mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-01 06:35:42 +00:00
399 lines
13 KiB
C++
399 lines
13 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef DOUBLE_CONVERSION_DOUBLE_H_
|
|
#define DOUBLE_CONVERSION_DOUBLE_H_
|
|
|
|
#include "diy-fp.h"
|
|
|
|
namespace double_conversion {
|
|
|
|
// We assume that doubles and uint64_t have the same endianness.
|
|
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
|
|
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
|
|
static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
|
|
static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
|
|
|
|
// Helper functions for doubles.
|
|
class Double {
|
|
public:
|
|
static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
|
|
static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
|
|
static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
|
|
static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
|
|
static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
|
|
static const int kSignificandSize = 53;
|
|
|
|
Double() : d64_(0) {}
|
|
explicit Double(double d) : d64_(double_to_uint64(d)) {}
|
|
explicit Double(uint64_t d64) : d64_(d64) {}
|
|
explicit Double(DiyFp diy_fp)
|
|
: d64_(DiyFpToUint64(diy_fp)) {}
|
|
|
|
// The value encoded by this Double must be greater or equal to +0.0.
|
|
// It must not be special (infinity, or NaN).
|
|
DiyFp AsDiyFp() const {
|
|
ASSERT(Sign() > 0);
|
|
ASSERT(!IsSpecial());
|
|
return DiyFp(Significand(), Exponent());
|
|
}
|
|
|
|
// The value encoded by this Double must be strictly greater than 0.
|
|
DiyFp AsNormalizedDiyFp() const {
|
|
ASSERT(value() > 0.0);
|
|
uint64_t f = Significand();
|
|
int e = Exponent();
|
|
|
|
// The current double could be a denormal.
|
|
while ((f & kHiddenBit) == 0) {
|
|
f <<= 1;
|
|
e--;
|
|
}
|
|
// Do the final shifts in one go.
|
|
f <<= DiyFp::kSignificandSize - kSignificandSize;
|
|
e -= DiyFp::kSignificandSize - kSignificandSize;
|
|
return DiyFp(f, e);
|
|
}
|
|
|
|
// Returns the double's bit as uint64.
|
|
uint64_t AsUint64() const {
|
|
return d64_;
|
|
}
|
|
|
|
// Returns the next greater double. Returns +infinity on input +infinity.
|
|
double NextDouble() const {
|
|
if (d64_ == kInfinity) return Double(kInfinity).value();
|
|
if (Sign() < 0 && Significand() == 0) {
|
|
// -0.0
|
|
return 0.0;
|
|
}
|
|
if (Sign() < 0) {
|
|
return Double(d64_ - 1).value();
|
|
} else {
|
|
return Double(d64_ + 1).value();
|
|
}
|
|
}
|
|
|
|
double PreviousDouble() const {
|
|
if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity();
|
|
if (Sign() < 0) {
|
|
return Double(d64_ + 1).value();
|
|
} else {
|
|
if (Significand() == 0) return -0.0;
|
|
return Double(d64_ - 1).value();
|
|
}
|
|
}
|
|
|
|
int Exponent() const {
|
|
if (IsDenormal()) return kDenormalExponent;
|
|
|
|
uint64_t d64 = AsUint64();
|
|
int biased_e =
|
|
static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
|
|
return biased_e - kExponentBias;
|
|
}
|
|
|
|
uint64_t Significand() const {
|
|
uint64_t d64 = AsUint64();
|
|
uint64_t significand = d64 & kSignificandMask;
|
|
if (!IsDenormal()) {
|
|
return significand + kHiddenBit;
|
|
} else {
|
|
return significand;
|
|
}
|
|
}
|
|
|
|
// Returns true if the double is a denormal.
|
|
bool IsDenormal() const {
|
|
uint64_t d64 = AsUint64();
|
|
return (d64 & kExponentMask) == 0;
|
|
}
|
|
|
|
// We consider denormals not to be special.
|
|
// Hence only Infinity and NaN are special.
|
|
bool IsSpecial() const {
|
|
uint64_t d64 = AsUint64();
|
|
return (d64 & kExponentMask) == kExponentMask;
|
|
}
|
|
|
|
bool IsNan() const {
|
|
uint64_t d64 = AsUint64();
|
|
return ((d64 & kExponentMask) == kExponentMask) &&
|
|
((d64 & kSignificandMask) != 0);
|
|
}
|
|
|
|
bool IsInfinite() const {
|
|
uint64_t d64 = AsUint64();
|
|
return ((d64 & kExponentMask) == kExponentMask) &&
|
|
((d64 & kSignificandMask) == 0);
|
|
}
|
|
|
|
int Sign() const {
|
|
uint64_t d64 = AsUint64();
|
|
return (d64 & kSignMask) == 0? 1: -1;
|
|
}
|
|
|
|
// Precondition: the value encoded by this Double must be greater or equal
|
|
// than +0.0.
