gecko-dev/image/imgFrame.cpp

730 lines
23 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "ImageRegion.h"
#include "SurfaceCache.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxContext.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "MainThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/StaticPrefs_browser.h"
#include "nsMargin.h"
#include "nsRefreshDriver.h"
#include "nsThreadUtils.h"
#include <algorithm> // for min, max
namespace mozilla {
using namespace gfx;
namespace image {
/**
* This class is identical to SourceSurfaceSharedData but returns a different
* type so that SharedSurfacesChild is aware imagelib wants to recycle this
* surface for future animation frames.
*/
class RecyclingSourceSurfaceSharedData final : public SourceSurfaceSharedData {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(RecyclingSourceSurfaceSharedData,
override)
SurfaceType GetType() const override {
return SurfaceType::DATA_RECYCLING_SHARED;
}
};
static already_AddRefed<SourceSurfaceSharedData> AllocateBufferForImage(
const IntSize& size, SurfaceFormat format, bool aShouldRecycle = false) {
// Stride must be a multiple of four or cairo will complain.
int32_t stride = (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
RefPtr<SourceSurfaceSharedData> newSurf;
if (aShouldRecycle) {
newSurf = new RecyclingSourceSurfaceSharedData();
} else {
newSurf = new SourceSurfaceSharedData();
}
if (!newSurf->Init(size, stride, format)) {
return nullptr;
}
return newSurf.forget();
}
static bool GreenSurface(SourceSurfaceSharedData* aSurface,
const IntSize& aSize, SurfaceFormat aFormat) {
int32_t stride = aSurface->Stride();
uint32_t* surfaceData = reinterpret_cast<uint32_t*>(aSurface->GetData());
uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t);
// Start by assuming that GG is in the second byte and
// AA is in the final byte -- the most common case.
uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF);
// We are only going to handle this type of test under
// certain circumstances.
MOZ_ASSERT(surfaceData);
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
aFormat == SurfaceFormat::B8G8R8X8 ||
aFormat == SurfaceFormat::R8G8B8A8 ||
aFormat == SurfaceFormat::R8G8B8X8 ||
aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8);
MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t));
if (aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8) {
color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00);
}
for (uint32_t i = 0; i < surfaceDataLength; i++) {
surfaceData[i] = color;
}
return true;
}
static bool ClearSurface(SourceSurfaceSharedData* aSurface,
const IntSize& aSize, SurfaceFormat aFormat) {
int32_t stride = aSurface->Stride();
uint8_t* data = aSurface->GetData();
MOZ_ASSERT(data);
if (aFormat == SurfaceFormat::OS_RGBX) {
// Skia doesn't support RGBX surfaces, so ensure the alpha value is set
// to opaque white. While it would be nice to only do this for Skia,
// imgFrame can run off main thread and past shutdown where
// we might not have gfxPlatform, so just memset every time instead.
memset(data, 0xFF, stride * aSize.height);
} else if (aSurface->OnHeap()) {
// We only need to memset it if the buffer was allocated on the heap.
// Otherwise, it's allocated via mmap and refers to a zeroed page and will
// be COW once it's written to.
memset(data, 0, stride * aSize.height);
}
return true;
}
imgFrame::imgFrame()
: mMonitor("imgFrame"),
mDecoded(0, 0, 0, 0),
mAborted(false),
mFinished(false),
mShouldRecycle(false),
mTimeout(FrameTimeout::FromRawMilliseconds(100)),
mDisposalMethod(DisposalMethod::NOT_SPECIFIED),
mBlendMethod(BlendMethod::OVER),
mFormat(SurfaceFormat::UNKNOWN),
mNonPremult(false) {}
imgFrame::~imgFrame() {
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mAborted || AreAllPixelsWritten());
MOZ_ASSERT(mAborted || mFinished);
#endif
}
nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize,
SurfaceFormat aFormat, bool aNonPremult,
const Maybe<AnimationParams>& aAnimParams,
bool aShouldRecycle) {
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!SurfaceCache::IsLegalSize(aImageSize)) {
NS_WARNING("Should have legal image size");
MonitorAutoLock lock(mMonitor);
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aImageSize;
// May be updated shortly after InitForDecoder by BlendAnimationFilter
// because it needs to take into consideration the previous frames to
// properly calculate. We start with the whole frame as dirty.
mDirtyRect = GetRect();
if (aAnimParams) {
mBlendRect = aAnimParams->mBlendRect;
mTimeout = aAnimParams->mTimeout;
mBlendMethod = aAnimParams->mBlendMethod;
mDisposalMethod = aAnimParams->mDisposalMethod;
} else {
mBlendRect = GetRect();
}
if (aShouldRecycle) {
// If we are recycling then we should always use BGRA for the underlying
// surface because if we use BGRX, the next frame composited into the
// surface could be BGRA and cause rendering problems.
