mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 13:51:41 +00:00
568caecfff
It looks like we can do a mostly direct swap from `std::Queue` to `mozilla::Queue` without needing to expose any new API, so that's what I've done here. Differential Revision: https://phabricator.services.mozilla.com/D123523
284 lines
8.8 KiB
C++
284 lines
8.8 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/TaskQueue.h"
|
|
|
|
#include "mozilla/DelayedRunnable.h"
|
|
#include "nsThreadUtils.h"
|
|
|
|
namespace mozilla {
|
|
|
|
TaskQueue::TaskQueue(already_AddRefed<nsIEventTarget> aTarget,
|
|
const char* aName, bool aRequireTailDispatch)
|
|
: AbstractThread(aRequireTailDispatch),
|
|
mTarget(aTarget),
|
|
mQueueMonitor("TaskQueue::Queue"),
|
|
mTailDispatcher(nullptr),
|
|
mIsRunning(false),
|
|
mIsShutdown(false),
|
|
mName(aName) {}
|
|
|
|
TaskQueue::TaskQueue(already_AddRefed<nsIEventTarget> aTarget,
|
|
bool aSupportsTailDispatch)
|
|
: TaskQueue(std::move(aTarget), "Unnamed", aSupportsTailDispatch) {}
|
|
|
|
TaskQueue::~TaskQueue() {
|
|
// No one is referencing this TaskQueue anymore, meaning no tasks can be
|
|
// pending as all Runner hold a reference to this TaskQueue.
|
|
MOZ_ASSERT(mScheduledDelayedRunnables.IsEmpty());
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(TaskQueue, AbstractThread, nsIDirectTaskDispatcher,
|
|
nsIDelayedRunnableObserver);
|
|
|
|
TaskDispatcher& TaskQueue::TailDispatcher() {
|
|
MOZ_ASSERT(IsCurrentThreadIn());
|
|
MOZ_ASSERT(mTailDispatcher);
|
|
return *mTailDispatcher;
|
|
}
|
|
|
|
// Note aRunnable is passed by ref to support conditional ownership transfer.
|
|
// See Dispatch() in TaskQueue.h for more details.
|
|
nsresult TaskQueue::DispatchLocked(nsCOMPtr<nsIRunnable>& aRunnable,
|
|
uint32_t aFlags, DispatchReason aReason) {
|
|
mQueueMonitor.AssertCurrentThreadOwns();
|
|
if (mIsShutdown) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
AbstractThread* currentThread;
|
|
if (aReason != TailDispatch && (currentThread = GetCurrent()) &&
|
|
RequiresTailDispatch(currentThread) &&
|
|
currentThread->IsTailDispatcherAvailable()) {
|
|
MOZ_ASSERT(aFlags == NS_DISPATCH_NORMAL,
|
|
"Tail dispatch doesn't support flags");
|
|
return currentThread->TailDispatcher().AddTask(this, aRunnable.forget());
|
|
}
|
|
|
|
LogRunnable::LogDispatch(aRunnable);
|
|
mTasks.Push({std::move(aRunnable), aFlags});
|
|
|
|
if (mIsRunning) {
|
|
return NS_OK;
|
|
}
|
|
RefPtr<nsIRunnable> runner(new Runner(this));
|
|
nsresult rv = mTarget->Dispatch(runner.forget(), aFlags);
|
|
if (NS_FAILED(rv)) {
|
|
NS_WARNING("Failed to dispatch runnable to run TaskQueue");
|
|
return rv;
|
|
}
|
|
mIsRunning = true;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void TaskQueue::AwaitIdle() {
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
AwaitIdleLocked();
|
|
}
|
|
|
|
void TaskQueue::AwaitIdleLocked() {
|
|
// Make sure there are no tasks for this queue waiting in the caller's tail
|
|
// dispatcher.