|
|
DiyFp UpperBoundary() const {
|
|
ASSERT(Sign() > 0);
|
|
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
|
}
|
|
|
|
// Computes the two boundaries of this.
|
|
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
|
// exponent as m_plus.
|
|
// Precondition: the value encoded by this Double must be greater than 0.
|
|
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
|
ASSERT(value() > 0.0);
|
|
DiyFp v = this->AsDiyFp();
|
|
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
|
DiyFp m_minus;
|
|
if (LowerBoundaryIsCloser()) {
|
|
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
|
} else {
|
|
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
|
}
|
|
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
|
m_minus.set_e(m_plus.e());
|
|
*out_m_plus = m_plus;
|
|
*out_m_minus = m_minus;
|
|
}
|
|
|
|
bool LowerBoundaryIsCloser() const {
|
|
// The boundary is closer if the significand is of the form f == 2^p-1 then
|
|
// the lower boundary is closer.
|
|
// Think of v = 1000e10 and v- = 9999e9.
|
|
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
|
// at a distance of 1e8.
|
|
// The only exception is for the smallest normal: the largest denormal is
|
|
// at the same distance as its successor.
|
|
// Note: denormals have the same exponent as the smallest normals.
|
|
bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
|
|
return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
|
}
|
|
|
|
double value() const { return uint64_to_double(d64_); }
|
|
|
|
// Returns the significand size for a given order of magnitude.
|
|
// If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
|
|
// This function returns the number of significant binary digits v will have
|
|
// once it's encoded into a double. In almost all cases this is equal to
|
|
// kSignificandSize. The only exceptions are denormals. They start with
|
|
// leading zeroes and their effective significand-size is hence smaller.
|
|
static int SignificandSizeForOrderOfMagnitude(int order) {
|
|
if (order >= (kDenormalExponent + kSignificandSize)) {
|
|
return kSignificandSize;
|
|
}
|
|
if (order <= kDenormalExponent) return 0;
|
|
return order - kDenormalExponent;
|
|
}
|
|
|
|
static double Infinity() {
|
|
return Double(kInfinity).value();
|
|
}
|
|
|
|
static double NaN() {
|
|
return Double(kNaN).value();
|
|
}
|
|
|
|
private:
|
|
static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
|
|
static const int kDenormalExponent = -kExponentBias + 1;
|
|
static const int kMaxExponent = 0x7FF - kExponentBias;
|
|
static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
|
|
static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
|
|
|
|
const uint64_t d64_;
|
|
|
|
static uint64_t DiyFpToUint64(DiyFp diy_fp) {
|
|
uint64_t significand = diy_fp.f();
|
|
int exponent = diy_fp.e();
|
|
while (significand > kHiddenBit + kSignificandMask) {
|
|
significand >>= 1;
|
|
exponent++;
|
|
}
|
|
if (exponent >= kMaxExponent) {
|
|
return kInfinity;
|
|
}
|
|
if (exponent < kDenormalExponent) {
|
|
return 0;
|
|
}
|
|
while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
|
|
significand <<= 1;
|
|
exponent--;
|
|
}
|
|
uint64_t biased_exponent;
|
|
if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
|
|
biased_exponent = 0;
|
|
} else {
|
|
biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
|
|
}
|
|
return (significand & kSignificandMask) |
|
|
(biased_exponent << kPhysicalSignificandSize);
|
|
}
|
|
};
|
|
|
|
class Single {
|
|
public:
|
|
static const uint32_t kSignMask = 0x80000000;
|
|
static const uint32_t kExponentMask = 0x7F800000;
|
|
static const uint32_t kSignificandMask = 0x007FFFFF;
|
|
static const uint32_t kHiddenBit = 0x00800000;
|
|
static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit.
|
|
static const int kSignificandSize = 24;
|
|
|
|
Single() : d32_(0) {}
|
|
explicit Single(float f) : d32_(float_to_uint32(f)) {}
|
|
explicit Single(uint32_t d32) : d32_(d32) {}
|
|
|
|
// The value encoded by this Single must be greater or equal to +0.0.
