gecko-dev/devtools/shared/heapsnapshot/HeapSnapshot.cpp

1614 lines
49 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2; -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "HeapSnapshot.h"
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/gzip_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
#include "js/Debug.h"
#include "js/TypeDecls.h"
#include "js/UbiNodeBreadthFirst.h"
#include "js/UbiNodeCensus.h"
#include "js/UbiNodeDominatorTree.h"
#include "js/UbiNodeShortestPaths.h"
#include "mozilla/Attributes.h"
#include "mozilla/CycleCollectedJSRuntime.h"
#include "mozilla/devtools/AutoMemMap.h"
#include "mozilla/devtools/CoreDump.pb.h"
#include "mozilla/devtools/DeserializedNode.h"
#include "mozilla/devtools/DominatorTree.h"
#include "mozilla/devtools/FileDescriptorOutputStream.h"
#include "mozilla/devtools/HeapSnapshotTempFileHelperChild.h"
#include "mozilla/devtools/ZeroCopyNSIOutputStream.h"
#include "mozilla/dom/ChromeUtils.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/HeapSnapshotBinding.h"
#include "mozilla/RangedPtr.h"
#include "mozilla/Telemetry.h"
#include "jsapi.h"
#include "jsfriendapi.h"
#include "nsCycleCollectionParticipant.h"
#include "nsCRTGlue.h"
#include "nsDirectoryServiceDefs.h"
#include "nsIFile.h"
#include "nsIOutputStream.h"
#include "nsISupportsImpl.h"
#include "nsNetUtil.h"
#include "nsPrintfCString.h"
#include "prerror.h"
#include "prio.h"
#include "prtypes.h"
namespace mozilla {
namespace devtools {
using namespace JS;
using namespace dom;
using ::google::protobuf::io::ArrayInputStream;
using ::google::protobuf::io::CodedInputStream;
using ::google::protobuf::io::GzipInputStream;
using ::google::protobuf::io::ZeroCopyInputStream;
using JS::ubi::AtomOrTwoByteChars;
using JS::ubi::ShortestPaths;
MallocSizeOf
GetCurrentThreadDebuggerMallocSizeOf()
{
auto ccrt = CycleCollectedJSRuntime::Get();
MOZ_ASSERT(ccrt);
auto cx = ccrt->Context();
MOZ_ASSERT(cx);
auto mallocSizeOf = JS::dbg::GetDebuggerMallocSizeOf(cx);
MOZ_ASSERT(mallocSizeOf);
return mallocSizeOf;
}
/*** Cycle Collection Boilerplate *****************************************************************/
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(HeapSnapshot, mParent)
NS_IMPL_CYCLE_COLLECTING_ADDREF(HeapSnapshot)
NS_IMPL_CYCLE_COLLECTING_RELEASE(HeapSnapshot)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(HeapSnapshot)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
/* virtual */ JSObject*
HeapSnapshot::WrapObject(JSContext* aCx, HandleObject aGivenProto)
{
return HeapSnapshotBinding::Wrap(aCx, this, aGivenProto);
}
/*** Reading Heap Snapshots ***********************************************************************/
/* static */ already_AddRefed<HeapSnapshot>
HeapSnapshot::Create(JSContext* cx,
GlobalObject& global,
const uint8_t* buffer,
uint32_t size,
ErrorResult& rv)
{
RefPtr<HeapSnapshot> snapshot = new HeapSnapshot(cx, global.GetAsSupports());
if (!snapshot->init(cx, buffer, size)) {
rv.Throw(NS_ERROR_UNEXPECTED);
return nullptr;
}
return snapshot.forget();
}
template<typename MessageType>
static bool
parseMessage(ZeroCopyInputStream& stream, uint32_t sizeOfMessage, MessageType& message)
{
// We need to create a new `CodedInputStream` for each message so that the
// 64MB limit is applied per-message rather than to the whole stream.
CodedInputStream codedStream(&stream);
// The protobuf message nesting that core dumps exhibit is dominated by
// allocation stacks' frames. In the most deeply nested case, each frame has
// two messages: a StackFrame message and a StackFrame::Data message. These
// frames are on top of a small constant of other messages. There are a
// MAX_STACK_DEPTH number of frames, so we multiply this by 3 to make room for
// the two messages per frame plus some head room for the constant number of
// non-dominating messages.
codedStream.SetRecursionLimit(HeapSnapshot::MAX_STACK_DEPTH * 3);
auto limit = codedStream.PushLimit(sizeOfMessage);
if (NS_WARN_IF(!message.ParseFromCodedStream(&codedStream)) ||
NS_WARN_IF(!codedStream.ConsumedEntireMessage()) ||
NS_WARN_IF(codedStream.BytesUntilLimit() != 0))
{
return false;
}
codedStream.PopLimit(limit);
return true;
}
template<typename CharT, typename InternedStringSet>
struct GetOrInternStringMatcher
{
InternedStringSet& internedStrings;
explicit GetOrInternStringMatcher(InternedStringSet& strings) : internedStrings(strings) { }
const CharT* match(const std::string* str) {
MOZ_ASSERT(str);
size_t length = str->length() / sizeof(CharT);
auto tempString = reinterpret_cast<const CharT*>(str->data());
UniquePtr<CharT[], NSFreePolicy> owned(NS_strndup(tempString, length));
if (!owned || !internedStrings.append(Move(owned)))
return nullptr;
return internedStrings.back().get();
}
const CharT* match(uint64_t ref) {
if (MOZ_LIKELY(ref < internedStrings.length())) {
auto& string = internedStrings[ref];
MOZ_ASSERT(string);
return string.get();
}
return nullptr;
}
};
template<
// Either char or char16_t.
typename CharT,
// A reference to either `internedOneByteStrings` or `internedTwoByteStrings`
// if CharT is char or char16_t respectively.
typename InternedStringSet>
const CharT*
HeapSnapshot::getOrInternString(InternedStringSet& internedStrings,
Maybe<StringOrRef>& maybeStrOrRef)
{
// Incomplete message: has neither a string nor a reference to an already
// interned string.
if (MOZ_UNLIKELY(maybeStrOrRef.isNothing()))
return nullptr;
GetOrInternStringMatcher<CharT, InternedStringSet> m(internedStrings);
return maybeStrOrRef->match(m);
}
// Get a de-duplicated string as a Maybe<StringOrRef> from the given `msg`.
