gecko-dev/gfx/ipc/GPUProcessHost.cpp
Jamie Nicol becb5e70d3 Bug 1880503 - Handle sync IPC timeout in UiCompositorControllerChild. r=aosmond
Extend the sync IPC timeout mechanism in CompositorManagerChild to
additionally cover UiCompositorControllerChild. As
UiCompositorControllerChild runs on the Android UI thread, we ensure
GPUProcessManager::KillProcess dispatches to the gecko main thread.

Along with the previous patch in this series this should provide us
with crash reports when the Android UI thread is hung waiting for the
GPU process to reply.

Differential Revision: https://phabricator.services.mozilla.com/D202167
2024-05-14 12:58:36 +00:00

261 lines
7.3 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GPUProcessHost.h"
#include "chrome/common/process_watcher.h"
#include "gfxPlatform.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/gfx/GPUChild.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/layers/SynchronousTask.h"
#include "mozilla/Preferences.h"
#include "mozilla/StaticPrefs_layers.h"
#include "VRGPUChild.h"
#include "mozilla/ipc/ProcessUtils.h"
#ifdef MOZ_WIDGET_ANDROID
# include "mozilla/java/GeckoProcessManagerWrappers.h"
#endif
namespace mozilla {
namespace gfx {
using namespace ipc;
GPUProcessHost::GPUProcessHost(Listener* aListener)
: GeckoChildProcessHost(GeckoProcessType_GPU),
mListener(aListener),
mTaskFactory(this),
mLaunchPhase(LaunchPhase::Unlaunched),
mProcessToken(0),
mShutdownRequested(false),
mChannelClosed(false) {
MOZ_COUNT_CTOR(GPUProcessHost);
}
GPUProcessHost::~GPUProcessHost() { MOZ_COUNT_DTOR(GPUProcessHost); }
bool GPUProcessHost::Launch(StringVector aExtraOpts) {
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Unlaunched);
MOZ_ASSERT(!mGPUChild);
MOZ_ASSERT(!gfxPlatform::IsHeadless());
mPrefSerializer = MakeUnique<ipc::SharedPreferenceSerializer>();
if (!mPrefSerializer->SerializeToSharedMemory(GeckoProcessType_GPU,
/* remoteType */ ""_ns)) {
return false;
}
mPrefSerializer->AddSharedPrefCmdLineArgs(*this, aExtraOpts);
#if defined(XP_WIN) && defined(MOZ_SANDBOX)
mSandboxLevel = Preferences::GetInt("security.sandbox.gpu.level");
#endif
mLaunchPhase = LaunchPhase::Waiting;
mLaunchTime = TimeStamp::Now();
if (!GeckoChildProcessHost::AsyncLaunch(aExtraOpts)) {
mLaunchPhase = LaunchPhase::Complete;
mPrefSerializer = nullptr;
return false;
}
return true;
}
bool GPUProcessHost::WaitForLaunch() {
if (mLaunchPhase == LaunchPhase::Complete) {
return !!mGPUChild;
}
int32_t timeoutMs =
StaticPrefs::layers_gpu_process_startup_timeout_ms_AtStartup();
// If one of the following environment variables are set we can effectively
// ignore the timeout - as we can guarantee the compositor process will be
// terminated
if (PR_GetEnv("MOZ_DEBUG_CHILD_PROCESS") ||
PR_GetEnv("MOZ_DEBUG_CHILD_PAUSE")) {
timeoutMs = 0;
}
// Our caller expects the connection to be finished after we return, so we
// immediately set up the IPDL actor and fire callbacks. The IO thread will
// still dispatch a notification to the main thread - we'll just ignore it.
bool result = GeckoChildProcessHost::WaitUntilConnected(timeoutMs);
InitAfterConnect(result);
return result;
}
void GPUProcessHost::OnChannelConnected(base::ProcessId peer_pid) {
MOZ_ASSERT(!NS_IsMainThread());
GeckoChildProcessHost::OnChannelConnected(peer_pid);
// Post a task to the main thread. Take the lock because mTaskFactory is not
// thread-safe.
RefPtr<Runnable> runnable;
{
MonitorAutoLock lock(mMonitor);
runnable =
mTaskFactory.NewRunnableMethod(&GPUProcessHost::OnChannelConnectedTask);
}
NS_DispatchToMainThread(runnable);
}
void GPUProcessHost::OnChannelConnectedTask() {
