mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-05 00:25:27 +00:00
149 lines
5.9 KiB
C++
149 lines
5.9 KiB
C++
// -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
//
|
|
// The contents of this file are subject to the Netscape Public
|
|
// License Version 1.1 (the "License"); you may not use this file
|
|
// except in compliance with the License. You may obtain a copy of
|
|
// the License at http://www.mozilla.org/NPL/
|
|
//
|
|
// Software distributed under the License is distributed on an "AS
|
|
// IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
|
|
// implied. See the License for the specific language governing
|
|
// rights and limitations under the License.
|
|
//
|
|
// The Original Code is the JavaScript 2 Prototype.
|
|
//
|
|
// The Initial Developer of the Original Code is Netscape
|
|
// Communications Corporation. Portions created by Netscape are
|
|
// Copyright (C) 1998 Netscape Communications Corporation. All
|
|
// Rights Reserved.
|
|
|
|
#ifndef numerics_h
|
|
#define numerics_h
|
|
|
|
#include "utilities.h"
|
|
#include <cmath>
|
|
// Use platform-defined floating-point routines. On platforms with faulty floating-point code
|
|
// ifdef these out and replace by custom implementations.
|
|
#ifndef _WIN32 // Microsoft VC6 bug: standard identifiers should be in std namespace
|
|
using std::abs;
|
|
using std::floor;
|
|
using std::ceil;
|
|
using std::fmod;
|
|
using std::sqrt;
|
|
using std::sin;
|
|
using std::cos;
|
|
using std::tan;
|
|
using std::asin;
|
|
using std::acos;
|
|
using std::atan;
|
|
#endif
|
|
|
|
namespace JavaScript {
|
|
|
|
//
|
|
// Double-precision constants
|
|
//
|
|
|
|
extern double positiveInfinity;
|
|
extern double negativeInfinity;
|
|
extern double nan;
|
|
|
|
//
|
|
// Portable double-precision floating point to string and back conversions
|
|
//
|
|
|
|
double ulp(double x);
|
|
int hi0bits(uint32 x);
|
|
|
|
class BigInt {
|
|
enum {maxLgGrossSize = 15}; // Maximum value of lg2(grossSize)
|
|
static uint32 *freeLists[maxLgGrossSize+1];
|
|
|
|
uint lgGrossSize; // lg2(grossSize)
|
|
public:
|
|
bool negative; // True if negative. Ignored by most BigInt routines!
|
|
private:
|
|
uint32 grossSize; // Number of words allocated for <words>
|
|
uint32 size; // Actual number of words. If the number is nonzero, the most significant word must be nonzero.
|
|
// If the number is zero, then size is also 0.
|
|
uint32 *words; // <size> words of the number, in little endian order
|
|
|
|
void allocate(uint lgGrossSize);
|
|
void recycle();
|
|
void initCopy(const BigInt &b);
|
|
void move(BigInt &b);
|
|
public:
|
|
BigInt(): words(0) {}
|
|
explicit BigInt(uint lgGrossSize) {allocate(lgGrossSize);}
|
|
BigInt(const BigInt &b) {initCopy(b);}
|
|
void operator=(const BigInt &b) {ASSERT(!words); initCopy(b);}
|
|
~BigInt() {if (words) recycle();}
|
|
|
|
void setLgGrossSize(uint lgGrossSize);
|
|
void init(uint32 i);
|
|
void init(double d, int32 &e, int32 &bits);
|
|
void mulAdd(uint m, uint a);
|
|
void operator*=(const BigInt &m);
|
|
void pow2Mul(int32 k);
|
|
void pow5Mul(int32 k);
|
|
bool isZero() const {ASSERT(words); return !size;}
|
|
int cmp(const BigInt &b) const;
|
|
void initDiff(const BigInt &m, const BigInt &n);
|
|
uint32 quoRem2(int32 k);
|
|
int32 quoRem(const BigInt &S);
|
|
uint32 divRem(uint32 divisor);
|
|
double b2d(int32 &e) const;
|
|
double ratio(const BigInt &denominator) const;
|
|
void s2b(const char *s, int32 nd0, int32 nd, uint32 y9);
|
|
|
|
uint32 nWords() const {return size;}
|
|
uint32 word(uint32 i) const {ASSERT(i < size); return words[i];}
|
|
};
|
|
|
|
|
|
// Modes for converting floating-point numbers to strings.
|
|
//
|
|
// Some of the modes can round-trip; this means that if the number is converted to
|
|
// a string using one of these mode and then converted back to a number, the result
|
|
// will be identical to the original number (except that, due to ECMA, -0 will get converted
|
|
// to +0). These round-trip modes return the minimum number of significand digits that
|
|
// permit the round trip.
|
|
//
|
|
// Some of the modes take an integer parameter <precision>.
|
|
//
|
|
// Keep this in sync with doubleToAsciiModes[].
|
|
enum DToStrMode {
|
|
dtosStandard, // Either fixed or exponential format; round-trip
|
|
dtosStandardExponential, // Always exponential format; round-trip
|
|
dtosFixed, // Round to <precision> digits after the decimal point; exponential if number is large
|
|
dtosExponential, // Always exponential format; <precision> significant digits
|
|
dtosPrecision // Either fixed or exponential format; <precision> significant digits
|
|
};
|
|
|
|
|
|
// Maximum number of characters (including trailing null) that a dtosStandard or dtosStandardExponential
|
|
// conversion can produce. This maximum is reached for a number like -1.2345678901234567e+123.
|
|
const int dtosStandardBufferSize = 25;
|
|
|
|
// Maximum number of characters (including trailing null) that one of the other conversions
|
|
// can produce. This maximum is reached for TO_FIXED, which can generate up to 21 digits before the decimal point.
|
|
#define dtosVariableBufferSize(precision) ((precision)+24 > dtosStandardBufferSize ? (precision)+24 : dtosStandardBufferSize)
|
|
|
|
// "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
|
|
// which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
|
|
// the output string and malloc fewer bytes depending on d and base, but why bother?
|
|
const int dtobasesBufferSize = 1078;
|
|
|
|
double strToDouble(const char *str, const char *&numEnd);
|
|
double stringToDouble(const char16 *str, const char16 *strEnd, const char16 *&numEnd);
|
|
double stringToInteger(const char16 *str, const char16 *strEnd, const char16 *&numEnd, uint base);
|
|
|
|
char *doubleToStr(char *buffer, size_t bufferSize, double value, DToStrMode mode, int precision);
|
|
size_t doubleToBaseStr(char *buffer, double value, uint base);
|
|
void appendDouble(String &dst, double value, DToStrMode mode = dtosStandard, int precision = 0);
|
|
inline String &operator+=(String &s, double value) {appendDouble(s, value); return s;}
|
|
void printDouble(Formatter &f, double value, DToStrMode mode = dtosStandard, int precision = 0);
|
|
inline Formatter &operator<<(Formatter &f, double value) {printDouble(f, value); return f;}
|
|
}
|
|
#endif
|