#define GET_STRING_OR_REF_WITH_PROP_NAMES(msg, strPropertyName, refPropertyName) \
(msg.has_##refPropertyName() \
? Some(StringOrRef(msg.refPropertyName())) \
: msg.has_##strPropertyName() \
? Some(StringOrRef(&msg.strPropertyName())) \
: Nothing())
#define GET_STRING_OR_REF(msg, property) \
(msg.has_##property##ref() \
? Some(StringOrRef(msg.property##ref())) \
: msg.has_##property() \
? Some(StringOrRef(&msg.property())) \
: Nothing())
bool
HeapSnapshot::saveNode(const protobuf::Node& node, NodeIdSet& edgeReferents)
{
// NB: de-duplicated string properties must be read back and interned in the
// same order here as they are written and serialized in
// `CoreDumpWriter::writeNode` or else indices in references to already
// serialized strings will be off.
if (NS_WARN_IF(!node.has_id()))
return false;
NodeId id = node.id();
// NodeIds are derived from pointers (at most 48 bits) and we rely on them
// fitting into JS numbers (IEEE 754 doubles, can precisely store 53 bit
// integers) despite storing them on disk as 64 bit integers.
if (NS_WARN_IF(!JS::Value::isNumberRepresentable(id)))
return false;
// Should only deserialize each node once.
if (NS_WARN_IF(nodes.has(id)))
return false;
if (NS_WARN_IF(!JS::ubi::Uint32IsValidCoarseType(node.coarsetype())))
return false;
auto coarseType = JS::ubi::Uint32ToCoarseType(node.coarsetype());
Maybe<StringOrRef> typeNameOrRef = GET_STRING_OR_REF_WITH_PROP_NAMES(node, typename_, typenameref);
auto typeName = getOrInternString<char16_t>(internedTwoByteStrings, typeNameOrRef);
if (NS_WARN_IF(!typeName))
return false;
if (NS_WARN_IF(!node.has_size()))
return false;
uint64_t size = node.size();
auto edgesLength = node.edges_size();
DeserializedNode::EdgeVector edges;
if (NS_WARN_IF(!edges.reserve(edgesLength)))
return false;
for (decltype(edgesLength) i = 0; i < edgesLength; i++) {
auto& protoEdge = node.edges(i);
if (NS_WARN_IF(!protoEdge.has_referent()))
return false;
NodeId referent = protoEdge.referent();
if (NS_WARN_IF(!edgeReferents.put(referent)))
return false;
const char16_t* edgeName = nullptr;
if (protoEdge.EdgeNameOrRef_case() != protobuf::Edge::EDGENAMEORREF_NOT_SET) {
Maybe<StringOrRef> edgeNameOrRef = GET_STRING_OR_REF(protoEdge, name);
edgeName = getOrInternString<char16_t>(internedTwoByteStrings, edgeNameOrRef);
if (NS_WARN_IF(!edgeName))
return false;
}
edges.infallibleAppend(DeserializedEdge(referent, edgeName));
}
Maybe<StackFrameId> allocationStack;
if (node.has_allocationstack()) {
StackFrameId id = 0;
if (NS_WARN_IF(!saveStackFrame(node.allocationstack(), id)))
return false;
allocationStack.emplace(id);
}
MOZ_ASSERT(allocationStack.isSome() == node.has_allocationstack());
const char* jsObjectClassName = nullptr;
if (node.JSObjectClassNameOrRef_case() != protobuf::Node::JSOBJECTCLASSNAMEORREF_NOT_SET) {
Maybe<StringOrRef> clsNameOrRef = GET_STRING_OR_REF(node, jsobjectclassname);
jsObjectClassName = getOrInternString<char>(internedOneByteStrings, clsNameOrRef);
if (NS_WARN_IF(!jsObjectClassName))
return false;
}
const char* scriptFilename = nullptr;
if (node.ScriptFilenameOrRef_case() != protobuf::Node::SCRIPTFILENAMEORREF_NOT_SET) {
Maybe<StringOrRef> scriptFilenameOrRef = GET_STRING_OR_REF(node, scriptfilename);
scriptFilename = getOrInternString<char>(internedOneByteStrings, scriptFilenameOrRef);
if (NS_WARN_IF(!scriptFilename))
return false;
}
if (NS_WARN_IF(!nodes.putNew(id, DeserializedNode(id, coarseType, typeName,
size, Move(edges),
allocationStack,
jsObjectClassName,
scriptFilename, *this))))
{
return false;
};
return true;
}
bool
HeapSnapshot::saveStackFrame(const protobuf::StackFrame& frame,
StackFrameId& outFrameId)
{
// NB: de-duplicated string properties must be read in the same order here as
// they are written in `CoreDumpWriter::getProtobufStackFrame` or else indices
// in references to already serialized strings will be off.
if (frame.has_ref()) {
// We should only get a reference to the previous frame if we have already
// seen the previous frame.
if (!frames.has(frame.ref()))
return false;
outFrameId = frame.ref();
return true;
}
// Incomplete message.
if (!frame.has_data())
return false;
auto data = frame.data();
if (!data.has_id())
return false;
StackFrameId id = data.id();
// This should be the first and only time we see this frame.