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(true);
}
}
void GPUProcessHost::OnChannelErrorTask() {
if (mLaunchPhase == LaunchPhase::Waiting) {
InitAfterConnect(false);
}
}
static uint64_t sProcessTokenCounter = 0;
void GPUProcessHost::InitAfterConnect(bool aSucceeded) {
MOZ_ASSERT(mLaunchPhase == LaunchPhase::Waiting);
MOZ_ASSERT(!mGPUChild);
mLaunchPhase = LaunchPhase::Complete;
mPrefSerializer = nullptr;
if (aSucceeded) {
mProcessToken = ++sProcessTokenCounter;
mGPUChild = MakeRefPtr<GPUChild>(this);
DebugOnly<bool> rv = TakeInitialEndpoint().Bind(mGPUChild.get());
MOZ_ASSERT(rv);
mGPUChild->Init();
#ifdef MOZ_WIDGET_ANDROID
nsCOMPtr<nsIEventTarget> launcherThread(GetIPCLauncher());
MOZ_ASSERT(launcherThread);
layers::SynchronousTask task(
"GeckoProcessManager::GetCompositorSurfaceManager");
launcherThread->Dispatch(NS_NewRunnableFunction(
"GeckoProcessManager::GetCompositorSurfaceManager", [&]() {
layers::AutoCompleteTask complete(&task);
mCompositorSurfaceManager =
java::GeckoProcessManager::GetCompositorSurfaceManager();
}));
task.Wait();
#endif
}
if (mListener) {
mListener->OnProcessLaunchComplete(this);
}
}
void GPUProcessHost::Shutdown(bool aUnexpectedShutdown) {
MOZ_ASSERT(!mShutdownRequested);
mListener = nullptr;
if (mGPUChild) {
// OnChannelClosed uses this to check if the shutdown was expected or
// unexpected.
mShutdownRequested = true;
if (aUnexpectedShutdown) {
mGPUChild->OnUnexpectedShutdown();
}
// The channel might already be closed if we got here unexpectedly.
if (!mChannelClosed) {
if (VRGPUChild::IsCreated()) {
VRGPUChild::Get()->Close();
}
mGPUChild->SendShutdownVR();
mGPUChild->Close();
}
#ifndef NS_FREE_PERMANENT_DATA
// No need to communicate shutdown, the GPU process doesn't need to
// communicate anything back.
KillHard(/* aGenerateMinidump */ false);
#endif
// If we're shutting down unexpectedly, we're in the middle of handling an
// ActorDestroy for PGPUChild, which is still on the stack. We'll return
// back to OnChannelClosed.
//
// Otherwise, we'll wait for OnChannelClose to be called whenever PGPUChild
// acknowledges shutdown.
return;
}
DestroyProcess();
}
void GPUProcessHost::OnChannelClosed() {
mChannelClosed = true;
if (!mShutdownRequested && mListener) {
// This is an unclean shutdown. Notify our listener that we're going away.
mListener->OnProcessUnexpectedShutdown(this);
} else {
DestroyProcess();
}
// Release the actor.
GPUChild::Destroy(std::move(mGPUChild));
MOZ_ASSERT(!mGPUChild);
}
void GPUProcessHost::KillHard(bool aGenerateMinidump) {
MOZ_ASSERT(NS_IsMainThread());
if (mGPUChild && aGenerateMinidump) {
mGPUChild->GeneratePairedMinidump();
}
const ProcessHandle handle = GetChildProcessHandle();
if (!base::KillProcess(handle, base::PROCESS_END_KILLED_BY_USER)) {
if (mGPUChild) {
mGPUChild->DeletePairedMinidump();
}
NS_WARNING("failed to kill subprocess!");
}
SetAlreadyDead();
}
uint64_t GPUProcessHost::GetProcessToken() const { return mProcessToken; }
void GPUProcessHost::KillProcess(bool aGenerateMinidump) {
KillHard(aGenerateMinidump);
}
void GPUProcessHost::CrashProcess() { mGPUChild->SendCrashProcess(); }
void GPUProcessHost::DestroyProcess() {
// Cancel all tasks. We don't want anything triggering after our caller
// expects this to go away.
{
MonitorAutoLock lock(mMonitor);
mTaskFactory.RevokeAll();
}
GetCurrentSerialEventTarget()->Dispatch(
NS_NewRunnableFunction("DestroyProcessRunnable", [this] { Destroy(); }));
}
#ifdef MOZ_WIDGET_ANDROID
java::CompositorSurfaceManager::Param
GPUProcessHost::GetCompositorSurfaceManager() {
return mCompositorSurfaceManager;
}
#endif
} // namespace gfx
} // namespace mozilla