mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-04 19:33:18 +00:00
517 lines
15 KiB
C
517 lines
15 KiB
C
/***************************************************************************
|
|
|
|
Interface between g++ and Boehm GC
|
|
|
|
Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
|
|
|
|
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
|
|
Permission is hereby granted to copy this code for any purpose,
|
|
provided the above notices are retained on all copies.
|
|
|
|
Last modified on Sun Jul 16 23:21:14 PDT 1995 by ellis
|
|
|
|
This module provides runtime support for implementing the
|
|
Ellis/Detlefs GC proposal, "Safe, Efficient Garbage Collection for
|
|
C++", within g++, using its -fgc-keyword extension. It defines
|
|
versions of __builtin_new, __builtin_new_gc, __builtin_vec_new,
|
|
__builtin_vec_new_gc, __builtin_delete, and __builtin_vec_delete that
|
|
invoke the Bohem GC. It also implements the WeakPointer.h interface.
|
|
|
|
This module assumes the following configuration options of the Boehm GC:
|
|
|
|
-DALL_INTERIOR_POINTERS
|
|
-DDONT_ADD_BYTE_AT_END
|
|
|
|
This module adds its own required padding to the end of objects to
|
|
support C/C++ "one-past-the-object" pointer semantics.
|
|
|
|
****************************************************************************/
|
|
|
|
#include <stddef.h>
|
|
#include "gc.h"
|
|
|
|
#if defined(__STDC__)
|
|
# define PROTO( args ) args
|
|
#else
|
|
# define PROTO( args ) ()
|
|
# endif
|
|
|
|
#define BITSPERBYTE 8
|
|
/* What's the portable way to do this? */
|
|
|
|
|
|
typedef void (*vfp) PROTO(( void ));
|
|
extern vfp __new_handler;
|
|
extern void __default_new_handler PROTO(( void ));
|
|
|
|
|
|
/* A destructor_proc is the compiler generated procedure representing a
|
|
C++ destructor. The "flag" argument is a hidden argument following some
|
|
compiler convention. */
|
|
|
|
typedef (*destructor_proc) PROTO(( void* this, int flag ));
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
A BI_header is the header the compiler adds to the front of
|
|
new-allocated arrays of objects with destructors. The header is
|
|
padded out to a double, because that's what the compiler does to
|
|
ensure proper alignment of array elements on some architectures.
|
|
|
|
int NUM_ARRAY_ELEMENTS (void* o)
|
|
returns the number of array elements for array object o.
|
|
|
|
char* FIRST_ELEMENT_P (void* o)
|
|
returns the address of the first element of array object o.
|
|
|
|
***************************************************************************/
|
|
|
|
typedef struct BI_header {
|
|
int nelts;
|
|
char padding [sizeof( double ) - sizeof( int )];
|
|
/* Better way to do this? */
|
|
} BI_header;
|
|
|
|
#define NUM_ARRAY_ELEMENTS( o ) \
|
|
(((BI_header*) o)->nelts)
|
|
|
|
#define FIRST_ELEMENT_P( o ) \
|
|
((char*) o + sizeof( BI_header ))
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
The __builtin_new routines add a descriptor word to the end of each
|
|
object. The descriptor serves two purposes.
|
|
|
|
First, the descriptor acts as padding, implementing C/C++ pointer
|
|
semantics. C and C++ allow a valid array pointer to be incremented
|
|
one past the end of an object. The extra padding ensures that the
|
|
collector will recognize that such a pointer points to the object and
|
|
not the next object in memory.
|
|
|
|
Second, the descriptor stores three extra pieces of information,
|
|
whether an object has a registered finalizer (destructor), whether it
|
|
may have any weak pointers referencing it, and for collectible arrays,
|
|
the element size of the array. The element size is required for the
|
|
array's finalizer to iterate through the elements of the array. (An
|
|
alternative design would have the compiler generate a finalizer
|
|
procedure for each different array type. But given the overhead of
|
|
finalization, there isn't any efficiency to be gained by that.)
|
|
|
|
The descriptor must be added to non-collectible as well as collectible
|
|
objects, since the Ellis/Detlefs proposal allows "pointer to gc T" to
|
|
be assigned to a "pointer to T", which could then be deleted. Thus,
|
|
__builtin_delete must determine at runtime whether an object is
|
|
collectible, whether it has weak pointers referencing it, and whether
|
|
it may have a finalizer that needs unregistering. Though
|
|
GC_REGISTER_FINALIZER doesn't care if you ask it to unregister a
|
|
finalizer for an object that doesn't have one, it is a non-trivial
|
|
procedure that does a hash look-up, etc. The descriptor trades a
|
|
little extra space for a significant increase in time on the fast path
|
|
through delete. (A similar argument applies to
|
|
GC_UNREGISTER_DISAPPEARING_LINK).