|
|
// It must not be special (infinity, or NaN).
|
|
DiyFp AsDiyFp() const {
|
|
ASSERT(Sign() > 0);
|
|
ASSERT(!IsSpecial());
|
|
return DiyFp(Significand(), Exponent());
|
|
}
|
|
|
|
// Returns the single's bit as uint64.
|
|
uint32_t AsUint32() const {
|
|
return d32_;
|
|
}
|
|
|
|
int Exponent() const {
|
|
if (IsDenormal()) return kDenormalExponent;
|
|
|
|
uint32_t d32 = AsUint32();
|
|
int biased_e =
|
|
static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
|
|
return biased_e - kExponentBias;
|
|
}
|
|
|
|
uint32_t Significand() const {
|
|
uint32_t d32 = AsUint32();
|
|
uint32_t significand = d32 & kSignificandMask;
|
|
if (!IsDenormal()) {
|
|
return significand + kHiddenBit;
|
|
} else {
|
|
return significand;
|
|
}
|
|
}
|
|
|
|
// Returns true if the single is a denormal.
|
|
bool IsDenormal() const {
|
|
uint32_t d32 = AsUint32();
|
|
return (d32 & kExponentMask) == 0;
|
|
}
|
|
|
|
// We consider denormals not to be special.
|
|
// Hence only Infinity and NaN are special.
|
|
bool IsSpecial() const {
|
|
uint32_t d32 = AsUint32();
|
|
return (d32 & kExponentMask) == kExponentMask;
|
|
}
|
|
|
|
bool IsNan() const {
|
|
uint32_t d32 = AsUint32();
|
|
return ((d32 & kExponentMask) == kExponentMask) &&
|
|
((d32 & kSignificandMask) != 0);
|
|
}
|
|
|
|
bool IsInfinite() const {
|
|
uint32_t d32 = AsUint32();
|
|
return ((d32 & kExponentMask) == kExponentMask) &&
|
|
((d32 & kSignificandMask) == 0);
|
|
}
|
|
|
|
int Sign() const {
|
|
uint32_t d32 = AsUint32();
|
|
return (d32 & kSignMask) == 0? 1: -1;
|
|
}
|
|
|
|
// Computes the two boundaries of this.
|
|
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
|
|
// exponent as m_plus.
|
|
// Precondition: the value encoded by this Single must be greater than 0.
|
|
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
|
|
ASSERT(value() > 0.0);
|
|
DiyFp v = this->AsDiyFp();
|
|
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
|
|
DiyFp m_minus;
|
|
if (LowerBoundaryIsCloser()) {
|
|
m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
|
|
} else {
|
|
m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
|
|
}
|
|
m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
|
|
m_minus.set_e(m_plus.e());
|
|
*out_m_plus = m_plus;
|
|
*out_m_minus = m_minus;
|
|
}
|
|
|
|
// Precondition: the value encoded by this Single must be greater or equal
|
|
// than +0.0.
|
|
DiyFp UpperBoundary() const {
|
|
ASSERT(Sign() > 0);
|
|
return DiyFp(Significand() * 2 + 1, Exponent() - 1);
|
|
}
|
|
|
|
bool LowerBoundaryIsCloser() const {
|
|
// The boundary is closer if the significand is of the form f == 2^p-1 then
|
|
// the lower boundary is closer.
|
|
// Think of v = 1000e10 and v- = 9999e9.
|
|
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
|
|
// at a distance of 1e8.
|
|
// The only exception is for the smallest normal: the largest denormal is
|
|
// at the same distance as its successor.
|
|
// Note: denormals have the same exponent as the smallest normals.
|
|
bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
|
|
return physical_significand_is_zero && (Exponent() != kDenormalExponent);
|
|
}
|
|
|
|
float value() const { return uint32_to_float(d32_); }
|
|
|
|
static float Infinity() {
|
|
return Single(kInfinity).value();
|
|
}
|
|
|
|
static float NaN() {
|
|
return Single(kNaN).value();
|
|
}
|
|
|
|
private:
|
|
static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
|
|
static const int kDenormalExponent = -kExponentBias + 1;
|
|
static const int kMaxExponent = 0xFF - kExponentBias;
|
|
static const uint32_t kInfinity = 0x7F800000;
|
|
static const uint32_t kNaN = 0x7FC00000;
|
|
|
|
const uint32_t d32_;
|
|
};
|
|
|
|
} // namespace double_conversion
|
|
|
|
#endif // DOUBLE_CONVERSION_DOUBLE_H_
|