
auto& bp = gridReflowInput.mBorderPadding;
|
||
LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm), computedISize,
|
||
bSize);
|
||
|
||
if (!prevInFlow) {
|
||
const auto& rowSizes = gridReflowInput.mRows.mSizes;
|
||
if (!IsRowSubgrid()) {
|
||
// Apply 'align-content' to the grid.
|
||
if (computedBSize == NS_UNCONSTRAINEDSIZE &&
|
||
stylePos->mRowGap.IsLengthPercentage() &&
|
||
stylePos->mRowGap.AsLengthPercentage().HasPercent()) {
|
||
// Re-resolve the row-gap now that we know our intrinsic block-size.
|
||
gridReflowInput.mRows.mGridGap =
|
||
nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, bSize);
|
||
}
|
||
if (!gridReflowInput.mRows.mIsMasonry) {
|
||
auto alignment = stylePos->mAlignContent;
|
||
gridReflowInput.mRows.AlignJustifyContent(stylePos, alignment, wm,
|
||
bSize, false);
|
||
}
|
||
} else {
|
||
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
|
||
bSize = gridReflowInput.mRows.GridLineEdge(rowSizes.Length(),
|
||
GridLineSide::BeforeGridGap);
|
||
contentArea.BSize(wm) = std::max(bSize, nscoord(0));
|
||
}
|
||
}
|
||
// Save the final row sizes for use by subgrids, if needed.
|
||
if (HasSubgridItems() || IsSubgrid()) {
|
||
StoreUsedTrackSizes(eLogicalAxisBlock, rowSizes);
|
||
}
|
||
}
|
||
|
||
nsSize containerSize = contentArea.Size(wm).GetPhysicalSize(wm);
|
||
bool repositionChildren = false;
|
||
if (containerSize.width == NS_UNCONSTRAINEDSIZE && wm.IsVerticalRL()) {
|
||
// Note that writing-mode:vertical-rl is the only case where the block
|
||
// logical direction progresses in a negative physical direction, and
|
||
// therefore block-dir coordinate conversion depends on knowing the width
|
||
// of the coordinate space in order to translate between the logical and
|
||
// physical origins.
|
||
//
|
||
// A masonry axis size may be unconstrained, otherwise in a regular grid
|
||
// our intrinsic size is always known by now. We'll re-position
|
||
// the children below once our size is known.
|
||
repositionChildren = true;
|
||
containerSize.width = 0;
|
||
}
|
||
containerSize.width += bp.LeftRight(wm);
|
||
containerSize.height += bp.TopBottom(wm);
|
||
|
||
bSize = ReflowChildren(gridReflowInput, contentArea, containerSize,
|
||
aDesiredSize, aStatus);
|
||
bSize = std::max(bSize - consumedBSize, 0);
|
||
|
||
// Skip our block-end border if we're INCOMPLETE.
|
||
if (!aStatus.IsComplete() && !gridReflowInput.mSkipSides.BEnd() &&
|
||
StyleBorder()->mBoxDecorationBreak != StyleBoxDecorationBreak::Clone) {
|
||
bp.BEnd(wm) = nscoord(0);
|
||
}
|
||
|
||
LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
|
||
bSize + bp.BStartEnd(wm));
|
||
aDesiredSize.SetSize(wm, desiredSize);
|
||
nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
|
||
aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);
|
||
|
||
if (repositionChildren) {
|
||
nsPoint physicalDelta(aDesiredSize.Width() - bp.LeftRight(wm), 0);
|
||
for (const auto& item : gridReflowInput.mGridItems) {
|
||
auto* child = item.mFrame;
|
||
child->MovePositionBy(physicalDelta);
|
||
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, child);
|
||
}
|
||
}
|
||
|
||
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
|
||
// Per spec, the grid area is included in a grid container's scrollable
|
||
// overflow region [1], as well as the padding on the end-edge sides that
|
||
// would satisfy the requirements of 'place-content: end' alignment [2].
|
||
//
|
||
// Note that we include the padding from all sides of the grid area, not
|
||
// just the end sides; this is fine because the grid area is relative to our
|
||
// content-box origin. The inflated bounds won't go beyond our padding-box
|
||
// edges on the start sides.
|
||
//
|
||
// The margin areas of grid item boxes are also included in the scrollable
|
||
// overflow region [2].
|
||
//
|
||
// [1] https://drafts.csswg.org/css-grid-1/#overflow
|
||
// [2] https://drafts.csswg.org/css-overflow-3/#scrollable
|
||
|
||
// Synthesize a grid area covering all columns and rows, and compute its
|
||
// rect relative to our border-box.
|
||
//
|
||
// Note: the grid columns and rows exist only if there is an explicit grid;
|
||
// or when an implicit grid is needed to place any grid items. See
|
||
// nsGridContainerFrame::Grid::PlaceGridItems().
|
||
const auto numCols =
|
||
static_cast<int32_t>(gridReflowInput.mCols.mSizes.Length());
|
||
const auto numRows =
|
||
static_cast<int32_t>(gridReflowInput.mRows.mSizes.Length());
|
||
if (numCols > 0 && numRows > 0) {
|
||
const GridArea gridArea(LineRange(0, numCols), LineRange(0, numRows));
|
||
const LogicalRect gridAreaRect =
|
||
gridReflowInput.ContainingBlockFor(gridArea) +
|
||
LogicalPoint(wm, bp.IStart(wm), bp.BStart(wm));
|
||
|
||
MOZ_ASSERT(bp == aReflowInput.ComputedLogicalPadding(wm),
|
||
"A scrolled inner frame shouldn't have any border!");
|
||
const LogicalMargin& padding = bp;
|
||
nsRect physicalGridAreaRectWithPadding =
|
||
gridAreaRect.GetPhysicalRect(wm, containerSize);
|
||
physicalGridAreaRectWithPadding.Inflate(padding.GetPhysicalMargin(wm));
|
||
aDesiredSize.mOverflowAreas.UnionAllWith(physicalGridAreaRectWithPadding);
|
||
}
|
||
|
||
nsRect gridItemMarginBoxBounds;
|
||
for (const auto& item : gridReflowInput.mGridItems) {
|
||
gridItemMarginBoxBounds =
|
||
gridItemMarginBoxBounds.Union(item.mFrame->GetMarginRect());
|
||
}
|
||
aDesiredSize.mOverflowAreas.UnionAllWith(gridItemMarginBoxBounds);
|
||
}
|
||
|
||
// TODO: fix align-tracks alignment in fragments
|
||
if ((IsMasonry(eLogicalAxisBlock) && !prevInFlow) ||
|
||
IsMasonry(eLogicalAxisInline)) {
|
||
gridReflowInput.AlignJustifyTracksInMasonryAxis(
|
||
contentArea.Size(wm), aDesiredSize.PhysicalSize());
|
||
}
|
||
|
||
// Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
|
||
if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
|
||
if (!aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
bSize = 0;
|
||
desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm);
|
||
aDesiredSize.SetSize(wm, desiredSize);
|
||
}
|
||
|
||
if (!gridReflowInput.mInFragmentainer) {
|
||
MOZ_ASSERT(gridReflowInput.mIter.IsValid());
|
||
auto sz = frameRect.Size();
|
||
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
|
||
&gridReflowInput.mGridItems, gridReflowInput.mCols, 0,
|
||
gridReflowInput.mCols.mSizes.Length(), wm, sz,
|
||
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
|
||
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
|
||
&gridReflowInput.mGridItems, gridReflowInput.mRows, 0,
|
||
gridReflowInput.mRows.mSizes.Length(), wm, sz,
|
||
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
|
||
} else {
|
||
// Only compute 'first baseline' if this fragment contains the first track.