|
|
|
|
For non-array types, the space for the descriptor could be shrunk to a
|
|
single byte for storing the "has finalizer" flag. But this would save
|
|
space only on arrays of char (whose size is not a multiple of the word
|
|
size) and structs whose largest member is less than a word in size
|
|
(very infrequent). And it would require that programmers actually
|
|
remember to call "delete[]" instead of "delete" (which they should,
|
|
but there are probably lots of buggy programs out there). For the
|
|
moment, the space savings seems not worthwhile, especially considering
|
|
that the Boehm GC is already quite space competitive with other
|
|
malloc's.
|
|
|
|
|
|
Given a pointer o to the base of an object:
|
|
|
|
Descriptor* DESCRIPTOR (void* o)
|
|
returns a pointer to the descriptor for o.
|
|
|
|
The implementation of descriptors relies on the fact that the GC
|
|
implementation allocates objects in units of the machine's natural
|
|
word size (e.g. 32 bits on a SPARC, 64 bits on an Alpha).
|
|
|
|
**************************************************************************/
|
|
|
|
typedef struct Descriptor {
|
|
unsigned has_weak_pointers: 1;
|
|
unsigned has_finalizer: 1;
|
|
unsigned element_size: BITSPERBYTE * sizeof( unsigned ) - 2;
|
|
} Descriptor;
|
|
|
|
#define DESCRIPTOR( o ) \
|
|
((Descriptor*) ((char*)(o) + GC_size( o ) - sizeof( Descriptor )))
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
Implementations of global operator new() and operator delete()
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
void* __builtin_new( size )
|
|
size_t size;
|
|
/*
|
|
For non-gc non-array types, the compiler generates calls to
|
|
__builtin_new, which allocates non-collected storage via
|
|
GC_MALLOC_UNCOLLECTABLE. This ensures that the non-collected
|
|
storage will be part of the collector's root set, required by the
|
|
Ellis/Detlefs semantics. */
|
|
{
|
|
vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
|
|
|
while (1) {
|
|
void* o = GC_MALLOC_UNCOLLECTABLE( size + sizeof( Descriptor ) );
|
|
if (o != 0) return o;
|
|
(*handler) ();}}
|
|
|
|
|
|
void* __builtin_vec_new( size )
|
|
size_t size;
|
|
/*
|
|
For non-gc array types, the compiler generates calls to
|
|
__builtin_vec_new. */
|
|
{
|
|
return __builtin_new( size );}
|
|
|
|
|
|
void* __builtin_new_gc( size )
|
|
size_t size;
|
|
/*
|
|
For gc non-array types, the compiler generates calls to
|
|
__builtin_new_gc, which allocates collected storage via
|
|
GC_MALLOC. */
|
|
{
|
|
vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
|
|
|
while (1) {
|
|
void* o = GC_MALLOC( size + sizeof( Descriptor ) );
|
|
if (o != 0) return o;
|
|
(*handler) ();}}
|
|
|
|
|
|
void* __builtin_new_gc_a( size )
|
|
size_t size;
|
|
/*
|
|
For non-pointer-containing gc non-array types, the compiler
|
|
generates calls to __builtin_new_gc_a, which allocates collected
|
|
storage via GC_MALLOC_ATOMIC. */
|
|
{
|
|
vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
|
|
|
while (1) {
|
|
void* o = GC_MALLOC_ATOMIC( size + sizeof( Descriptor ) );
|
|
if (o != 0) return o;
|
|
(*handler) ();}}
|
|
|
|
|
|
void* __builtin_vec_new_gc( size )
|
|
size_t size;
|
|
/*
|
|
For gc array types, the compiler generates calls to
|
|
__builtin_vec_new_gc. */
|
|
{
|
|
return __builtin_new_gc( size );}
|
|
|
|
|
|
void* __builtin_vec_new_gc_a( size )
|
|
size_t size;
|
|
/*
|
|
For non-pointer-containing gc array types, the compiler generates
|
|
calls to __builtin_vec_new_gc_a. */
|
|
{
|
|
return __builtin_new_gc_a( size );}
|
|
|
|
|
|
static void call_destructor( o, data )
|
|
void* o;
|
|
void* data;
|
|
/*
|
|
call_destructor is the GC finalizer proc registered for non-array
|
|
gc objects with destructors. Its client data is the destructor
|
|
proc, which it calls with the magic integer 2, a special flag
|
|
obeying the compiler convention for destructors. */
|
|
{
|
|
((destructor_proc) data)( o, 2 );}
|
|
|
|
|
|
void* __builtin_new_gc_dtor( o, d )
|
|
void* o;
|
|
destructor_proc d;
|
|
/*
|
|
The compiler generates a call to __builtin_new_gc_dtor to register
|
|
the destructor "d" of a non-array gc object "o" as a GC finalizer.
