mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-07 04:05:49 +00:00
344 lines
9.4 KiB
C++
344 lines
9.4 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/dom/AnalyserNode.h"
|
|
#include "mozilla/dom/AnalyserNodeBinding.h"
|
|
#include "AudioNodeEngine.h"
|
|
#include "AudioNodeStream.h"
|
|
#include "mozilla/Mutex.h"
|
|
#include "mozilla/PodOperations.h"
|
|
|
|
namespace mozilla {
|
|
namespace dom {
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED0(AnalyserNode, AudioNode)
|
|
|
|
class AnalyserNodeEngine : public AudioNodeEngine
|
|
{
|
|
class TransferBuffer : public nsRunnable
|
|
{
|
|
public:
|
|
TransferBuffer(AudioNodeStream* aStream,
|
|
const AudioChunk& aChunk)
|
|
: mStream(aStream)
|
|
, mChunk(aChunk)
|
|
{
|
|
}
|
|
|
|
NS_IMETHOD Run()
|
|
{
|
|
nsRefPtr<AnalyserNode> node;
|
|
{
|
|
// No need to keep holding the lock for the whole duration of this
|
|
// function, since we're holding a strong reference to it, so if
|
|
// we can obtain the reference, we will hold the node alive in
|
|
// this function.
|
|
MutexAutoLock lock(mStream->Engine()->NodeMutex());
|
|
node = static_cast<AnalyserNode*>(mStream->Engine()->Node());
|
|
}
|
|
if (node) {
|
|
node->AppendChunk(mChunk);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
private:
|
|
nsRefPtr<AudioNodeStream> mStream;
|
|
AudioChunk mChunk;
|
|
};
|
|
|
|
public:
|
|
explicit AnalyserNodeEngine(AnalyserNode* aNode)
|
|
: AudioNodeEngine(aNode)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
}
|
|
|
|
virtual void ProcessBlock(AudioNodeStream* aStream,
|
|
const AudioChunk& aInput,
|
|
AudioChunk* aOutput,
|
|
bool* aFinished) MOZ_OVERRIDE
|
|
{
|
|
*aOutput = aInput;
|
|
|
|
MutexAutoLock lock(NodeMutex());
|
|
|
|
if (Node() &&
|
|
aInput.mChannelData.Length() > 0) {
|
|
nsRefPtr<TransferBuffer> transfer = new TransferBuffer(aStream, aInput);
|
|
NS_DispatchToMainThread(transfer);
|
|
}
|
|
}
|
|
|
|
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const MOZ_OVERRIDE
|
|
{
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
};
|
|
|
|
AnalyserNode::AnalyserNode(AudioContext* aContext)
|
|
: AudioNode(aContext,
|
|
1,
|
|
ChannelCountMode::Explicit,
|
|
ChannelInterpretation::Speakers)
|
|
, mAnalysisBlock(2048)
|
|
, mMinDecibels(-100.)
|
|
, mMaxDecibels(-30.)
|
|
, mSmoothingTimeConstant(.8)
|
|
, mWriteIndex(0)
|
|
{
|
|
mStream = aContext->Graph()->CreateAudioNodeStream(new AnalyserNodeEngine(this),
|
|
MediaStreamGraph::INTERNAL_STREAM);
|
|
AllocateBuffer();
|
|
}
|
|
|
|
size_t
|
|
AnalyserNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
|
|
amount += mAnalysisBlock.SizeOfExcludingThis(aMallocSizeOf);
|
|
amount += mBuffer.SizeOfExcludingThis(aMallocSizeOf);
|
|
amount += mOutputBuffer.SizeOfExcludingThis(aMallocSizeOf);
|
|
return amount;
|
|
}
|
|
|
|
size_t
|
|
AnalyserNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
JSObject*
|
|
AnalyserNode::WrapObject(JSContext* aCx)
|
|
{
|
|
return AnalyserNodeBinding::Wrap(aCx, this);
|
|
}
|
|
|
|
void
|
|
AnalyserNode::SetFftSize(uint32_t aValue, ErrorResult& aRv)
|
|
{
|
|
// Disallow values that are not a power of 2 and outside the [32,2048] range
|
|
if (aValue < 32 ||
|
|
aValue > 2048 ||
|
|
(aValue & (aValue - 1)) != 0) {
|
|
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
|
|
return;
|
|
}
|
|
if (FftSize() != aValue) {
|
|
mAnalysisBlock.SetFFTSize(aValue);
|
|
AllocateBuffer();
|
|
}
|
|
}
|
|
|
|
void
|
|
AnalyserNode::SetMinDecibels(double aValue, ErrorResult& aRv)
|
|
{