|
||
// XXXmats maybe remove this condition? bug 1306499
|
||
BaselineSet baselines = BaselineSet::eNone;
|
||
if (gridReflowInput.mStartRow == 0 &&
|
||
gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) {
|
||
baselines = BaselineSet::eFirst;
|
||
}
|
||
// Only compute 'last baseline' if this fragment contains the last track.
|
||
// XXXmats maybe remove this condition? bug 1306499
|
||
uint32_t len = gridReflowInput.mRows.mSizes.Length();
|
||
if (gridReflowInput.mStartRow != len &&
|
||
gridReflowInput.mNextFragmentStartRow == len) {
|
||
baselines = BaselineSet(baselines | BaselineSet::eLast);
|
||
}
|
||
Maybe<CSSOrderAwareFrameIterator> iter;
|
||
Maybe<nsTArray<GridItemInfo>> gridItems;
|
||
if (baselines != BaselineSet::eNone) {
|
||
// We need to create a new iterator and GridItemInfo array because we
|
||
// might have pushed some children at this point.
|
||
// Even if the gridReflowInput iterator is invalid we can reuse its
|
||
// state about order to optimize initialization of the new iterator.
|
||
// An ordered child list can't become unordered by pushing frames.
|
||
// An unordered list can become ordered in a number of cases, but we
|
||
// ignore that here and guess that the child list is still unordered.
|
||
// XXX this is O(n^2) in the number of items in this fragment: bug 1306705
|
||
using Filter = CSSOrderAwareFrameIterator::ChildFilter;
|
||
using Order = CSSOrderAwareFrameIterator::OrderState;
|
||
bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder();
|
||
auto orderState = ordered ? Order::Ordered : Order::Unordered;
|
||
iter.emplace(this, kPrincipalList, Filter::SkipPlaceholders, orderState);
|
||
gridItems.emplace();
|
||
for (; !iter->AtEnd(); iter->Next()) {
|
||
auto child = **iter;
|
||
for (const auto& info : gridReflowInput.mGridItems) {
|
||
if (info.mFrame == child) {
|
||
gridItems->AppendElement(info);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
auto sz = frameRect.Size();
|
||
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
|
||
gridReflowInput.mCols, 0,
|
||
gridReflowInput.mCols.mSizes.Length(), wm, sz,
|
||
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
|
||
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
|
||
gridReflowInput.mRows, gridReflowInput.mStartRow,
|
||
gridReflowInput.mNextFragmentStartRow, wm, sz,
|
||
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
|
||
}
|
||
|
||
if (ShouldGenerateComputedInfo()) {
|
||
// This state bit will never be cleared, since reflow can be called
|
||
// multiple times in fragmented grids, and it's challenging to scope
|
||
// the bit to only that sequence of calls. This is relatively harmless
|
||
// since this bit is only set by accessing a ChromeOnly property, and
|
||
// therefore can't unduly slow down normal web browsing.
|
||
|
||
// Now that we know column and row sizes and positions, set
|
||
// the ComputedGridTrackInfo and related properties
|
||
|
||
const auto* subgrid = GetProperty(Subgrid::Prop());
|
||
const auto* subgridColRange = subgrid && IsSubgrid(eLogicalAxisInline)
|
||
? &subgrid->SubgridCols()
|
||
: nullptr;
|
||
|
||
LineNameMap colLineNameMap(
|
||
gridReflowInput.mGridStyle, GetImplicitNamedAreas(),
|
||
gridReflowInput.mColFunctions, nullptr, subgridColRange, true);
|
||
uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length();
|
||
nsTArray<nscoord> colTrackPositions(colTrackCount);
|
||
nsTArray<nscoord> colTrackSizes(colTrackCount);
|
||
nsTArray<uint32_t> colTrackStates(colTrackCount);
|
||
nsTArray<bool> colRemovedRepeatTracks(
|
||
gridReflowInput.mColFunctions.mRemovedRepeatTracks.Clone());
|
||
uint32_t col = 0;
|
||
for (const TrackSize& sz : gridReflowInput.mCols.mSizes) {
|
||
colTrackPositions.AppendElement(sz.mPosition);
|
||
colTrackSizes.AppendElement(sz.mBase);
|
||
bool isRepeat =
|
||
((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) &&
|
||
(col < gridReflowInput.mColFunctions.mRepeatAutoEnd));
|
||
colTrackStates.AppendElement(
|
||
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
|
||
: (uint32_t)mozilla::dom::GridTrackState::Static);
|
||
|
||
col++;
|
||
}
|
||
// Get the number of explicit tracks first. The order of argument evaluation
|
||
// is implementation-defined. We should be OK here because colTrackSizes is
|
||
// taken by rvalue, but computing the size first prevents any changes in the
|
||
// argument types of the constructor from breaking this.
|
||
const uint32_t numColExplicitTracks =
|
||
IsSubgrid(eLogicalAxisInline)
|
||
? colTrackSizes.Length()
|
||
: gridReflowInput.mColFunctions.NumExplicitTracks();
|
||
ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
|
||
gridReflowInput.mColFunctions.mExplicitGridOffset, numColExplicitTracks,
|
||
0, col, std::move(colTrackPositions), std::move(colTrackSizes),
|
||
std::move(colTrackStates), std::move(colRemovedRepeatTracks),
|
||
gridReflowInput.mColFunctions.mRepeatAutoStart,
|
||
colLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
|
||
IsSubgrid(eLogicalAxisInline), IsMasonry(eLogicalAxisInline));
|
||
SetProperty(GridColTrackInfo(), colInfo);
|
||
|
||
const auto* subgridRowRange = subgrid && IsSubgrid(eLogicalAxisBlock)
|
||
? &subgrid->SubgridRows()
|
||
: nullptr;
|
||
LineNameMap rowLineNameMap(
|
||
gridReflowInput.mGridStyle, GetImplicitNamedAreas(),
|
||
gridReflowInput.mRowFunctions, nullptr, subgridRowRange, true);
|
||
uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length();
|
||
nsTArray<nscoord> rowTrackPositions(rowTrackCount);
|
||
nsTArray<nscoord> rowTrackSizes(rowTrackCount);
|
||
nsTArray<uint32_t> rowTrackStates(rowTrackCount);
|
||
nsTArray<bool> rowRemovedRepeatTracks(
|
||
gridReflowInput.mRowFunctions.mRemovedRepeatTracks.Clone());
|
||
uint32_t row = 0;
|
||
for (const TrackSize& sz : gridReflowInput.mRows.mSizes) {
|
||
rowTrackPositions.AppendElement(sz.mPosition);
|
||
rowTrackSizes.AppendElement(sz.mBase);
|
||
bool isRepeat =
|
||
((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) &&
|
||
(row < gridReflowInput.mRowFunctions.mRepeatAutoEnd));
|
||
rowTrackStates.AppendElement(
|
||
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
|
||
: (uint32_t)mozilla::dom::GridTrackState::Static);
|
||
|
||
row++;
|
||
}
|
||
// Get the number of explicit tracks first. The order of argument evaluation
|
||
// is implementation-defined. We should be OK here because colTrackSizes is
|
||
// taken by rvalue, but computing the size first prevents any changes in the
|
||
// argument types of the constructor from breaking this.