if (frames.has(id))
return false;
if (!data.has_line())
return false;
uint32_t line = data.line();
if (!data.has_column())
return false;
uint32_t column = data.column();
if (!data.has_issystem())
return false;
bool isSystem = data.issystem();
if (!data.has_isselfhosted())
return false;
bool isSelfHosted = data.isselfhosted();
Maybe<StringOrRef> sourceOrRef = GET_STRING_OR_REF(data, source);
auto source = getOrInternString<char16_t>(internedTwoByteStrings, sourceOrRef);
if (!source)
return false;
const char16_t* functionDisplayName = nullptr;
if (data.FunctionDisplayNameOrRef_case() !=
protobuf::StackFrame_Data::FUNCTIONDISPLAYNAMEORREF_NOT_SET)
{
Maybe<StringOrRef> nameOrRef = GET_STRING_OR_REF(data, functiondisplayname);
functionDisplayName = getOrInternString<char16_t>(internedTwoByteStrings, nameOrRef);
if (!functionDisplayName)
return false;
}
Maybe<StackFrameId> parent;
if (data.has_parent()) {
StackFrameId parentId = 0;
if (!saveStackFrame(data.parent(), parentId))
return false;
parent = Some(parentId);
}
if (!frames.putNew(id, DeserializedStackFrame(id, parent, line, column,
source, functionDisplayName,
isSystem, isSelfHosted, *this)))
{
return false;
}
outFrameId = id;
return true;
}
#undef GET_STRING_OR_REF_WITH_PROP_NAMES
#undef GET_STRING_OR_REF
// Because protobuf messages aren't self-delimiting, we serialize each message
// preceded by its size in bytes. When deserializing, we read this size and then
// limit reading from the stream to the given byte size. If we didn't, then the
// first message would consume the entire stream.
static bool
readSizeOfNextMessage(ZeroCopyInputStream& stream, uint32_t* sizep)
{
MOZ_ASSERT(sizep);
CodedInputStream codedStream(&stream);
return codedStream.ReadVarint32(sizep) && *sizep > 0;
}
bool
HeapSnapshot::init(JSContext* cx, const uint8_t* buffer, uint32_t size)
{
if (!nodes.init() || !frames.init())
return false;
ArrayInputStream stream(buffer, size);
GzipInputStream gzipStream(&stream);
uint32_t sizeOfMessage = 0;
// First is the metadata.
protobuf::Metadata metadata;
if (NS_WARN_IF(!readSizeOfNextMessage(gzipStream, &sizeOfMessage)))
return false;
if (!parseMessage(gzipStream, sizeOfMessage, metadata))
return false;
if (metadata.has_timestamp())
timestamp.emplace(metadata.timestamp());
// Next is the root node.
protobuf::Node root;
if (NS_WARN_IF(!readSizeOfNextMessage(gzipStream, &sizeOfMessage)))
return false;
if (!parseMessage(gzipStream, sizeOfMessage, root))
return false;
// Although the id is optional in the protobuf format for future proofing, we
// can't currently do anything without it.
if (NS_WARN_IF(!root.has_id()))
return false;
rootId = root.id();
// The set of all node ids we've found edges pointing to.
NodeIdSet edgeReferents(cx);
if (NS_WARN_IF(!edgeReferents.init()))
return false;
if (NS_WARN_IF(!saveNode(root, edgeReferents)))
return false;
// Finally, the rest of the nodes in the core dump.
// Test for the end of the stream. The protobuf library gives no way to tell
// the difference between an underlying read error and the stream being
// done. All we can do is attempt to read the size of the next message and
// extrapolate guestimations from the result of that operation.
while (readSizeOfNextMessage(gzipStream, &sizeOfMessage)) {
protobuf::Node node;
if (!parseMessage(gzipStream, sizeOfMessage, node))
return false;
if (NS_WARN_IF(!saveNode(node, edgeReferents)))
return false;
}
// Check the set of node ids referred to by edges we found and ensure that we
// have the node corresponding to each id. If we don't have all of them, it is
// unsafe to perform analyses of this heap snapshot.
for (auto range = edgeReferents.all(); !range.empty(); range.popFront()) {
if (NS_WARN_IF(!nodes.has(range.front())))
return false;
}
return true;
}
/*** Heap Snapshot Analyses ***********************************************************************/
void
HeapSnapshot::TakeCensus(JSContext* cx, JS::HandleObject options,
JS::MutableHandleValue rval, ErrorResult& rv)
{
JS::ubi::Census census(cx);
if (NS_WARN_IF(!census.init())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
JS::ubi::CountTypePtr rootType;
if (NS_WARN_IF(!JS::ubi::ParseCensusOptions(cx, census, options, rootType))) {
rv.Throw(NS_ERROR_UNEXPECTED);
return;
}
JS::ubi::RootedCount rootCount(cx, rootType->makeCount());
if (NS_WARN_IF(!rootCount)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
JS::ubi::CensusHandler handler(census, rootCount, GetCurrentThreadDebuggerMallocSizeOf());
{
JS::AutoCheckCannotGC nogc;
JS::ubi::CensusTraversal traversal(JS_GetRuntime(cx), handler, nogc);
if (NS_WARN_IF(!traversal.init())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
if (NS_WARN_IF(!traversal.addStart(getRoot()))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
if (NS_WARN_IF(!traversal.traverse())) {
rv.Throw(NS_ERROR_UNEXPECTED);
return;
}
}
if (NS_WARN_IF(!handler.report(cx, rval))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
}
void
HeapSnapshot::DescribeNode(JSContext* cx, JS::HandleObject breakdown, uint64_t nodeId,
JS::MutableHandleValue rval, ErrorResult& rv) {
MOZ_ASSERT(breakdown);
JS::RootedValue breakdownVal(cx, JS::ObjectValue(*breakdown));
JS::ubi::CountTypePtr rootType = JS::ubi::ParseBreakdown(cx, breakdownVal);
if (NS_WARN_IF(!rootType)) {
rv.Throw(NS_ERROR_UNEXPECTED);
return;
}
JS::ubi::RootedCount rootCount(cx, rootType->makeCount());
if (NS_WARN_IF(!rootCount)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
JS::ubi::Node::Id id(nodeId);
Maybe<JS::ubi::Node> node = getNodeById(id);
if (NS_WARN_IF(node.isNothing())) {
rv.Throw(NS_ERROR_INVALID_ARG);
return;
}
MallocSizeOf mallocSizeOf = GetCurrentThreadDebuggerMallocSizeOf();
if (NS_WARN_IF(!rootCount->count(mallocSizeOf, *node))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
if (NS_WARN_IF(!rootCount->report(cx, rval))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
}
already_AddRefed<DominatorTree>
HeapSnapshot::ComputeDominatorTree(ErrorResult& rv)
{
Maybe<JS::ubi::DominatorTree> maybeTree;
{
auto ccrt = CycleCollectedJSRuntime::Get();
MOZ_ASSERT(ccrt);
auto rt = ccrt->Runtime();
MOZ_ASSERT(rt);
JS::AutoCheckCannotGC nogc(rt);
maybeTree = JS::ubi::DominatorTree::Create(rt, nogc, getRoot());
}
if (NS_WARN_IF(maybeTree.isNothing())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return nullptr;
}
return MakeAndAddRef<DominatorTree>(Move(*maybeTree), this, mParent);
}
void
HeapSnapshot::ComputeShortestPaths(JSContext*cx, uint64_t start,
const Sequence<uint64_t>& targets,
uint64_t maxNumPaths,
JS::MutableHandleObject results,
ErrorResult& rv)
{
// First ensure that our inputs are valid.