|
|
if (aValue >= mMaxDecibels) {
|
|
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
|
|
return;
|
|
}
|
|
mMinDecibels = aValue;
|
|
}
|
|
|
|
void
|
|
AnalyserNode::SetMaxDecibels(double aValue, ErrorResult& aRv)
|
|
{
|
|
if (aValue <= mMinDecibels) {
|
|
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
|
|
return;
|
|
}
|
|
mMaxDecibels = aValue;
|
|
}
|
|
|
|
void
|
|
AnalyserNode::SetSmoothingTimeConstant(double aValue, ErrorResult& aRv)
|
|
{
|
|
if (aValue < 0 || aValue > 1) {
|
|
aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR);
|
|
return;
|
|
}
|
|
mSmoothingTimeConstant = aValue;
|
|
}
|
|
|
|
void
|
|
AnalyserNode::GetFloatFrequencyData(const Float32Array& aArray)
|
|
{
|
|
if (!FFTAnalysis()) {
|
|
// Might fail to allocate memory
|
|
return;
|
|
}
|
|
|
|
aArray.ComputeLengthAndData();
|
|
|
|
float* buffer = aArray.Data();
|
|
size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length());
|
|
|
|
for (size_t i = 0; i < length; ++i) {
|
|
buffer[i] = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels);
|
|
}
|
|
}
|
|
|
|
void
|
|
AnalyserNode::GetByteFrequencyData(const Uint8Array& aArray)
|
|
{
|
|
if (!FFTAnalysis()) {
|
|
// Might fail to allocate memory
|
|
return;
|
|
}
|
|
|
|
const double rangeScaleFactor = 1.0 / (mMaxDecibels - mMinDecibels);
|
|
|
|
aArray.ComputeLengthAndData();
|
|
|
|
unsigned char* buffer = aArray.Data();
|
|
size_t length = std::min(size_t(aArray.Length()), mOutputBuffer.Length());
|
|
|
|
for (size_t i = 0; i < length; ++i) {
|
|
const double decibels = WebAudioUtils::ConvertLinearToDecibels(mOutputBuffer[i], mMinDecibels);
|
|
// scale down the value to the range of [0, UCHAR_MAX]
|
|
const double scaled = std::max(0.0, std::min(double(UCHAR_MAX),
|
|
UCHAR_MAX * (decibels - mMinDecibels) * rangeScaleFactor));
|
|
buffer[i] = static_cast<unsigned char>(scaled);
|
|
}
|
|
}
|
|
|
|
void
|
|
AnalyserNode::GetFloatTimeDomainData(const Float32Array& aArray)
|
|
{
|
|
aArray.ComputeLengthAndData();
|
|
|
|
float* buffer = aArray.Data();
|
|
size_t length = std::min(size_t(aArray.Length()), mBuffer.Length());
|
|
|
|
for (size_t i = 0; i < length; ++i) {
|
|
buffer[i] = mBuffer[(i + mWriteIndex) % mBuffer.Length()];;
|
|
}
|
|
}
|
|
|
|
void
|
|
AnalyserNode::GetByteTimeDomainData(const Uint8Array& aArray)
|
|
{
|
|
aArray.ComputeLengthAndData();
|
|
|
|
unsigned char* buffer = aArray.Data();
|
|
size_t length = std::min(size_t(aArray.Length()), mBuffer.Length());
|
|
|
|
for (size_t i = 0; i < length; ++i) {
|
|
const float value = mBuffer[(i + mWriteIndex) % mBuffer.Length()];
|
|
// scale the value to the range of [0, UCHAR_MAX]
|
|
const float scaled = std::max(0.0f, std::min(float(UCHAR_MAX),
|
|
128.0f * (value + 1.0f)));
|
|
buffer[i] = static_cast<unsigned char>(scaled);
|
|
}
|
|
}
|
|
|
|
bool
|
|
AnalyserNode::FFTAnalysis()
|
|
{
|
|
float* inputBuffer;
|
|
bool allocated = false;
|
|
if (mWriteIndex == 0) {
|
|
inputBuffer = mBuffer.Elements();
|
|
} else {
|
|
inputBuffer = static_cast<float*>(moz_malloc(FftSize() * sizeof(float)));
|
|
if (!inputBuffer) {
|
|
return false;
|
|
}
|
|
memcpy(inputBuffer, mBuffer.Elements() + mWriteIndex, sizeof(float) * (FftSize() - mWriteIndex));
|
|
memcpy(inputBuffer + FftSize() - mWriteIndex, mBuffer.Elements(), sizeof(float) * mWriteIndex);
|
|
allocated = true;
|
|
}
|
|
|
|
ApplyBlackmanWindow(inputBuffer, FftSize());
|
|
|
|
mAnalysisBlock.PerformFFT(inputBuffer);
|
|
|
|
// Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor).