|
|
The destructor is registered via
|
|
GC_REGISTER_FINALIZER_IGNORE_SELF, which causes the collector to
|
|
ignore pointers from the object to itself when determining when
|
|
the object can be finalized. This is necessary due to the self
|
|
pointers used in the internal representation of multiply-inherited
|
|
objects. */
|
|
{
|
|
Descriptor* desc = DESCRIPTOR( o );
|
|
|
|
GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_destructor, d, 0, 0 );
|
|
desc->has_finalizer = 1;}
|
|
|
|
|
|
static void call_array_destructor( o, data )
|
|
void* o;
|
|
void* data;
|
|
/*
|
|
call_array_destructor is the GC finalizer proc registered for gc
|
|
array objects whose elements have destructors. Its client data is
|
|
the destructor proc. It iterates through the elements of the
|
|
array in reverse order, calling the destructor on each. */
|
|
{
|
|
int num = NUM_ARRAY_ELEMENTS( o );
|
|
Descriptor* desc = DESCRIPTOR( o );
|
|
size_t size = desc->element_size;
|
|
char* first_p = FIRST_ELEMENT_P( o );
|
|
char* p = first_p + (num - 1) * size;
|
|
|
|
if (num > 0) {
|
|
while (1) {
|
|
((destructor_proc) data)( p, 2 );
|
|
if (p == first_p) break;
|
|
p -= size;}}}
|
|
|
|
|
|
void* __builtin_vec_new_gc_dtor( first_elem, d, element_size )
|
|
void* first_elem;
|
|
destructor_proc d;
|
|
size_t element_size;
|
|
/*
|
|
The compiler generates a call to __builtin_vec_new_gc_dtor to
|
|
register the destructor "d" of a gc array object as a GC
|
|
finalizer. "first_elem" points to the first element of the array,
|
|
*not* the beginning of the object (this makes the generated call
|
|
to this function smaller). The elements of the array are of size
|
|
"element_size". The destructor is registered as in
|
|
_builtin_new_gc_dtor. */
|
|
{
|
|
void* o = (char*) first_elem - sizeof( BI_header );
|
|
Descriptor* desc = DESCRIPTOR( o );
|
|
|
|
GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_array_destructor, d, 0, 0 );
|
|
desc->element_size = element_size;
|
|
desc->has_finalizer = 1;}
|
|
|
|
|
|
void __builtin_delete( o )
|
|
void* o;
|
|
/*
|
|
The compiler generates calls to __builtin_delete for operator
|
|
delete(). The GC currently requires that any registered
|
|
finalizers be unregistered before explicitly freeing an object.
|
|
If the object has any weak pointers referencing it, we can't
|
|
actually free it now. */
|
|
{
|
|
if (o != 0) {
|
|
Descriptor* desc = DESCRIPTOR( o );
|
|
if (desc->has_finalizer) GC_REGISTER_FINALIZER( o, 0, 0, 0, 0 );
|
|
if (! desc->has_weak_pointers) GC_FREE( o );}}
|
|
|
|
|
|
void __builtin_vec_delete( o )
|
|
void* o;
|
|
/*
|
|
The compiler generates calls to __builitn_vec_delete for operator
|
|
delete[](). */
|
|
{
|
|
__builtin_delete( o );}
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
Implementations of the template class WeakPointer from WeakPointer.h
|
|
|
|
***************************************************************************/
|
|
|
|
typedef struct WeakPointer {
|
|
void* pointer;
|
|
} WeakPointer;
|
|
|
|
|
|
void* _WeakPointer_New( t )
|
|
void* t;
|
|
{
|
|
if (t == 0) {
|
|
return 0;}
|
|
else {
|
|
void* base = GC_base( t );
|
|
WeakPointer* wp =
|
|
(WeakPointer*) GC_MALLOC_ATOMIC( sizeof( WeakPointer ) );
|
|
Descriptor* desc = DESCRIPTOR( base );
|
|
|
|
wp->pointer = t;
|
|
desc->has_weak_pointers = 1;
|
|
GC_general_register_disappearing_link( &wp->pointer, base );
|
|
return wp;}}
|
|
|
|
|
|
static void* PointerWithLock( wp )