if (NS_WARN_IF(maxNumPaths == 0)) {
rv.Throw(NS_ERROR_INVALID_ARG);
return;
}
Maybe<JS::ubi::Node> startNode = getNodeById(start);
if (NS_WARN_IF(startNode.isNothing())) {
rv.Throw(NS_ERROR_INVALID_ARG);
return;
}
if (NS_WARN_IF(targets.Length() == 0)) {
rv.Throw(NS_ERROR_INVALID_ARG);
return;
}
// Aggregate the targets into a set and make sure that they exist in the heap
// snapshot.
JS::ubi::NodeSet targetsSet;
if (NS_WARN_IF(!targetsSet.init())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
for (const auto& target : targets) {
Maybe<JS::ubi::Node> targetNode = getNodeById(target);
if (NS_WARN_IF(targetNode.isNothing())) {
rv.Throw(NS_ERROR_INVALID_ARG);
return;
}
if (NS_WARN_IF(!targetsSet.put(*targetNode))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
}
// Walk the heap graph and find the shortest paths.
Maybe<ShortestPaths> maybeShortestPaths;
{
auto ccrt = CycleCollectedJSRuntime::Get();
MOZ_ASSERT(ccrt);
auto rt = ccrt->Runtime();
MOZ_ASSERT(rt);
JS::AutoCheckCannotGC nogc(rt);
maybeShortestPaths = ShortestPaths::Create(rt, nogc, maxNumPaths, *startNode,
Move(targetsSet));
}
if (NS_WARN_IF(maybeShortestPaths.isNothing())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
auto& shortestPaths = *maybeShortestPaths;
// Convert the results into a Map object mapping target node IDs to arrays of
// paths found.
RootedObject resultsMap(cx, JS::NewMapObject(cx));
if (NS_WARN_IF(!resultsMap)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
for (auto range = shortestPaths.eachTarget(); !range.empty(); range.popFront()) {
JS::RootedValue key(cx, JS::NumberValue(range.front().identifier()));
JS::AutoValueVector paths(cx);
bool ok = shortestPaths.forEachPath(range.front(), [&](JS::ubi::Path& path) {
JS::AutoValueVector pathValues(cx);
for (JS::ubi::BackEdge* edge : path) {
JS::RootedObject pathPart(cx, JS_NewPlainObject(cx));
if (!pathPart) {
return false;
}
JS::RootedValue predecessor(cx, NumberValue(edge->predecessor().identifier()));
if (!JS_DefineProperty(cx, pathPart, "predecessor", predecessor, JSPROP_ENUMERATE)) {
return false;
}
RootedValue edgeNameVal(cx, NullValue());
if (edge->name()) {
RootedString edgeName(cx, JS_AtomizeUCString(cx, edge->name().get()));
if (!edgeName) {
return false;
}
edgeNameVal = StringValue(edgeName);
}
if (!JS_DefineProperty(cx, pathPart, "edge", edgeNameVal, JSPROP_ENUMERATE)) {
return false;
}
if (!pathValues.append(ObjectValue(*pathPart))) {
return false;
}
}
RootedObject pathObj(cx, JS_NewArrayObject(cx, pathValues));
return pathObj && paths.append(ObjectValue(*pathObj));
});
if (NS_WARN_IF(!ok)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
JS::RootedObject pathsArray(cx, JS_NewArrayObject(cx, paths));
if (NS_WARN_IF(!pathsArray)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
JS::RootedValue pathsVal(cx, ObjectValue(*pathsArray));
if (NS_WARN_IF(!JS::MapSet(cx, resultsMap, key, pathsVal))) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
}
results.set(resultsMap);
}
/*** Saving Heap Snapshots ************************************************************************/
// If we are only taking a snapshot of the heap affected by the given set of
// globals, find the set of compartments the globals are allocated
// within. Returns false on OOM failure.
static bool
PopulateCompartmentsWithGlobals(CompartmentSet& compartments, AutoObjectVector& globals)
{
if (!compartments.init())
return false;
unsigned length = globals.length();
for (unsigned i = 0; i < length; i++) {
if (!compartments.put(GetObjectCompartment(globals[i])))
return false;
}
return true;
}
// Add the given set of globals as explicit roots in the given roots
// list. Returns false on OOM failure.
static bool
AddGlobalsAsRoots(AutoObjectVector& globals, ubi::RootList& roots)
{
unsigned length = globals.length();
for (unsigned i = 0; i < length; i++) {
if (!roots.addRoot(ubi::Node(globals[i].get()),
u"heap snapshot global"))
{
return false;
}
}
return true;
}
// Choose roots and limits for a traversal, given `boundaries`. Set `roots` to
// the set of nodes within the boundaries that are referred to by nodes
// outside. If `boundaries` does not include all JS compartments, initialize
// `compartments` to the set of included compartments; otherwise, leave
// `compartments` uninitialized. (You can use compartments.initialized() to
// check.)