MOZ_ASSERT(aAnimParams);
mFormat = SurfaceFormat::OS_RGBA;
} else {
mFormat = aFormat;
}
mNonPremult = aNonPremult;
MonitorAutoLock lock(mMonitor);
mShouldRecycle = aShouldRecycle;
MOZ_ASSERT(!mRawSurface, "Called imgFrame::InitForDecoder() twice?");
mRawSurface = AllocateBufferForImage(mImageSize, mFormat, mShouldRecycle);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (StaticPrefs::browser_measurement_render_anims_and_video_solid() &&
aAnimParams) {
mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat);
if (!mBlankRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (mBlankRawSurface) {
if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated blank buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
return NS_OK;
}
nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) {
// We want to recycle this frame, but there is no guarantee that consumers are
// done with it in a timely manner. Let's ensure they are done with it first.
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mRawSurface);
if (!mShouldRecycle) {
// This frame either was never marked as recyclable, or the flag was cleared
// for a caller which does not support recycling.
return NS_ERROR_NOT_AVAILABLE;
}
// Ensure we account for all internal references to the surface.
MozRefCountType internalRefs = 1;
if (mOptSurface == mRawSurface) {
++internalRefs;
}
if (mRawSurface->refCount() > internalRefs) {
if (NS_IsMainThread()) {
// We should never be both decoding and recycling on the main thread. Sync
// decoding can only be used to produce the first set of frames. Those
// either never use recycling because advancing was blocked (main thread
// is busy) or we were auto-advancing (to seek to a frame) and the frames
// were never accessed (and thus cannot have recycle locks).
MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?");
return NS_ERROR_NOT_AVAILABLE;
}
// We don't want to wait forever to reclaim the frame because we have no
// idea why it is still held. It is possibly due to OMTP. Since we are off
// the main thread, and we generally have frames already buffered for the
// animation, we can afford to wait a short period of time to hopefully
// complete the transaction and reclaim the buffer.
//
// We choose to wait for, at most, the refresh driver interval, so that we
// won't skip more than one frame. If the frame is still in use due to
// outstanding transactions, we are already skipping frames. If the frame
// is still in use for some other purpose, it won't be returned to the pool
// and its owner can hold onto it forever without additional impact here.
int32_t refreshInterval =
std::clamp(nsRefreshDriver::DefaultInterval(), 4, 20);
TimeDuration waitInterval =
TimeDuration::FromMilliseconds(refreshInterval >> 2);
TimeStamp timeout =
TimeStamp::Now() + TimeDuration::FromMilliseconds(refreshInterval);
while (true) {
mMonitor.Wait(waitInterval);
if (mRawSurface->refCount() <= internalRefs) {
break;
}
if (timeout <= TimeStamp::Now()) {
// We couldn't secure the frame for recycling. It will allocate a new
// frame instead.
return NS_ERROR_NOT_AVAILABLE;
}
}
}
mBlendRect = aAnimParams.mBlendRect;
mTimeout = aAnimParams.mTimeout;
mBlendMethod = aAnimParams.mBlendMethod;
mDisposalMethod = aAnimParams.mDisposalMethod;
mDirtyRect = GetRect();
return NS_OK;
}
nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
const nsIntSize& aSize,
const SurfaceFormat aFormat,
SamplingFilter aSamplingFilter,
uint32_t aImageFlags,
gfx::BackendType aBackend) {
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!SurfaceCache::IsLegalSize(aSize)) {
NS_WARNING("Should have legal image size");
MonitorAutoLock lock(mMonitor);
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aSize;
mFormat = aFormat;
RefPtr<DrawTarget> target;
bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
if (canUseDataSurface) {
MonitorAutoLock lock(mMonitor);
// It's safe to use data surfaces for content on this platform, so we can
// get away with using volatile buffers.
MOZ_ASSERT(!mRawSurface, "Called imgFrame::InitWithDrawable() twice?");
mRawSurface = AllocateBufferForImage(mImageSize, mFormat);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
target = gfxPlatform::CreateDrawTargetForData(
mRawSurface->GetData(), mImageSize, mRawSurface->Stride(), mFormat);
} else {
// We can't use data surfaces for content, so we'll create an offscreen
// surface instead. This means if someone later calls RawAccessRef(), we
// may have to do an expensive readback, but we warned callers about that in
// the documentation for this method.