|
|
WeakPointer* wp;
|
|
{
|
|
if (wp == 0 || wp->pointer == 0) {
|
|
return 0;}
|
|
else {
|
|
return (void*) wp->pointer;}}
|
|
|
|
|
|
void* _WeakPointer_Pointer( wp )
|
|
WeakPointer* wp;
|
|
{
|
|
return (void*) GC_call_with_alloc_lock( PointerWithLock, wp );}
|
|
|
|
|
|
typedef struct EqualClosure {
|
|
WeakPointer* wp1;
|
|
WeakPointer* wp2;
|
|
} EqualClosure;
|
|
|
|
|
|
static void* EqualWithLock( ec )
|
|
EqualClosure* ec;
|
|
{
|
|
if (ec->wp1 == 0 || ec->wp2 == 0) {
|
|
return (void*) (ec->wp1 == ec->wp2);}
|
|
else {
|
|
return (void*) (ec->wp1->pointer == ec->wp2->pointer);}}
|
|
|
|
|
|
int _WeakPointer_Equal( wp1, wp2 )
|
|
WeakPointer* wp1;
|
|
WeakPointer* wp2;
|
|
{
|
|
EqualClosure ec;
|
|
|
|
ec.wp1 = wp1;
|
|
ec.wp2 = wp2;
|
|
return (int) GC_call_with_alloc_lock( EqualWithLock, &ec );}
|
|
|
|
|
|
int _WeakPointer_Hash( wp )
|
|
WeakPointer* wp;
|
|
{
|
|
return (int) _WeakPointer_Pointer( wp );}
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
Implementations of the template class CleanUp from WeakPointer.h
|
|
|
|
***************************************************************************/
|
|
|
|
typedef struct Closure {
|
|
void (*c) PROTO(( void* d, void* t ));
|
|
ptrdiff_t t_offset;
|
|
void* d;
|
|
} Closure;
|
|
|
|
|
|
static void _CleanUp_CallClosure( obj, data )
|
|
void* obj;
|
|
void* data;
|
|
{
|
|
Closure* closure = (Closure*) data;
|
|
closure->c( closure->d, (char*) obj + closure->t_offset );}
|
|
|
|
|
|
void _CleanUp_Set( t, c, d )
|
|
void* t;
|
|
void (*c) PROTO(( void* d, void* t ));
|
|
void* d;
|
|
{
|
|
void* base = GC_base( t );
|
|
Descriptor* desc = DESCRIPTOR( t );
|
|
|
|
if (c == 0) {
|
|
GC_REGISTER_FINALIZER_IGNORE_SELF( base, 0, 0, 0, 0 );
|
|
desc->has_finalizer = 0;}
|
|
else {
|
|
Closure* closure = (Closure*) GC_MALLOC( sizeof( Closure ) );
|
|
closure->c = c;
|
|
closure->t_offset = (char*) t - (char*) base;
|
|
closure->d = d;
|
|
GC_REGISTER_FINALIZER_IGNORE_SELF( base, _CleanUp_CallClosure,
|
|
closure, 0, 0 );
|
|
desc->has_finalizer = 1;}}
|
|
|
|
|
|
void _CleanUp_Call( t )
|
|
void* t;
|
|
{
|
|
/* ? Aren't we supposed to deactivate weak pointers to t too?
|
|
Why? */
|
|
void* base = GC_base( t );
|
|
void* d;
|
|
GC_finalization_proc f;
|
|
|
|
GC_REGISTER_FINALIZER( base, 0, 0, &f, &d );
|
|
f( base, d );}
|
|
|
|
|
|
typedef struct QueueElem {
|
|
void* o;
|
|
GC_finalization_proc f;
|
|
void* d;
|
|
struct QueueElem* next;
|
|
} QueueElem;
|
|
|
|
|
|
void* _CleanUp_Queue_NewHead()
|
|
{
|
|
return GC_MALLOC( sizeof( QueueElem ) );}
|
|
|
|
|
|
static void _CleanUp_Queue_Enqueue( obj, data )
|
|
void* obj;
|
|
void* data;
|
|
{
|
|
QueueElem* q = (QueueElem*) data;
|
|
QueueElem* head = q->next;
|
|
|
|
q->o = obj;
|
|
q->next = head->next;
|
|
head->next = q;}
|
|
|
|
|
|
void _CleanUp_Queue_Set( h, t )
|
|
void* h;
|
|
void* t;
|
|
{
|
|
QueueElem* head = (QueueElem*) h;
|
|
void* base = GC_base( t );
|
|
void* d;
|
|
GC_finalization_proc f;
|
|
QueueElem* q = (QueueElem*) GC_MALLOC( sizeof( QueueElem ) );
|
|
|
|
GC_REGISTER_FINALIZER( base, _CleanUp_Queue_Enqueue, q, &f, &d );
|
|
q->f = f;
|
|
q->d = d;
|
|
q->next = head;}
|
|
|
|
|
|
int _CleanUp_Queue_Call( h )
|
|
void* h;
|
|
{
|
|
QueueElem* head = (QueueElem*) h;
|
|
QueueElem* q = head->next;
|
|
|
|
if (q == 0) {
|
|
return 0;}
|
|
else {
|
|
head->next = q->next;
|
|
q->next = 0;
|
|
if (q->f != 0) q->f( q->o, q->d );
|
|
return 1;}}
|
|
|
|
|
|
|