//
// If `boundaries` is incoherent, or we encounter an error while trying to
// handle it, or we run out of memory, set `rv` appropriately and return
// `false`.
static bool
EstablishBoundaries(JSContext* cx,
ErrorResult& rv,
const HeapSnapshotBoundaries& boundaries,
ubi::RootList& roots,
CompartmentSet& compartments)
{
MOZ_ASSERT(!roots.initialized());
MOZ_ASSERT(!compartments.initialized());
bool foundBoundaryProperty = false;
if (boundaries.mRuntime.WasPassed()) {
foundBoundaryProperty = true;
if (!boundaries.mRuntime.Value()) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
if (!roots.init()) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return false;
}
}
if (boundaries.mDebugger.WasPassed()) {
if (foundBoundaryProperty) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
foundBoundaryProperty = true;
JSObject* dbgObj = boundaries.mDebugger.Value();
if (!dbgObj || !dbg::IsDebugger(*dbgObj)) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
AutoObjectVector globals(cx);
if (!dbg::GetDebuggeeGlobals(cx, *dbgObj, globals) ||
!PopulateCompartmentsWithGlobals(compartments, globals) ||
!roots.init(compartments) ||
!AddGlobalsAsRoots(globals, roots))
{
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return false;
}
}
if (boundaries.mGlobals.WasPassed()) {
if (foundBoundaryProperty) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
foundBoundaryProperty = true;
uint32_t length = boundaries.mGlobals.Value().Length();
if (length == 0) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
AutoObjectVector globals(cx);
for (uint32_t i = 0; i < length; i++) {
JSObject* global = boundaries.mGlobals.Value().ElementAt(i);
if (!JS_IsGlobalObject(global)) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
if (!globals.append(global)) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return false;
}
}
if (!PopulateCompartmentsWithGlobals(compartments, globals) ||
!roots.init(compartments) ||
!AddGlobalsAsRoots(globals, roots))
{
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return false;
}
}
if (!foundBoundaryProperty) {
rv.Throw(NS_ERROR_INVALID_ARG);
return false;
}
MOZ_ASSERT(roots.initialized());
MOZ_ASSERT_IF(boundaries.mDebugger.WasPassed(), compartments.initialized());
MOZ_ASSERT_IF(boundaries.mGlobals.WasPassed(), compartments.initialized());
return true;
}
// A variant covering all the various two-byte strings that we can get from the
// ubi::Node API.
class TwoByteString : public Variant<JSAtom*, const char16_t*, JS::ubi::EdgeName>
{
using Base = Variant<JSAtom*, const char16_t*, JS::ubi::EdgeName>;
struct AsTwoByteStringMatcher
{
TwoByteString match(JSAtom* atom) {
return TwoByteString(atom);
}
TwoByteString match(const char16_t* chars) {
return TwoByteString(chars);
}
};
struct IsNonNullMatcher
{
template<typename T>
bool match(const T& t) { return t != nullptr; }
};
struct LengthMatcher
{
size_t match(JSAtom* atom) {
MOZ_ASSERT(atom);
JS::ubi::AtomOrTwoByteChars s(atom);
return s.length();
}
size_t match(const char16_t* chars) {
MOZ_ASSERT(chars);
return NS_strlen(chars);
}
size_t match(const JS::ubi::EdgeName& ptr) {
MOZ_ASSERT(ptr);
return NS_strlen(ptr.get());
}
};
struct CopyToBufferMatcher
{
RangedPtr<char16_t> destination;
size_t maxLength;
CopyToBufferMatcher(RangedPtr<char16_t> destination, size_t maxLength)
: destination(destination)
, maxLength(maxLength)
{ }
size_t match(JS::ubi::EdgeName& ptr) {
return ptr ? match(ptr.get()) : 0;
}
size_t match(JSAtom* atom) {
MOZ_ASSERT(atom);
JS::ubi::AtomOrTwoByteChars s(atom);
return s.copyToBuffer(destination, maxLength);
}
size_t match(const char16_t* chars) {
MOZ_ASSERT(chars);
JS::ubi::AtomOrTwoByteChars s(chars);
return s.copyToBuffer(destination, maxLength);
}
};
public:
template<typename T>
MOZ_IMPLICIT TwoByteString(T&& rhs) : Base(Forward<T>(rhs)) { }
template<typename T>
TwoByteString& operator=(T&& rhs) {
MOZ_ASSERT(this != &rhs, "self-move disallowed");
this->~TwoByteString();
new (this) TwoByteString(Forward<T>(rhs));
return *this;
}
TwoByteString(const TwoByteString&) = delete;
TwoByteString& operator=(const TwoByteString&) = delete;
// Rewrap the inner value of a JS::ubi::AtomOrTwoByteChars as a TwoByteString.
static TwoByteString from(JS::ubi::AtomOrTwoByteChars&& s) {
AsTwoByteStringMatcher m;
return s.match(m);
}
// Returns true if the given TwoByteString is non-null, false otherwise.
bool isNonNull() const {
IsNonNullMatcher m;
return match(m);
}
// Return the length of the string, 0 if it is null.
size_t length() const {
LengthMatcher m;
return match(m);
}
// Copy the contents of a TwoByteString into the provided buffer. The buffer
// is NOT null terminated. The number of characters written is returned.
size_t copyToBuffer(RangedPtr<char16_t> destination, size_t maxLength) {
CopyToBufferMatcher m(destination, maxLength);
return match(m);
}
struct HashPolicy;
};
// A hashing policy for TwoByteString.