|
||
const uint32_t numRowExplicitTracks =
|
||
IsSubgrid(eLogicalAxisBlock)
|
||
? rowTrackSizes.Length()
|
||
: gridReflowInput.mRowFunctions.NumExplicitTracks();
|
||
// Row info has to accommodate fragmentation of the grid, which may happen
|
||
// in later calls to Reflow. For now, presume that no more fragmentation
|
||
// will occur.
|
||
ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
|
||
gridReflowInput.mRowFunctions.mExplicitGridOffset, numRowExplicitTracks,
|
||
gridReflowInput.mStartRow, row, std::move(rowTrackPositions),
|
||
std::move(rowTrackSizes), std::move(rowTrackStates),
|
||
std::move(rowRemovedRepeatTracks),
|
||
gridReflowInput.mRowFunctions.mRepeatAutoStart,
|
||
rowLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
|
||
IsSubgrid(eLogicalAxisBlock), IsMasonry(eLogicalAxisBlock));
|
||
SetProperty(GridRowTrackInfo(), rowInfo);
|
||
|
||
if (prevInFlow) {
|
||
// This frame is fragmenting rows from a previous frame, so patch up
|
||
// the prior GridRowTrackInfo with a new end row.
|
||
|
||
// FIXME: This can be streamlined and/or removed when bug 1151204 lands.
|
||
|
||
ComputedGridTrackInfo* priorRowInfo =
|
||
prevInFlow->GetProperty(GridRowTrackInfo());
|
||
|
||
// Adjust track positions based on the first track in this fragment.
|
||
if (priorRowInfo->mPositions.Length() >
|
||
priorRowInfo->mStartFragmentTrack) {
|
||
nscoord delta =
|
||
priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
|
||
for (nscoord& pos : priorRowInfo->mPositions) {
|
||
pos -= delta;
|
||
}
|
||
}
|
||
|
||
ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
|
||
priorRowInfo->mNumLeadingImplicitTracks,
|
||
priorRowInfo->mNumExplicitTracks, priorRowInfo->mStartFragmentTrack,
|
||
gridReflowInput.mStartRow, std::move(priorRowInfo->mPositions),
|
||
std::move(priorRowInfo->mSizes), std::move(priorRowInfo->mStates),
|
||
std::move(priorRowInfo->mRemovedRepeatTracks),
|
||
priorRowInfo->mRepeatFirstTrack,
|
||
std::move(priorRowInfo->mResolvedLineNames), priorRowInfo->mIsSubgrid,
|
||
priorRowInfo->mIsMasonry);
|
||
prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo);
|
||
}
|
||
|
||
// Generate the line info properties. We need to provide the number of
|
||
// repeat tracks produced in the reflow. Only explicit names are assigned
|
||
// to lines here; the mozilla::dom::GridLines class will later extract
|
||
// implicit names from grid areas and assign them to the appropriate lines.
|
||
|
||
auto& colFunctions = gridReflowInput.mColFunctions;
|
||
|
||
// Generate column lines first.
|
||
uint32_t capacity = gridReflowInput.mCols.mSizes.Length();
|
||
nsTArray<nsTArray<RefPtr<nsAtom>>> columnLineNames(capacity);
|
||
for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) {
|
||
// Offset col by the explicit grid offset, to get the original names.
|
||
nsTArray<RefPtr<nsAtom>> explicitNames =
|
||
colLineNameMap.GetExplicitLineNamesAtIndex(
|
||
col - colFunctions.mExplicitGridOffset);
|
||
|
||
columnLineNames.EmplaceBack(std::move(explicitNames));
|
||
}
|
||
// Get the explicit names that follow a repeat auto declaration.
|
||
nsTArray<RefPtr<nsAtom>> colNamesFollowingRepeat;
|
||
nsTArray<RefPtr<nsAtom>> colBeforeRepeatAuto;
|
||
nsTArray<RefPtr<nsAtom>> colAfterRepeatAuto;
|
||
// Note: the following is only used for a non-subgridded axis.
|
||
if (colLineNameMap.HasRepeatAuto()) {
|
||
MOZ_ASSERT(!colFunctions.mTemplate.IsSubgrid());
|
||
// The line name list after the repeatAutoIndex holds the line names
|
||
// for the first explicit line after the repeat auto declaration.
|
||
uint32_t repeatAutoEnd = colLineNameMap.RepeatAutoStart() + 1;
|
||
for (auto* list : colLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
|
||
for (auto& name : list->AsSpan()) {
|
||
colNamesFollowingRepeat.AppendElement(name.AsAtom());
|
||
}
|
||
}
|
||
auto names = colLineNameMap.TrackAutoRepeatLineNames();
|
||
for (auto& name : names[0].AsSpan()) {
|
||
colBeforeRepeatAuto.AppendElement(name.AsAtom());
|
||
}
|
||
for (auto& name : names[1].AsSpan()) {
|
||
colAfterRepeatAuto.AppendElement(name.AsAtom());
|
||
}
|
||
}
|
||
|
||
ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
|
||
std::move(columnLineNames), std::move(colBeforeRepeatAuto),
|
||
std::move(colAfterRepeatAuto), std::move(colNamesFollowingRepeat));
|
||
SetProperty(GridColumnLineInfo(), columnLineInfo);
|
||
|
||
// Generate row lines next.
|
||
auto& rowFunctions = gridReflowInput.mRowFunctions;
|
||
capacity = gridReflowInput.mRows.mSizes.Length();
|
||
nsTArray<nsTArray<RefPtr<nsAtom>>> rowLineNames(capacity);
|
||
for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) {
|
||
// Offset row by the explicit grid offset, to get the original names.
|
||
nsTArray<RefPtr<nsAtom>> explicitNames =
|
||
rowLineNameMap.GetExplicitLineNamesAtIndex(
|
||
row - rowFunctions.mExplicitGridOffset);
|
||
rowLineNames.EmplaceBack(std::move(explicitNames));
|
||
}
|
||
// Get the explicit names that follow a repeat auto declaration.
|
||
nsTArray<RefPtr<nsAtom>> rowNamesFollowingRepeat;
|
||
nsTArray<RefPtr<nsAtom>> rowBeforeRepeatAuto;
|
||
nsTArray<RefPtr<nsAtom>> rowAfterRepeatAuto;
|
||
// Note: the following is only used for a non-subgridded axis.
|
||
if (rowLineNameMap.HasRepeatAuto()) {
|
||
MOZ_ASSERT(!rowFunctions.mTemplate.IsSubgrid());
|
||
// The line name list after the repeatAutoIndex holds the line names
|
||
// for the first explicit line after the repeat auto declaration.