#ifdef DEBUG
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
}
#endif
if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend(
aBackend, mImageSize, mFormat);
} else {
target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
mImageSize, mFormat);
}
}
if (!target || !target->IsValid()) {
MonitorAutoLock lock(mMonitor);
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
// Draw using the drawable the caller provided.
gfxContext ctx(target);
gfxUtils::DrawPixelSnapped(&ctx, aDrawable, SizeDouble(mImageSize),
ImageRegion::Create(ThebesRect(GetRect())),
mFormat, aSamplingFilter, aImageFlags);
MonitorAutoLock lock(mMonitor);
if (canUseDataSurface && !mRawSurface) {
NS_WARNING("Failed to create SourceSurfaceSharedData");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!canUseDataSurface) {
// We used an offscreen surface, which is an "optimized" surface from
// imgFrame's perspective.
mOptSurface = target->Snapshot();
} else {
FinalizeSurfaceInternal();
}
// If we reach this point, we should regard ourselves as complete.
mDecoded = GetRect();
mFinished = true;
MOZ_ASSERT(AreAllPixelsWritten());
return NS_OK;
}
DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); }
RawAccessFrameRef imgFrame::RawAccessRef() { return RawAccessFrameRef(this); }
imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(
bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion,
SourceSurface* aSurface) {
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
if (!aDoPartialDecode) {
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
mFormat);
}
gfxRect available =
gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height());
if (aDoTile) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
mImageSize, SurfaceFormat::OS_RGBA);
if (!target) {
return SurfaceWithFormat();
}
SurfacePattern pattern(aSurface, aRegion.GetExtendMode(),
Matrix::Translation(mDecoded.X(), mDecoded.Y()));
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// a partial decode just by twiddling parameters.
aRegion = aRegion.Intersect(available);
IntSize availableSize(mDecoded.Width(), mDecoded.Height());
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
SamplingFilter aSamplingFilter, uint32_t aImageFlags,
float aOpacity) {
AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);
MOZ_ASSERT(NS_IsMainThread());
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
NS_ASSERTION(!aRegion.IsRestricted() ||
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
// Perform the draw and freeing of the surface outside the lock. We want to
// avoid contention with the decoder if we can. The surface may also attempt
// to relock the monitor if it is freed (e.g. RecyclingSourceSurface).
RefPtr<SourceSurface> surf;
SurfaceWithFormat surfaceResult;
ImageRegion region(aRegion);
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
{
MonitorAutoLock lock(mMonitor);
bool doPartialDecode = !AreAllPixelsWritten();
// Most draw targets will just use the surface only during DrawPixelSnapped
// but captures/recordings will retain a reference outside this stack
// context. While in theory a decoder thread could be trying to recycle this
// frame at this very moment, in practice the only way we can get here is if
// this frame is the current frame of the animation. Since we can only
// advance on the main thread, we know nothing else will try to use it.
DrawTarget* drawTarget = aContext->GetDrawTarget();
bool recording = drawTarget->GetBackendType() == BackendType::RECORDING;
RefPtr<SourceSurface> surf = GetSourceSurfaceInternal();
if (!surf) {
return false;
}
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf);
// If we are recording, then we cannot recycle the surface. The blob
// rasterizer is not properly synchronized for recycling in the compositor
// process. The easiest thing to do is just mark the frames it consumes as
// non-recyclable.
if (recording && surfaceResult.IsValid()) {
mShouldRecycle = false;
}
}
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
imageRect.Size(), region, surfaceResult.mFormat,
aSamplingFilter, aImageFlags, aOpacity);
}
return true;
}
nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) {
MonitorAutoLock lock(mMonitor);
return ImageUpdatedInternal(aUpdateRect);
}
nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) {
mMonitor.AssertCurrentThreadOwns();
// Clamp to the frame rect to ensure that decoder bugs don't result in a
// decoded rect that extends outside the bounds of the frame rect.
IntRect updateRect = aUpdateRect.Intersect(GetRect());
if (updateRect.IsEmpty()) {
return NS_OK;
}
mDecoded.UnionRect(mDecoded, updateRect);
// Update our invalidation counters for any consumers watching for changes
// in the surface.
if (mRawSurface) {
mRawSurface->Invalidate(updateRect);
}
return NS_OK;
}
void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
bool aFinalize /* = true */,
bool aOrientationSwapsWidthAndHeight /* = false */) {
MonitorAutoLock lock(mMonitor);
IntRect frameRect(GetRect());
if (!mDecoded.IsEqualEdges(frameRect)) {
// The decoder should have produced rows starting from either the bottom or
// the top of the image. We need to calculate the region for which we have
// not yet invalidated. And if the orientation swaps width and height then
// its from the left or right.