//
// Atoms are pointer hashed and use pointer equality, which means that we
// tolerate some duplication across atoms and the other two types of two-byte
// strings. In practice, we expect the amount of this duplication to be very low
// because each type is generally a different semantic thing in addition to
// having a slightly different representation. For example, the set of edge
// names and the set stack frames' source names naturally tend not to overlap
// very much if at all.
struct TwoByteString::HashPolicy {
using Lookup = TwoByteString;
struct HashingMatcher {
js::HashNumber match(const JSAtom* atom) {
return js::DefaultHasher<const JSAtom*>::hash(atom);
}
js::HashNumber match(const char16_t* chars) {
MOZ_ASSERT(chars);
auto length = NS_strlen(chars);
return HashString(chars, length);
}
js::HashNumber match(const JS::ubi::EdgeName& ptr) {
MOZ_ASSERT(ptr);
return match(ptr.get());
}
};
static js::HashNumber hash(const Lookup& l) {
HashingMatcher hasher;
return l.match(hasher);
}
struct EqualityMatcher {
const TwoByteString& rhs;
explicit EqualityMatcher(const TwoByteString& rhs) : rhs(rhs) { }
bool match(const JSAtom* atom) {
return rhs.is<JSAtom*>() && rhs.as<JSAtom*>() == atom;
}
bool match(const char16_t* chars) {
MOZ_ASSERT(chars);
const char16_t* rhsChars = nullptr;
if (rhs.is<const char16_t*>())
rhsChars = rhs.as<const char16_t*>();
else if (rhs.is<JS::ubi::EdgeName>())
rhsChars = rhs.as<JS::ubi::EdgeName>().get();
else
return false;
MOZ_ASSERT(rhsChars);
auto length = NS_strlen(chars);
if (NS_strlen(rhsChars) != length)
return false;
return memcmp(chars, rhsChars, length * sizeof(char16_t)) == 0;
}
bool match(const JS::ubi::EdgeName& ptr) {
MOZ_ASSERT(ptr);
return match(ptr.get());
}
};
static bool match(const TwoByteString& k, const Lookup& l) {
EqualityMatcher eq(l);
return k.match(eq);
}
static void rekey(TwoByteString& k, TwoByteString&& newKey) {
k = Move(newKey);
}
};
// A `CoreDumpWriter` that serializes nodes to protobufs and writes them to the
// given `ZeroCopyOutputStream`.
class MOZ_STACK_CLASS StreamWriter : public CoreDumpWriter
{
using FrameSet = js::HashSet<uint64_t>;
using TwoByteStringMap = js::HashMap<TwoByteString, uint64_t, TwoByteString::HashPolicy>;
using OneByteStringMap = js::HashMap<const char*, uint64_t>;
JSContext* cx;
bool wantNames;
// The set of |JS::ubi::StackFrame::identifier()|s that have already been
// serialized and written to the core dump.
FrameSet framesAlreadySerialized;
// The set of two-byte strings that have already been serialized and written
// to the core dump.
TwoByteStringMap twoByteStringsAlreadySerialized;
// The set of one-byte strings that have already been serialized and written
// to the core dump.
OneByteStringMap oneByteStringsAlreadySerialized;
::google::protobuf::io::ZeroCopyOutputStream& stream;
bool writeMessage(const ::google::protobuf::MessageLite& message) {
// We have to create a new CodedOutputStream when writing each message so
// that the 64MB size limit used by Coded{Output,Input}Stream to prevent
// integer overflow is enforced per message rather than on the whole stream.
::google::protobuf::io::CodedOutputStream codedStream(&stream);
codedStream.WriteVarint32(message.ByteSize());
message.SerializeWithCachedSizes(&codedStream);
return !codedStream.HadError();
}
// Attach the full two-byte string or a reference to a two-byte string that
// has already been serialized to a protobuf message.
template <typename SetStringFunction,
typename SetRefFunction>
bool attachTwoByteString(TwoByteString& string, SetStringFunction setString,
SetRefFunction setRef) {
auto ptr = twoByteStringsAlreadySerialized.lookupForAdd(string);
if (ptr) {
setRef(ptr->value());
return true;
}
auto length = string.length();
auto stringData = MakeUnique<std::string>(length * sizeof(char16_t), '\0');
if (!stringData)
return false;
auto buf = const_cast<char16_t*>(reinterpret_cast<const char16_t*>(stringData->data()));
string.copyToBuffer(RangedPtr<char16_t>(buf, length), length);
uint64_t ref = twoByteStringsAlreadySerialized.count();
if (!twoByteStringsAlreadySerialized.add(ptr, Move(string), ref))
return false;
setString(stringData.release());
return true;
}
// Attach the full one-byte string or a reference to a one-byte string that
// has already been serialized to a protobuf message.
template <typename SetStringFunction,
typename SetRefFunction>
bool attachOneByteString(const char* string, SetStringFunction setString,
SetRefFunction setRef) {
auto ptr = oneByteStringsAlreadySerialized.lookupForAdd(string);
if (ptr) {
setRef(ptr->value());
return true;
}
auto length = strlen(string);
auto stringData = MakeUnique<std::string>(string, length);
if (!stringData)
return false;
uint64_t ref = oneByteStringsAlreadySerialized.count();
if (!oneByteStringsAlreadySerialized.add(ptr, string, ref))
return false;
setString(stringData.release());
return true;
}
protobuf::StackFrame* getProtobufStackFrame(JS::ubi::StackFrame& frame,
size_t depth = 1) {
// NB: de-duplicated string properties must be written in the same order
// here as they are read in `HeapSnapshot::saveStackFrame` or else indices
// in references to already serialized strings will be off.