|
|
MOZ_ASSERT_IF(AbstractThread::GetCurrent(),
|
|
!AbstractThread::GetCurrent()->HasTailTasksFor(this));
|
|
|
|
mQueueMonitor.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(mIsRunning || mTasks.IsEmpty());
|
|
while (mIsRunning) {
|
|
mQueueMonitor.Wait();
|
|
}
|
|
}
|
|
|
|
void TaskQueue::AwaitShutdownAndIdle() {
|
|
MOZ_ASSERT(!IsCurrentThreadIn());
|
|
// Make sure there are no tasks for this queue waiting in the caller's tail
|
|
// dispatcher.
|
|
MOZ_ASSERT_IF(AbstractThread::GetCurrent(),
|
|
!AbstractThread::GetCurrent()->HasTailTasksFor(this));
|
|
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
while (!mIsShutdown) {
|
|
mQueueMonitor.Wait();
|
|
}
|
|
AwaitIdleLocked();
|
|
}
|
|
|
|
void TaskQueue::OnDelayedRunnableCreated(DelayedRunnable* aRunnable) {
|
|
#ifdef DEBUG
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
MOZ_ASSERT(!mDelayedRunnablesCancelPromise);
|
|
#endif
|
|
}
|
|
|
|
void TaskQueue::OnDelayedRunnableScheduled(DelayedRunnable* aRunnable) {
|
|
MOZ_ASSERT(IsOnCurrentThread());
|
|
mScheduledDelayedRunnables.AppendElement(aRunnable);
|
|
}
|
|
|
|
void TaskQueue::OnDelayedRunnableRan(DelayedRunnable* aRunnable) {
|
|
MOZ_ASSERT(IsOnCurrentThread());
|
|
Unused << mScheduledDelayedRunnables.RemoveElement(aRunnable);
|
|
}
|
|
|
|
auto TaskQueue::CancelDelayedRunnables() -> RefPtr<CancelPromise> {
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
return CancelDelayedRunnablesLocked();
|
|
}
|
|
|
|
auto TaskQueue::CancelDelayedRunnablesLocked() -> RefPtr<CancelPromise> {
|
|
mQueueMonitor.AssertCurrentThreadOwns();
|
|
if (mDelayedRunnablesCancelPromise) {
|
|
return mDelayedRunnablesCancelPromise;
|
|
}
|
|
mDelayedRunnablesCancelPromise =
|
|
mDelayedRunnablesCancelHolder.Ensure(__func__);
|
|
nsCOMPtr<nsIRunnable> cancelRunnable =
|
|
NewRunnableMethod("TaskQueue::CancelDelayedRunnablesImpl", this,
|
|
&TaskQueue::CancelDelayedRunnablesImpl);
|
|
MOZ_ALWAYS_SUCCEEDS(DispatchLocked(/* passed by ref */ cancelRunnable,
|
|
NS_DISPATCH_NORMAL, TailDispatch));
|
|
return mDelayedRunnablesCancelPromise;
|
|
}
|
|
|
|
void TaskQueue::CancelDelayedRunnablesImpl() {
|
|
MOZ_ASSERT(IsOnCurrentThread());
|
|
for (const auto& runnable : mScheduledDelayedRunnables) {
|
|
runnable->CancelTimer();
|
|
}
|
|
mScheduledDelayedRunnables.Clear();
|
|
mDelayedRunnablesCancelHolder.Resolve(true, __func__);
|
|
}
|
|
|
|
RefPtr<ShutdownPromise> TaskQueue::BeginShutdown() {
|
|
// Dispatch any tasks for this queue waiting in the caller's tail dispatcher,
|
|
// since this is the last opportunity to do so.