|
||
uint32_t repeatAutoEnd = rowLineNameMap.RepeatAutoStart() + 1;
|
||
for (auto* list : rowLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
|
||
for (auto& name : list->AsSpan()) {
|
||
rowNamesFollowingRepeat.AppendElement(name.AsAtom());
|
||
}
|
||
}
|
||
auto names = rowLineNameMap.TrackAutoRepeatLineNames();
|
||
for (auto& name : names[0].AsSpan()) {
|
||
rowBeforeRepeatAuto.AppendElement(name.AsAtom());
|
||
}
|
||
for (auto& name : names[1].AsSpan()) {
|
||
rowAfterRepeatAuto.AppendElement(name.AsAtom());
|
||
}
|
||
}
|
||
|
||
ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
|
||
std::move(rowLineNames), std::move(rowBeforeRepeatAuto),
|
||
std::move(rowAfterRepeatAuto), std::move(rowNamesFollowingRepeat));
|
||
SetProperty(GridRowLineInfo(), rowLineInfo);
|
||
|
||
// Generate area info for explicit areas. Implicit areas are handled
|
||
// elsewhere.
|
||
if (!gridReflowInput.mGridStyle->mGridTemplateAreas.IsNone()) {
|
||
auto* areas = new StyleOwnedSlice<NamedArea>(
|
||
gridReflowInput.mGridStyle->mGridTemplateAreas.AsAreas()->areas);
|
||
SetProperty(ExplicitNamedAreasProperty(), areas);
|
||
} else {
|
||
RemoveProperty(ExplicitNamedAreasProperty());
|
||
}
|
||
}
|
||
|
||
if (!prevInFlow) {
|
||
SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop());
|
||
if (!aStatus.IsFullyComplete()) {
|
||
if (!sharedGridData) {
|
||
sharedGridData = new SharedGridData;
|
||
SetProperty(SharedGridData::Prop(), sharedGridData);
|
||
}
|
||
sharedGridData->mCols.mSizes = std::move(gridReflowInput.mCols.mSizes);
|
||
sharedGridData->mCols.mContentBoxSize =
|
||
gridReflowInput.mCols.mContentBoxSize;
|
||
sharedGridData->mCols.mBaselineSubtreeAlign =
|
||
gridReflowInput.mCols.mBaselineSubtreeAlign;
|
||
sharedGridData->mCols.mIsMasonry = gridReflowInput.mCols.mIsMasonry;
|
||
sharedGridData->mRows.mSizes = std::move(gridReflowInput.mRows.mSizes);
|
||
// Save the original row grid sizes and gaps so we can restore them later
|
||
// in GridReflowInput::Initialize for the continuations.
|
||
auto& origRowData = sharedGridData->mOriginalRowData;
|
||
origRowData.ClearAndRetainStorage();
|
||
origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
|
||
nscoord prevTrackEnd = 0;
|
||
for (auto& sz : sharedGridData->mRows.mSizes) {
|
||
SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
|
||
origRowData.AppendElement(data);
|
||
prevTrackEnd = sz.mPosition + sz.mBase;
|
||
}
|
||
sharedGridData->mRows.mContentBoxSize =
|
||
gridReflowInput.mRows.mContentBoxSize;
|
||
sharedGridData->mRows.mBaselineSubtreeAlign =
|
||
gridReflowInput.mRows.mBaselineSubtreeAlign;
|
||
sharedGridData->mRows.mIsMasonry = gridReflowInput.mRows.mIsMasonry;
|
||
sharedGridData->mGridItems = std::move(gridReflowInput.mGridItems);
|
||
sharedGridData->mAbsPosItems = std::move(gridReflowInput.mAbsPosItems);
|
||
|
||
sharedGridData->mGenerateComputedGridInfo = ShouldGenerateComputedInfo();
|
||
} else if (sharedGridData && !GetNextInFlow()) {
|
||
RemoveProperty(SharedGridData::Prop());
|
||
}
|
||
}
|
||
|
||
FinishAndStoreOverflow(&aDesiredSize);
|
||
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
|
||
}
|
||
|
||
void nsGridContainerFrame::UpdateSubgridFrameState() {
|
||
nsFrameState oldBits = GetStateBits() & kIsSubgridBits;
|
||
nsFrameState newBits = ComputeSelfSubgridMasonryBits() & kIsSubgridBits;
|
||
if (newBits != oldBits) {
|
||
RemoveStateBits(kIsSubgridBits);
|
||
if (!newBits) {
|
||
RemoveProperty(Subgrid::Prop());
|
||
} else {
|
||
AddStateBits(newBits);
|
||
}
|
||
}
|
||
}
|
||
|
||
nsFrameState nsGridContainerFrame::ComputeSelfSubgridMasonryBits() const {
|
||
// 'contain:layout/paint' makes us an "independent formatting context",
|
||
// which prevents us from being a subgrid in this case (but not always).
|
||
// We will also need to check our containing scroll frame for this property.
|
||
// https://drafts.csswg.org/css-display-3/#establish-an-independent-formatting-context
|
||
const auto* display = StyleDisplay();
|
||
const bool inhibitSubgrid =
|
||
display->IsContainLayout() || display->IsContainPaint();
|
||
|
||
nsFrameState bits = nsFrameState(0);
|
||
const auto* pos = StylePosition();
|
||
|
||
// We can only have masonry layout in one axis.
|
||
if (pos->mGridTemplateRows.IsMasonry()) {
|
||
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
|
||
} else if (pos->mGridTemplateColumns.IsMasonry()) {
|
||
bits |= NS_STATE_GRID_IS_COL_MASONRY;
|
||
}
|
||
|
||
// Skip our scroll frame and such if we have it.
|
||
// This will store the outermost frame that shares our content node:
|
||
const nsIFrame* outerFrame = this;
|
||
// ...and this will store that frame's parent:
|
||
auto* parent = GetParent();
|
||
while (parent && parent->GetContent() == GetContent()) {
|
||
// If we find our containing frame has 'contain:layout/paint' we can't be
|
||
// subgrid, for the same reasons as above. This can happen when this frame
|
||
// is itself a grid item.
|
||
const auto* parentDisplay = parent->StyleDisplay();
|
||
if (parentDisplay->IsContainLayout() || parentDisplay->IsContainPaint()) {
|
||
return nsFrameState(0);
|
||
}
|
||
outerFrame = parent;
|
||
parent = parent->GetParent();
|
||
}
|
||
const nsGridContainerFrame* gridParent = do_QueryFrame(parent);
|
||
if (gridParent) {
|
||
bool isOrthogonal =
|
||
GetWritingMode().IsOrthogonalTo(parent->GetWritingMode());
|
||
// NOTE: our NS_FRAME_OUT_OF_FLOW isn't set yet so we check our style.
|
||
bool isOutOfFlow =
|
||
outerFrame->StyleDisplay()->IsAbsolutelyPositionedStyle();
|
||
bool isColSubgrid =
|
||
pos->mGridTemplateColumns.IsSubgrid() && !inhibitSubgrid;
|
||
// Subgridding a parent masonry axis makes us use masonry layout too,
|
||
// unless our other axis is a masonry axis.