MOZ_ASSERT(frame,
"null frames should be represented as the lack of a serialized "
"stack frame");
auto id = frame.identifier();
auto protobufStackFrame = MakeUnique<protobuf::StackFrame>();
if (!protobufStackFrame)
return nullptr;
if (framesAlreadySerialized.has(id)) {
protobufStackFrame->set_ref(id);
return protobufStackFrame.release();
}
auto data = MakeUnique<protobuf::StackFrame_Data>();
if (!data)
return nullptr;
data->set_id(id);
data->set_line(frame.line());
data->set_column(frame.column());
data->set_issystem(frame.isSystem());
data->set_isselfhosted(frame.isSelfHosted(cx));
auto dupeSource = TwoByteString::from(frame.source());
if (!attachTwoByteString(dupeSource,
[&] (std::string* source) { data->set_allocated_source(source); },
[&] (uint64_t ref) { data->set_sourceref(ref); }))
{
return nullptr;
}
auto dupeName = TwoByteString::from(frame.functionDisplayName());
if (dupeName.isNonNull()) {
if (!attachTwoByteString(dupeName,
[&] (std::string* name) { data->set_allocated_functiondisplayname(name); },
[&] (uint64_t ref) { data->set_functiondisplaynameref(ref); }))
{
return nullptr;
}
}
auto parent = frame.parent();
if (parent && depth < HeapSnapshot::MAX_STACK_DEPTH) {
auto protobufParent = getProtobufStackFrame(parent, depth + 1);
if (!protobufParent)
return nullptr;
data->set_allocated_parent(protobufParent);
}
protobufStackFrame->set_allocated_data(data.release());
if (!framesAlreadySerialized.put(id))
return nullptr;
return protobufStackFrame.release();
}
public:
StreamWriter(JSContext* cx,
::google::protobuf::io::ZeroCopyOutputStream& stream,
bool wantNames)
: cx(cx)
, wantNames(wantNames)
, framesAlreadySerialized(cx)
, twoByteStringsAlreadySerialized(cx)
, oneByteStringsAlreadySerialized(cx)
, stream(stream)
{ }
bool init() {
return framesAlreadySerialized.init() &&
twoByteStringsAlreadySerialized.init() &&
oneByteStringsAlreadySerialized.init();
}
~StreamWriter() override { }
virtual bool writeMetadata(uint64_t timestamp) final {
protobuf::Metadata metadata;
metadata.set_timestamp(timestamp);
return writeMessage(metadata);
}
virtual bool writeNode(const JS::ubi::Node& ubiNode,
EdgePolicy includeEdges) override final {
// NB: de-duplicated string properties must be written in the same order
// here as they are read in `HeapSnapshot::saveNode` or else indices in
// references to already serialized strings will be off.
protobuf::Node protobufNode;
protobufNode.set_id(ubiNode.identifier());
protobufNode.set_coarsetype(JS::ubi::CoarseTypeToUint32(ubiNode.coarseType()));
auto typeName = TwoByteString(ubiNode.typeName());
if (NS_WARN_IF(!attachTwoByteString(typeName,
[&] (std::string* name) { protobufNode.set_allocated_typename_(name); },
[&] (uint64_t ref) { protobufNode.set_typenameref(ref); })))
{
return false;
}
mozilla::MallocSizeOf mallocSizeOf = dbg::GetDebuggerMallocSizeOf(cx);
MOZ_ASSERT(mallocSizeOf);
protobufNode.set_size(ubiNode.size(mallocSizeOf));
if (includeEdges) {
auto edges = ubiNode.edges(JS_GetRuntime(cx), wantNames);
if (NS_WARN_IF(!edges))
return false;
for ( ; !edges->empty(); edges->popFront()) {
ubi::Edge& ubiEdge = edges->front();
protobuf::Edge* protobufEdge = protobufNode.add_edges();
if (NS_WARN_IF(!protobufEdge)) {
return false;
}
protobufEdge->set_referent(ubiEdge.referent.identifier());
if (wantNames && ubiEdge.name) {
TwoByteString edgeName(Move(ubiEdge.name));
if (NS_WARN_IF(!attachTwoByteString(edgeName,
[&] (std::string* name) { protobufEdge->set_allocated_name(name); },
[&] (uint64_t ref) { protobufEdge->set_nameref(ref); })))
{
return false;
}
}
}
}
if (ubiNode.hasAllocationStack()) {
auto ubiStackFrame = ubiNode.allocationStack();
auto protoStackFrame = getProtobufStackFrame(ubiStackFrame);
if (NS_WARN_IF(!protoStackFrame))
return false;
protobufNode.set_allocated_allocationstack(protoStackFrame);
}
if (auto className = ubiNode.jsObjectClassName()) {
if (NS_WARN_IF(!attachOneByteString(className,
[&] (std::string* name) { protobufNode.set_allocated_jsobjectclassname(name); },
[&] (uint64_t ref) { protobufNode.set_jsobjectclassnameref(ref); })))
{
return false;
}
}
if (auto scriptFilename = ubiNode.scriptFilename()) {
if (NS_WARN_IF(!attachOneByteString(scriptFilename,
[&] (std::string* name) { protobufNode.set_allocated_scriptfilename(name); },
[&] (uint64_t ref) { protobufNode.set_scriptfilenameref(ref); })))
{
return false;
}
}
return writeMessage(protobufNode);
}
};
// A JS::ubi::BreadthFirst handler that serializes a snapshot of the heap into a
// core dump.
class MOZ_STACK_CLASS HeapSnapshotHandler
{
CoreDumpWriter& writer;
JS::CompartmentSet* compartments;
public:
// For telemetry.
uint32_t nodeCount;
uint32_t edgeCount;
HeapSnapshotHandler(CoreDumpWriter& writer,
JS::CompartmentSet* compartments)
: writer(writer),
compartments(compartments)
{ }
// JS::ubi::BreadthFirst handler interface.