|
|
if (AbstractThread* currentThread = AbstractThread::GetCurrent()) {
|
|
currentThread->TailDispatchTasksFor(this);
|
|
}
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
Unused << CancelDelayedRunnablesLocked();
|
|
mIsShutdown = true;
|
|
RefPtr<ShutdownPromise> p = mShutdownPromise.Ensure(__func__);
|
|
MaybeResolveShutdown();
|
|
mon.NotifyAll();
|
|
return p;
|
|
}
|
|
|
|
bool TaskQueue::IsEmpty() {
|
|
MonitorAutoLock mon(mQueueMonitor);
|
|
return mTasks.IsEmpty();
|
|
}
|
|
|
|
bool TaskQueue::IsCurrentThreadIn() const {
|
|
bool in = mRunningThread == PR_GetCurrentThread();
|
|
return in;
|
|
}
|
|
|
|
nsresult TaskQueue::Runner::Run() {
|
|
TaskStruct event;
|
|
{
|
|
MonitorAutoLock mon(mQueue->mQueueMonitor);
|
|
MOZ_ASSERT(mQueue->mIsRunning);
|
|
if (mQueue->mTasks.IsEmpty()) {
|
|
mQueue->mIsRunning = false;
|
|
mQueue->MaybeResolveShutdown();
|
|
mon.NotifyAll();
|
|
return NS_OK;
|
|
}
|
|
event = std::move(mQueue->mTasks.FirstElement());
|
|
mQueue->mTasks.Pop();
|
|
}
|
|
MOZ_ASSERT(event.event);
|
|
|
|
// Note that dropping the queue monitor before running the task, and
|
|
// taking the monitor again after the task has run ensures we have memory
|
|
// fences enforced. This means that if the object we're calling wasn't
|
|
// designed to be threadsafe, it will be, provided we're only calling it
|
|
// in this task queue.
|
|
{
|
|
AutoTaskGuard g(mQueue);
|
|
SerialEventTargetGuard tg(mQueue);
|
|
{
|
|
LogRunnable::Run log(event.event);
|
|
|
|
event.event->Run();
|
|
|
|
// Drop the reference to event. The event will hold a reference to the
|
|
// object it's calling, and we don't want to keep it alive, it may be
|
|
// making assumptions what holds references to it. This is especially
|
|
// the case if the object is waiting for us to shutdown, so that it
|
|
// can shutdown (like in the MediaDecoderStateMachine's SHUTDOWN case).
|
|
event.event = nullptr;
|
|
}
|
|
}
|
|
|
|
{
|
|
MonitorAutoLock mon(mQueue->mQueueMonitor);
|
|
if (mQueue->mTasks.IsEmpty()) {
|
|
// No more events to run. Exit the task runner.
|
|
mQueue->mIsRunning = false;
|
|
mQueue->MaybeResolveShutdown();
|
|
mon.NotifyAll();
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
// There's at least one more event that we can run. Dispatch this Runner
|
|
// to the target again to ensure it runs again. Note that we don't just
|
|
// run in a loop here so that we don't hog the target. This means we may
|
|
// run on another thread next time, but we rely on the memory fences from
|
|
// mQueueMonitor for thread safety of non-threadsafe tasks.
|
|
nsresult rv;
|
|
{
|
|
MonitorAutoLock mon(mQueue->mQueueMonitor);
|
|
rv = mQueue->mTarget->Dispatch(
|
|
this, mQueue->mTasks.FirstElement().flags | NS_DISPATCH_AT_END);
|
|
}
|
|
if (NS_FAILED(rv)) {
|
|
// Failed to dispatch, shutdown!
|
|
MonitorAutoLock mon(mQueue->mQueueMonitor);
|
|
mQueue->mIsRunning = false;
|
|
mQueue->mIsShutdown = true;
|
|
mQueue->MaybeResolveShutdown();
|
|
mon.NotifyAll();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIDirectTaskDispatcher
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMETHODIMP
|
|
TaskQueue::DispatchDirectTask(already_AddRefed<nsIRunnable> aEvent) {
|
|
if (!IsCurrentThreadIn()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mDirectTasks.AddTask(std::move(aEvent));
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP TaskQueue::DrainDirectTasks() {
|
|
if (!IsCurrentThreadIn()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mDirectTasks.DrainTasks();
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP TaskQueue::HaveDirectTasks(bool* aValue) {
|
|
if (!IsCurrentThreadIn()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
*aValue = mDirectTasks.HaveTasks();
|
|
return NS_OK;
|
|
}
|
|
|
|
} // namespace mozilla
|