|
||
if (isColSubgrid &&
|
||
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_ROW_MASONRY
|
||
: NS_STATE_GRID_IS_COL_MASONRY)) {
|
||
isColSubgrid = false;
|
||
if (!HasAnyStateBits(NS_STATE_GRID_IS_ROW_MASONRY)) {
|
||
bits |= NS_STATE_GRID_IS_COL_MASONRY;
|
||
}
|
||
}
|
||
// OOF subgrids don't create tracks in the parent, so we need to check that
|
||
// it has one anyway. Otherwise we refuse to subgrid that axis since we
|
||
// can't place grid items inside a subgrid without at least one track.
|
||
if (isColSubgrid && isOutOfFlow) {
|
||
auto parentAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
if (!gridParent->WillHaveAtLeastOneTrackInAxis(parentAxis)) {
|
||
isColSubgrid = false;
|
||
}
|
||
}
|
||
if (isColSubgrid) {
|
||
bits |= NS_STATE_GRID_IS_COL_SUBGRID;
|
||
}
|
||
|
||
bool isRowSubgrid = pos->mGridTemplateRows.IsSubgrid() && !inhibitSubgrid;
|
||
if (isRowSubgrid &&
|
||
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_COL_MASONRY
|
||
: NS_STATE_GRID_IS_ROW_MASONRY)) {
|
||
isRowSubgrid = false;
|
||
if (!HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
|
||
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
|
||
}
|
||
}
|
||
if (isRowSubgrid && isOutOfFlow) {
|
||
auto parentAxis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
|
||
if (!gridParent->WillHaveAtLeastOneTrackInAxis(parentAxis)) {
|
||
isRowSubgrid = false;
|
||
}
|
||
}
|
||
if (isRowSubgrid) {
|
||
bits |= NS_STATE_GRID_IS_ROW_SUBGRID;
|
||
}
|
||
}
|
||
return bits;
|
||
}
|
||
|
||
bool nsGridContainerFrame::WillHaveAtLeastOneTrackInAxis(
|
||
LogicalAxis aAxis) const {
|
||
if (IsSubgrid(aAxis)) {
|
||
// This is enforced by refusing to be a subgrid unless our parent has
|
||
// at least one track in aAxis by ComputeSelfSubgridMasonryBits above.
|
||
return true;
|
||
}
|
||
if (IsMasonry(aAxis)) {
|
||
return false;
|
||
}
|
||
const auto* pos = StylePosition();
|
||
const auto& gridTemplate = aAxis == eLogicalAxisBlock
|
||
? pos->mGridTemplateRows
|
||
: pos->mGridTemplateColumns;
|
||
if (gridTemplate.IsTrackList()) {
|
||
return true;
|
||
}
|
||
for (nsIFrame* child : PrincipalChildList()) {
|
||
if (!child->IsPlaceholderFrame()) {
|
||
// A grid item triggers at least one implicit track in each axis.
|
||
return true;
|
||
}
|
||
}
|
||
if (!pos->mGridTemplateAreas.IsNone()) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void nsGridContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
|
||
nsIFrame* aPrevInFlow) {
|
||
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
|
||
|
||
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
|
||
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
|
||
}
|
||
|
||
nsFrameState bits = nsFrameState(0);
|
||
if (MOZ_LIKELY(!aPrevInFlow)) {
|
||
bits = ComputeSelfSubgridMasonryBits();
|
||
} else {
|
||
bits = aPrevInFlow->GetStateBits() &
|
||
(NS_STATE_GRID_IS_ROW_MASONRY | NS_STATE_GRID_IS_COL_MASONRY |
|
||
kIsSubgridBits | NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
|
||
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
|
||
}
|
||
AddStateBits(bits);
|
||
}
|
||
|
||
void nsGridContainerFrame::DidSetComputedStyle(ComputedStyle* aOldStyle) {
|
||
nsContainerFrame::DidSetComputedStyle(aOldStyle);
|
||
|
||
if (!aOldStyle) {
|
||
return; // Init() already initialized the bits.
|
||
}
|
||
UpdateSubgridFrameState();
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
|
||
IntrinsicISizeType aType) {
|
||
// Calculate the sum of column sizes under intrinsic sizing.
|
||
// http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
|
||
NormalizeChildLists();
|
||
GridReflowInput state(this, *aRenderingContext);
|
||
InitImplicitNamedAreas(state.mGridStyle); // XXX optimize
|
||
|
||
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
|
||
// https://drafts.csswg.org/css-grid/#auto-repeat
|
||
// They're only used for auto-repeat so we skip computing them otherwise.
|
||
RepeatTrackSizingInput repeatSizing(state.mWM);
|
||
if (!IsColSubgrid() && state.mColFunctions.mHasRepeatAuto) {
|
||
repeatSizing.InitFromStyle(eLogicalAxisInline, state.mWM,
|
||
state.mFrame->Style());
|
||
}
|
||
if ((!IsRowSubgrid() && state.mRowFunctions.mHasRepeatAuto &&
|
||
!(state.mGridStyle->mGridAutoFlow & StyleGridAutoFlow::ROW)) ||
|
||
IsMasonry(eLogicalAxisInline)) {
|
||
// Only 'grid-auto-flow:column' can create new implicit columns, so that's
|
||
// the only case where our block-size can affect the number of columns.
|
||
// Masonry layout always depends on how many rows we have though.