IntRect delta(0, 0, frameRect.width, 0);
if (!aOrientationSwapsWidthAndHeight) {
delta.width = frameRect.width;
if (mDecoded.y == 0) {
delta.y = mDecoded.height;
delta.height = frameRect.height - mDecoded.height;
} else if (mDecoded.y + mDecoded.height == frameRect.height) {
delta.height = frameRect.height - mDecoded.y;
} else {
MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
delta = frameRect;
}
} else {
delta.height = frameRect.height;
if (mDecoded.x == 0) {
delta.x = mDecoded.width;
delta.width = frameRect.width - mDecoded.width;
} else if (mDecoded.x + mDecoded.width == frameRect.width) {
delta.width = frameRect.width - mDecoded.x;
} else {
MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
delta = frameRect;
}
}
ImageUpdatedInternal(delta);
}
MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect));
if (aFinalize) {
FinalizeSurfaceInternal();
}
mFinished = true;
// The image is now complete, wake up anyone who's waiting.
mMonitor.NotifyAll();
}
uint32_t imgFrame::GetImageBytesPerRow() const {
mMonitor.AssertCurrentThreadOwns();
if (mRawSurface) {
return mImageSize.width * BytesPerPixel(mFormat);
}
return 0;
}
uint32_t imgFrame::GetImageDataLength() const {
return GetImageBytesPerRow() * mImageSize.height;
}
void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const {
MonitorAutoLock lock(mMonitor);
GetImageDataInternal(aData, aLength);
}
void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const {
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mRawSurface);
if (mRawSurface) {
// TODO: This is okay for now because we only realloc shared surfaces on
// the main thread after decoding has finished, but if animations want to
// read frame data off the main thread, we will need to reconsider this.
*aData = mRawSurface->GetData();
MOZ_ASSERT(*aData,
"mRawSurface is non-null, but GetData is null in GetImageData");
} else {
*aData = nullptr;
}
*aLength = GetImageDataLength();
}
uint8_t* imgFrame::GetImageData() const {
uint8_t* data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
void imgFrame::FinalizeSurface() {
MonitorAutoLock lock(mMonitor);
FinalizeSurfaceInternal();
}
void imgFrame::FinalizeSurfaceInternal() {
mMonitor.AssertCurrentThreadOwns();
// Not all images will have mRawSurface to finalize (i.e. paletted images).
if (mShouldRecycle || !mRawSurface ||
mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
return;
}
auto* sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
sharedSurf->Finalize();
}
already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() {
MonitorAutoLock lock(mMonitor);
return GetSourceSurfaceInternal();
}
already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal() {
mMonitor.AssertCurrentThreadOwns();
if (mOptSurface) {
if (mOptSurface->IsValid()) {
RefPtr<SourceSurface> surf(mOptSurface);
return surf.forget();
}
mOptSurface = nullptr;
}
if (mBlankRawSurface) {
// We are going to return the blank surface because of the flags.
// We are including comments here that are copied from below
// just so that we are on the same page!
RefPtr<SourceSurface> surf(mBlankRawSurface);
return surf.forget();
}
RefPtr<SourceSurface> surf(mRawSurface);
return surf.forget();
}
void imgFrame::Abort() {
MonitorAutoLock lock(mMonitor);
mAborted = true;
// Wake up anyone who's waiting.
mMonitor.NotifyAll();
}
bool imgFrame::IsAborted() const {
MonitorAutoLock lock(mMonitor);
return mAborted;
}
bool imgFrame::IsFinished() const {
MonitorAutoLock lock(mMonitor);
return mFinished;
}
void imgFrame::WaitUntilFinished() const {
MonitorAutoLock lock(mMonitor);
while (true) {
// Return if we're aborted or complete.
if (mAborted || mFinished) {
return;
}
// Not complete yet, so we'll have to wait.
mMonitor.Wait();
}
}
bool imgFrame::AreAllPixelsWritten() const {
mMonitor.AssertCurrentThreadOwns();
return mDecoded.IsEqualInterior(GetRect());
}
void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
const AddSizeOfCb& aCallback) const {
MonitorAutoLock lock(mMonitor);
AddSizeOfCbData metadata;
metadata.mFinished = mFinished;
if (mOptSurface) {
metadata.mHeapBytes += aMallocSizeOf(mOptSurface);
SourceSurface::SizeOfInfo info;
mOptSurface->SizeOfExcludingThis(aMallocSizeOf, info);
metadata.Accumulate(info);
}
if (mRawSurface) {
metadata.mHeapBytes += aMallocSizeOf(mRawSurface);
SourceSurface::SizeOfInfo info;
mRawSurface->SizeOfExcludingThis(aMallocSizeOf, info);
metadata.Accumulate(info);
}
aCallback(metadata);
}
} // namespace image
} // namespace mozilla