|
|
const double magnitudeScale = 1.0 / FftSize();
|
|
|
|
for (uint32_t i = 0; i < mOutputBuffer.Length(); ++i) {
|
|
double scalarMagnitude = NS_hypot(mAnalysisBlock.RealData(i),
|
|
mAnalysisBlock.ImagData(i)) *
|
|
magnitudeScale;
|
|
mOutputBuffer[i] = mSmoothingTimeConstant * mOutputBuffer[i] +
|
|
(1.0 - mSmoothingTimeConstant) * scalarMagnitude;
|
|
}
|
|
|
|
if (allocated) {
|
|
moz_free(inputBuffer);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
AnalyserNode::ApplyBlackmanWindow(float* aBuffer, uint32_t aSize)
|
|
{
|
|
double alpha = 0.16;
|
|
double a0 = 0.5 * (1.0 - alpha);
|
|
double a1 = 0.5;
|
|
double a2 = 0.5 * alpha;
|
|
|
|
for (uint32_t i = 0; i < aSize; ++i) {
|
|
double x = double(i) / aSize;
|
|
double window = a0 - a1 * cos(2 * M_PI * x) + a2 * cos(4 * M_PI * x);
|
|
aBuffer[i] *= window;
|
|
}
|
|
}
|
|
|
|
bool
|
|
AnalyserNode::AllocateBuffer()
|
|
{
|
|
bool result = true;
|
|
if (mBuffer.Length() != FftSize()) {
|
|
result = mBuffer.SetLength(FftSize());
|
|
if (result) {
|
|
memset(mBuffer.Elements(), 0, sizeof(float) * FftSize());
|
|
mWriteIndex = 0;
|
|
|
|
result = mOutputBuffer.SetLength(FrequencyBinCount());
|
|
if (result) {
|
|
memset(mOutputBuffer.Elements(), 0, sizeof(float) * FrequencyBinCount());
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
AnalyserNode::AppendChunk(const AudioChunk& aChunk)
|
|
{
|
|
const uint32_t bufferSize = mBuffer.Length();
|
|
const uint32_t channelCount = aChunk.mChannelData.Length();
|
|
uint32_t chunkDuration = aChunk.mDuration;
|
|
MOZ_ASSERT((bufferSize & (bufferSize - 1)) == 0); // Must be a power of two!
|
|
MOZ_ASSERT(channelCount > 0);
|
|
MOZ_ASSERT(chunkDuration == WEBAUDIO_BLOCK_SIZE);
|
|
|
|
if (chunkDuration > bufferSize) {
|
|
// Copy a maximum bufferSize samples.
|
|
chunkDuration = bufferSize;
|
|
}
|
|
|
|
PodCopy(mBuffer.Elements() + mWriteIndex, static_cast<const float*>(aChunk.mChannelData[0]), chunkDuration);
|
|
for (uint32_t i = 1; i < channelCount; ++i) {
|
|
AudioBlockAddChannelWithScale(static_cast<const float*>(aChunk.mChannelData[i]), 1.0f,
|
|
mBuffer.Elements() + mWriteIndex);
|
|
}
|
|
if (channelCount > 1) {
|
|
AudioBlockInPlaceScale(mBuffer.Elements() + mWriteIndex,
|
|
1.0f / aChunk.mChannelData.Length());
|
|
}
|
|
mWriteIndex += chunkDuration;
|
|
MOZ_ASSERT(mWriteIndex <= bufferSize);
|
|
if (mWriteIndex >= bufferSize) {
|
|
mWriteIndex = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|