|
||
repeatSizing.InitFromStyle(eLogicalAxisBlock, state.mWM,
|
||
state.mFrame->Style());
|
||
}
|
||
|
||
Grid grid;
|
||
if (MOZ_LIKELY(!IsSubgrid())) {
|
||
grid.PlaceGridItems(state, repeatSizing); // XXX optimize
|
||
} else {
|
||
auto* subgrid = GetProperty(Subgrid::Prop());
|
||
state.mGridItems = subgrid->mGridItems.Clone();
|
||
state.mAbsPosItems = subgrid->mAbsPosItems.Clone();
|
||
grid.mGridColEnd = subgrid->mGridColEnd;
|
||
grid.mGridRowEnd = subgrid->mGridRowEnd;
|
||
}
|
||
|
||
auto constraint = aType == IntrinsicISizeType::MinISize
|
||
? SizingConstraint::MinContent
|
||
: SizingConstraint::MaxContent;
|
||
if (IsMasonry(eLogicalAxisInline)) {
|
||
ReflowOutput desiredSize(state.mWM);
|
||
nsSize containerSize;
|
||
LogicalRect contentArea(state.mWM);
|
||
nsReflowStatus status;
|
||
state.mRows.mSizes.SetLength(grid.mGridRowEnd);
|
||
state.CalculateTrackSizesForAxis(eLogicalAxisInline, grid,
|
||
NS_UNCONSTRAINEDSIZE, constraint);
|
||
return MasonryLayout(state, contentArea, constraint, desiredSize, status,
|
||
nullptr, containerSize);
|
||
}
|
||
|
||
if (grid.mGridColEnd == 0) {
|
||
return nscoord(0);
|
||
}
|
||
|
||
state.CalculateTrackSizesForAxis(eLogicalAxisInline, grid,
|
||
NS_UNCONSTRAINEDSIZE, constraint);
|
||
|
||
if (MOZ_LIKELY(!IsSubgrid())) {
|
||
return state.mCols.SumOfGridTracksAndGaps();
|
||
}
|
||
const auto& last = state.mCols.mSizes.LastElement();
|
||
return last.mPosition + last.mBase;
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::GetMinISize(gfxContext* aRC) {
|
||
auto* f = static_cast<nsGridContainerFrame*>(FirstContinuation());
|
||
if (f != this) {
|
||
return f->GetMinISize(aRC);
|
||
}
|
||
|
||
DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
|
||
if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
||
mCachedMinISize = StyleDisplay()->IsContainSize()
|
||
? 0
|
||
: IntrinsicISize(aRC, IntrinsicISizeType::MinISize);
|
||
}
|
||
return mCachedMinISize;
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::GetPrefISize(gfxContext* aRC) {
|
||
auto* f = static_cast<nsGridContainerFrame*>(FirstContinuation());
|
||
if (f != this) {
|
||
return f->GetPrefISize(aRC);
|
||
}
|
||
|
||
DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
|
||
if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
||
mCachedPrefISize = StyleDisplay()->IsContainSize()
|
||
? 0
|
||
: IntrinsicISize(aRC, IntrinsicISizeType::PrefISize);
|
||
}
|
||
return mCachedPrefISize;
|
||
}
|
||
|
||
void nsGridContainerFrame::MarkIntrinsicISizesDirty() {
|
||
mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
for (auto& perAxisBaseline : mBaseline) {
|
||
for (auto& baseline : perAxisBaseline) {
|
||
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
|
||
}
|
||
}
|
||
nsContainerFrame::MarkIntrinsicISizesDirty();
|
||
}
|
||
|
||
void nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
|
||
const nsDisplayListSet& aLists) {
|
||
DisplayBorderBackgroundOutline(aBuilder, aLists);
|
||
if (GetPrevInFlow()) {
|
||
DisplayOverflowContainers(aBuilder, aLists);
|
||
}
|
||
|
||
// Our children are all grid-level boxes, which behave the same as
|
||
// inline-blocks in painting, so their borders/backgrounds all go on
|
||
// the BlockBorderBackgrounds list.
|
||
typedef CSSOrderAwareFrameIterator::OrderState OrderState;
|
||
OrderState order =
|
||
HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
|
||
? OrderState::Ordered
|
||
: OrderState::Unordered;
|
||
CSSOrderAwareFrameIterator iter(
|
||
this, kPrincipalList, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
|
||
order);
|
||
for (; !iter.AtEnd(); iter.Next()) {
|
||
nsIFrame* child = *iter;
|
||
BuildDisplayListForChild(aBuilder, child, aLists,
|
||
child->DisplayFlagForFlexOrGridItem());
|
||
}
|
||
}
|
||
|
||
bool nsGridContainerFrame::DrainSelfOverflowList() {
|
||
return DrainAndMergeSelfOverflowList();
|
||
}
|
||
|
||
void nsGridContainerFrame::AppendFrames(ChildListID aListID,
|
||
nsFrameList& aFrameList) {
|
||
NoteNewChildren(aListID, aFrameList);
|
||
nsContainerFrame::AppendFrames(aListID, aFrameList);
|
||
}
|
||
|
||
void nsGridContainerFrame::InsertFrames(
|
||
ChildListID aListID, nsIFrame* aPrevFrame,
|
||
const nsLineList::iterator* aPrevFrameLine, nsFrameList& aFrameList) {
|
||
NoteNewChildren(aListID, aFrameList);
|
||
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
|
||
aFrameList);
|
||
}
|
||
|
||
void nsGridContainerFrame::RemoveFrame(ChildListID aListID,
|
||
nsIFrame* aOldFrame) {
|
||
MOZ_ASSERT(aListID == kPrincipalList, "unexpected child list");
|
||
|
||
#ifdef DEBUG
|
||
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
|
||
#endif
|
||
|
||
nsContainerFrame::RemoveFrame(aListID, aOldFrame);
|
||
}
|
||
|
||
StyleAlignFlags nsGridContainerFrame::CSSAlignmentForAbsPosChild(
|
||
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
|
||
MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(),
|
||
"This method should only be called for abspos children");
|
||
|
||
StyleAlignFlags alignment =
|
||
(aLogicalAxis == eLogicalAxisInline)
|
||
? aChildRI.mStylePosition->UsedJustifySelf(Style())._0
|
||
: aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
|
||
|
||
// Extract and strip the flag bits
|
||
StyleAlignFlags alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
|
||
alignment &= ~StyleAlignFlags::FLAG_BITS;
|
||
|
||
if (alignment == StyleAlignFlags::NORMAL) {
|
||
// "the 'normal' keyword behaves as 'start' on replaced
|
||
// absolutely-positioned boxes, and behaves as 'stretch' on all other
|
||
// absolutely-positioned boxes."
|
||
// https://drafts.csswg.org/css-align/#align-abspos
|
||
// https://drafts.csswg.org/css-align/#justify-abspos
|
||
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced)
|
||
? StyleAlignFlags::START
|
||
: StyleAlignFlags::STRETCH;
|
||
} else if (alignment == StyleAlignFlags::FLEX_START) {
|
||
alignment = StyleAlignFlags::START;
|
||
} else if (alignment == StyleAlignFlags::FLEX_END) {
|
||
alignment = StyleAlignFlags::END;
|
||
} else if (alignment == StyleAlignFlags::LEFT ||
|
||
alignment == StyleAlignFlags::RIGHT) {
|
||
if (aLogicalAxis == eLogicalAxisInline) {
|
||
const bool isLeft = (alignment == StyleAlignFlags::LEFT);
|
||
WritingMode wm = GetWritingMode();
|
||
alignment = (isLeft == wm.IsBidiLTR()) ? StyleAlignFlags::START
|
||
: StyleAlignFlags::END;
|
||
} else {
|
||
alignment = StyleAlignFlags::START;
|
||
}
|
||
} else if (alignment == StyleAlignFlags::BASELINE) {
|
||
alignment = StyleAlignFlags::START;
|
||
} else if (alignment == StyleAlignFlags::LAST_BASELINE) {
|
||
alignment = StyleAlignFlags::END;
|
||
}
|
||
|
||
return (alignment | alignmentFlags);
|
||
}
|
||
|
||
nscoord nsGridContainerFrame::SynthesizeBaseline(
|
||
const FindItemInGridOrderResult& aGridOrderItem, LogicalAxis aAxis,
|
||
BaselineSharingGroup aGroup, const nsSize& aCBPhysicalSize, nscoord aCBSize,
|
||
WritingMode aCBWM) {
|
||
if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
|
||
// No item in this fragment - synthesize a baseline from our border-box.
|
||
return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize);
|
||
}
|
||
auto GetBBaseline = [](BaselineSharingGroup aGroup, WritingMode aWM,
|
||
const nsIFrame* aFrame, nscoord* aBaseline) {
|
||
return aGroup == BaselineSharingGroup::First
|
||
? nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline)
|
||
: nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline);
|
||
};
|
||
nsIFrame* child = aGridOrderItem.mItem->mFrame;
|
||
nsGridContainerFrame* grid = do_QueryFrame(child);
|
||
auto childWM = child->GetWritingMode();
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
nscoord baseline;
|
||
nscoord start;
|
||
nscoord size;
|
||
if (aAxis == eLogicalAxisBlock) {
|
||
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
|
||
size = child->BSize(aCBWM);
|
||
if (grid && aGridOrderItem.mIsInEdgeTrack) {
|
||
isOrthogonal ? grid->GetIBaseline(aGroup, &baseline)
|
||
: grid->GetBBaseline(aGroup, &baseline);
|
||
} else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
|
||
baseline =
|
||
child->BaselineBOffset(childWM, aGroup, AlignmentContext::Grid);
|
||
} else {
|
||
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
|
||
}
|
||
} else {
|
||
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
|
||
size = child->ISize(aCBWM);
|
||
if (grid && aGridOrderItem.mIsInEdgeTrack) {
|
||
isOrthogonal ? grid->GetBBaseline(aGroup, &baseline)
|
||
: grid->GetIBaseline(aGroup, &baseline);
|
||
} else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack &&
|
||
GetBBaseline(aGroup, childWM, child, &baseline)) {
|
||
if (aGroup == BaselineSharingGroup::Last) {
|
||
baseline = size - baseline; // convert to distance from border-box end
|
||
}
|
||
} else {
|
||
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
|
||
}
|
||
}
|
||
return aGroup == BaselineSharingGroup::First
|
||
? start + baseline
|
||
: aCBSize - start - size + baseline;
|
||
}
|
||
|
||
void nsGridContainerFrame::CalculateBaselines(
|
||
BaselineSet aBaselineSet, CSSOrderAwareFrameIterator* aIter,
|
||
const nsTArray<GridItemInfo>* aGridItems, const Tracks& aTracks,
|
||
uint32_t aFragmentStartTrack, uint32_t aFirstExcludedTrack, WritingMode aWM,
|
||
const nsSize& aCBPhysicalSize, nscoord aCBBorderPaddingStart,
|
||
nscoord aCBBorderPaddingEnd, nscoord aCBSize) {
|
||
const auto axis = aTracks.mAxis;
|
||
auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::First];
|
||
if (!(aBaselineSet & BaselineSet::eFirst)) {
|
||
mBaseline[axis][BaselineSharingGroup::First] =
|
||
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::First, aWM,
|
||
aCBSize);
|
||
} else if (firstBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
||
FindItemInGridOrderResult gridOrderFirstItem = FindFirstItemInGridOrder(
|
||
*aIter, *aGridItems,
|
||
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
|
||
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
|
||
aFragmentStartTrack);
|
||
mBaseline[axis][BaselineSharingGroup::First] = SynthesizeBaseline(
|
||
gridOrderFirstItem, axis, BaselineSharingGroup::First, aCBPhysicalSize,
|
||
aCBSize, aWM);
|
||
} else {
|
||
// We have a 'first baseline' group in the start track in this fragment.
|
||
// Convert it from track to grid container border-box coordinates.
|
||
MOZ_ASSERT(!aGridItems->IsEmpty());
|
||
nscoord gapBeforeStartTrack =
|
||
aFragmentStartTrack == 0
|
||
? aTracks.GridLineEdge(aFragmentStartTrack,
|
||
GridLineSide::AfterGridGap)
|
||
: nscoord(0); // no content gap at start of fragment
|
||
mBaseline[axis][BaselineSharingGroup::First] =
|
||
aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
|
||
}
|
||
|
||
auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::Last];
|
||
if (!(aBaselineSet & BaselineSet::eLast)) {
|
||
mBaseline[axis][BaselineSharingGroup::Last] =
|
||
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::Last, aWM,
|
||
aCBSize);
|
||
} else if (lastBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
|
||
// For finding items for the 'last baseline' we need to create a reverse
|
||
// iterator ('aIter' is the forward iterator from the GridReflowInput).
|
||
using Iter = ReverseCSSOrderAwareFrameIterator;
|
||
auto orderState = aIter->ItemsAreAlreadyInOrder()
|
||
? Iter::OrderState::Ordered
|
||
: Iter::OrderState::Unordered;
|
||
Iter iter(this, kPrincipalList, Iter::ChildFilter::SkipPlaceholders,
|
||
orderState);
|
||
iter.SetItemCount(aGridItems->Length());
|
||
FindItemInGridOrderResult gridOrderLastItem = FindLastItemInGridOrder(
|
||
iter, *aGridItems,
|
||
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
|
||
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
|
||
aFragmentStartTrack, aFirstExcludedTrack);
|
||
mBaseline[axis][BaselineSharingGroup::Last] =
|
||
SynthesizeBaseline(gridOrderLastItem, axis, BaselineSharingGroup::Last,
|
||
aCBPhysicalSize, aCBSize, aWM);
|
||
} else {
|
||
// We have a 'last baseline' group in the end track in this fragment.
|
||
// Convert it from track to grid container border-box coordinates.
|
||
MOZ_ASSERT(!aGridItems->IsEmpty());
|
||
auto borderBoxStartToEndOfEndTrack =
|
||
aCBBorderPaddingStart +
|
||
aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::BeforeGridGap) -
|
||
aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::BeforeGridGap);
|
||
mBaseline[axis][BaselineSharingGroup::Last] =
|
||
(aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG_FRAME_DUMP
|
||
nsresult nsGridContainerFrame::GetFrameName(nsAString& aResult) const {
|
||
return MakeFrameName(u"GridContainer"_ns, aResult);
|
||
}
|
||
|
||
void nsGridContainerFrame::ExtraContainerFrameInfo(nsACString& aTo) const {
|
||
if (const void* const subgrid = GetProperty(Subgrid::Prop())) {
|
||
aTo += nsPrintfCString(" [subgrid=%p]", subgrid);
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
|
||
nsGridContainerFrame::FindFirstItemInGridOrder(
|
||
CSSOrderAwareFrameIterator& aIter, const nsTArray<GridItemInfo>& aGridItems,
|
||
LineRange GridArea::*aMajor, LineRange GridArea::*aMinor,
|
||
uint32_t aFragmentStartTrack) {
|
||
FindItemInGridOrderResult result = {nullptr, false};
|
||
uint32_t minMajor = kTranslatedMaxLine + 1;
|
||
uint32_t minMinor = kTranslatedMaxLine + 1;
|
||
aIter.Reset();
|
||
for (; !aIter.AtEnd(); aIter.Next()) {
|
||
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
|
||
if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
|
||
continue; // item doesn't span any track in this fragment
|
||
}
|
||
uint32_t major = (item.mArea.*aMajor).mStart;
|
||
uint32_t minor = (item.mArea.*aMinor).mStart;
|
||
if (major < minMajor || (major == minMajor && minor < minMinor)) {
|
||
minMajor = major;
|
||
minMinor = minor;
|
||
result.mItem = &item;
|
||
result.mIsInEdgeTrack = major == 0U;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
|
||
nsGridContainerFrame::FindLastItemInGridOrder(
|
||
ReverseCSSOrderAwareFrameIterator& aIter,
|
||
const nsTArray<GridItemInfo>& aGridItems, LineRange GridArea::*aMajor,
|
||
LineRange GridArea::*aMinor, uint32_t aFragmentStartTrack,
|
||
uint32_t aFirstExcludedTrack) {
|
||
FindItemInGridOrderResult result = {nullptr, false};
|
||
int32_t maxMajor = -1;
|
||
int32_t maxMinor = -1;
|
||
aIter.Reset();
|
||
int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
|
||
for (; !aIter.AtEnd(); aIter.Next()) {
|
||
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
|
||
// Subtract 1 from the end line to get the item's last track index.
|
||
int32_t major = (item.mArea.*aMajor).mEnd - 1;
|
||
// Currently, this method is only called with aFirstExcludedTrack ==
|
||
// the first track in the next fragment, so we take the opportunity
|
||
// to assert this item really belongs to this fragment.
|
||
MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
|
||
"found an item that belongs to some later fragment");
|
||
if (major < int32_t(aFragmentStartTrack)) {
|
||
continue; // item doesn't span any track in this fragment
|
||
}
|
||
int32_t minor = (item.mArea.*aMinor).mEnd - 1;
|
||
MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
|
||
if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
|
||
maxMajor = major;
|
||
maxMinor = minor;
|
||
result.mItem = &item;
|
||
result.mIsInEdgeTrack = major == lastMajorTrack;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
nsGridContainerFrame::UsedTrackSizes* nsGridContainerFrame::GetUsedTrackSizes()
|
||
const {
|
||
return GetProperty(UsedTrackSizes::Prop());
|
||
}
|
||
|
||
void nsGridContainerFrame::StoreUsedTrackSizes(
|
||
LogicalAxis aAxis, const nsTArray<TrackSize>& aSizes) {
|
||
auto* uts = GetUsedTrackSizes();
|
||
if (!uts) {
|
||
uts = new UsedTrackSizes();
|
||
SetProperty(UsedTrackSizes::Prop(), uts);
|
||
}
|
||
uts->mSizes[aAxis] = aSizes.Clone();
|
||
uts->mCanResolveLineRangeSize[aAxis] = true;
|
||
// XXX is resetting these bits necessary?
|
||
for (auto& sz : uts->mSizes[aAxis]) {
|
||
sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited |
|
||
TrackSize::eInfinitelyGrowable);
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void nsGridContainerFrame::SetInitialChildList(ChildListID aListID,
|
||
nsFrameList& aChildList) {
|
||
ChildListIDs supportedLists = {kPrincipalList};
|
||
// We don't handle the kBackdropList frames in any way, but it only contains
|
||
// a placeholder for ::backdrop which is OK to not reflow (for now anyway).
|
||
supportedLists += kBackdropList;
|
||
MOZ_ASSERT(supportedLists.contains(aListID), "unexpected child list");
|
||
|
||
return nsContainerFrame::SetInitialChildList(aListID, aChildList);
|
||
}
|
||
|
||
void nsGridContainerFrame::TrackSize::DumpStateBits(StateBits aState) {
|
||
printf("min:");
|
||
if (aState & eAutoMinSizing) {
|
||
printf("auto-min ");
|
||
} else if (aState & eMinContentMinSizing) {
|
||
printf("min-content ");
|
||
} else if (aState & eMaxContentMinSizing) {
|
||
printf("max-content ");
|
||
}
|
||
printf(" max:");
|
||
if (aState & eAutoMaxSizing) {
|
||
printf("auto ");
|
||
} else if (aState & eMinContentMaxSizing) {
|
||
printf("min-content ");
|
||
} else if (aState & eMaxContentMaxSizing) {
|
||
printf("max-content ");
|
||
} else if (aState & eFlexMaxSizing) {
|
||
printf("flex ");
|
||
}
|
||
if (aState & eFrozen) {
|
||
printf("frozen ");
|
||
}
|
||
if (aState & eModified) {
|
||
printf("modified ");
|
||
}
|
||
if (aState & eBreakBefore) {
|
||
printf("break-before ");
|
||
}
|
||
}
|
||
|
||
void nsGridContainerFrame::TrackSize::Dump() const {
|
||
printf("mPosition=%d mBase=%d mLimit=%d ", mPosition, mBase, mLimit);
|
||
DumpStateBits(mState);
|
||
}
|
||
|
||
#endif // DEBUG
|
||
|
||
nsGridContainerFrame* nsGridContainerFrame::GetGridContainerFrame(
|
||
nsIFrame* aFrame) {
|
||
nsGridContainerFrame* gridFrame = nullptr;
|
||
|
||
if (aFrame) {
|
||
nsIFrame* inner = aFrame;
|
||
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
|
||
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
|
||
}
|
||
// Since "Get" methods like GetInner and GetContentInsertionFrame can
|
||
// return null, we check the return values before dereferencing. Our
|
||
// calling pattern makes this unlikely, but we're being careful.
|
||
nsIFrame* insertionFrame =
|
||
inner ? inner->GetContentInsertionFrame() : nullptr;
|
||
nsIFrame* possibleGridFrame = insertionFrame ? insertionFrame : aFrame;
|
||
gridFrame = possibleGridFrame->IsGridContainerFrame()
|
||
? static_cast<nsGridContainerFrame*>(possibleGridFrame)
|
||
: nullptr;
|
||
}
|
||
return gridFrame;
|
||
}
|
||
|
||
nsGridContainerFrame* nsGridContainerFrame::GetGridFrameWithComputedInfo(
|
||
nsIFrame* aFrame) {
|
||
nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
|
||
if (!gridFrame) {
|
||
return nullptr;
|
||
}
|
||
|
||
auto HasComputedInfo = [](const nsGridContainerFrame& aFrame) -> bool {
|
||
return aFrame.HasProperty(GridColTrackInfo()) &&
|
||
aFrame.HasProperty(GridRowTrackInfo()) &&
|
||
aFrame.HasProperty(GridColumnLineInfo()) &&
|
||
aFrame.HasProperty(GridRowLineInfo());
|
||
};
|
||
|
||
if (HasComputedInfo(*gridFrame)) {
|
||
return gridFrame;
|
||
}
|
||
|
||
// Trigger a reflow that generates additional grid property data.
|
||
// Hold onto aFrame while we do this, in case reflow destroys it.
|
||
AutoWeakFrame weakFrameRef(gridFrame);
|
||
|
||
RefPtr<mozilla::PresShell> presShell = gridFrame->PresShell();
|
||
gridFrame->SetShouldGenerateComputedInfo(true);
|
||
presShell->FrameNeedsReflow(gridFrame, IntrinsicDirty::Resize,
|
||
NS_FRAME_IS_DIRTY);
|
||
presShell->FlushPendingNotifications(FlushType::Layout);
|
||
|
||
// If the weakFrameRef is no longer valid, then we must bail out.
|
||
if (!weakFrameRef.IsAlive()) {
|
||
return nullptr;
|
||
}
|
||
|
||
// This can happen if for some reason we ended up not reflowing, like in print
|
||
// preview under some circumstances.
|
||
if (MOZ_UNLIKELY(!HasComputedInfo(*gridFrame))) {
|
||
return nullptr;
|
||
}
|
||
|
||
return gridFrame;
|
||
}
|