class NodeData { };
typedef JS::ubi::BreadthFirst<HeapSnapshotHandler> Traversal;
bool operator() (Traversal& traversal,
JS::ubi::Node origin,
const JS::ubi::Edge& edge,
NodeData*,
bool first)
{
edgeCount++;
// We're only interested in the first time we reach edge.referent, not in
// every edge arriving at that node. "But, don't we want to serialize every
// edge in the heap graph?" you ask. Don't worry! This edge is still
// serialized into the core dump. Serializing a node also serializes each of
// its edges, and if we are traversing a given edge, we must have already
// visited and serialized the origin node and its edges.
if (!first)
return true;
nodeCount++;
const JS::ubi::Node& referent = edge.referent;
if (!compartments)
// We aren't targeting a particular set of compartments, so serialize all the
// things!
return writer.writeNode(referent, CoreDumpWriter::INCLUDE_EDGES);
// We are targeting a particular set of compartments. If this node is in our target
// set, serialize it and all of its edges. If this node is _not_ in our
// target set, we also serialize under the assumption that it is a shared
// resource being used by something in our target compartments since we reached it
// by traversing the heap graph. However, we do not serialize its outgoing
// edges and we abandon further traversal from this node.
JSCompartment* compartment = referent.compartment();
if (compartments->has(compartment))
return writer.writeNode(referent, CoreDumpWriter::INCLUDE_EDGES);
traversal.abandonReferent();
return writer.writeNode(referent, CoreDumpWriter::EXCLUDE_EDGES);
}
};
bool
WriteHeapGraph(JSContext* cx,
const JS::ubi::Node& node,
CoreDumpWriter& writer,
bool wantNames,
JS::CompartmentSet* compartments,
JS::AutoCheckCannotGC& noGC,
uint32_t& outNodeCount,
uint32_t& outEdgeCount)
{
// Serialize the starting node to the core dump.
if (NS_WARN_IF(!writer.writeNode(node, CoreDumpWriter::INCLUDE_EDGES))) {
return false;
}
// Walk the heap graph starting from the given node and serialize it into the
// core dump.
HeapSnapshotHandler handler(writer, compartments);
HeapSnapshotHandler::Traversal traversal(JS_GetRuntime(cx), handler, noGC);
if (!traversal.init())
return false;
traversal.wantNames = wantNames;
bool ok = traversal.addStartVisited(node) &&
traversal.traverse();
if (ok) {
outNodeCount = handler.nodeCount;
outEdgeCount = handler.edgeCount;
}
return ok;
}
static unsigned long
msSinceProcessCreation(const TimeStamp& now)
{
bool ignored;
auto duration = now - TimeStamp::ProcessCreation(ignored);
return (unsigned long) duration.ToMilliseconds();
}
/* static */ already_AddRefed<nsIFile>
HeapSnapshot::CreateUniqueCoreDumpFile(ErrorResult& rv,
const TimeStamp& now,
nsAString& outFilePath)
{
nsCOMPtr<nsIFile> file;
rv = NS_GetSpecialDirectory(NS_OS_TEMP_DIR, getter_AddRefs(file));
if (NS_WARN_IF(rv.Failed()))
return nullptr;
auto ms = msSinceProcessCreation(now);
rv = file->AppendNative(nsPrintfCString("%lu.fxsnapshot", ms));
if (NS_WARN_IF(rv.Failed()))
return nullptr;
rv = file->CreateUnique(nsIFile::NORMAL_FILE_TYPE, 0666);
if (NS_WARN_IF(rv.Failed()))
return nullptr;
rv = file->GetPath(outFilePath);
if (NS_WARN_IF(rv.Failed()))
return nullptr;
return file.forget();
}
// Deletion policy for cleaning up PHeapSnapshotTempFileHelperChild pointers.
class DeleteHeapSnapshotTempFileHelperChild
{
public:
constexpr DeleteHeapSnapshotTempFileHelperChild() { }
void operator()(PHeapSnapshotTempFileHelperChild* ptr) const {
NS_WARN_IF(!HeapSnapshotTempFileHelperChild::Send__delete__(ptr));
}
};
// A UniquePtr alias to automatically manage PHeapSnapshotTempFileHelperChild
// pointers.
using UniqueHeapSnapshotTempFileHelperChild = UniquePtr<PHeapSnapshotTempFileHelperChild,
DeleteHeapSnapshotTempFileHelperChild>;
// Get an nsIOutputStream that we can write the heap snapshot to. In non-e10s
// and in the e10s parent process, open a file directly and create an output
// stream for it. In e10s child processes, we are sandboxed without access to
// the filesystem. Use IPDL to request a file descriptor from the parent
// process.
static already_AddRefed<nsIOutputStream>
getCoreDumpOutputStream(ErrorResult& rv, TimeStamp& start, nsAString& outFilePath)
{
if (XRE_IsParentProcess()) {
// Create the file and open the output stream directly.
nsCOMPtr<nsIFile> file = HeapSnapshot::CreateUniqueCoreDumpFile(rv,
start,
outFilePath);
if (NS_WARN_IF(rv.Failed()))
return nullptr;
nsCOMPtr<nsIOutputStream> outputStream;
rv = NS_NewLocalFileOutputStream(getter_AddRefs(outputStream), file,
PR_WRONLY, -1, 0);
if (NS_WARN_IF(rv.Failed()))
return nullptr;
return outputStream.forget();
} else {
// Request a file descriptor from the parent process over IPDL.
auto cc = ContentChild::GetSingleton();
if (!cc) {
rv.Throw(NS_ERROR_UNEXPECTED);
return nullptr;
}
UniqueHeapSnapshotTempFileHelperChild helper(
cc->SendPHeapSnapshotTempFileHelperConstructor());
if (NS_WARN_IF(!helper)) {
rv.Throw(NS_ERROR_UNEXPECTED);
return nullptr;
}
OpenHeapSnapshotTempFileResponse response;
if (!helper->SendOpenHeapSnapshotTempFile(&response)) {
rv.Throw(NS_ERROR_UNEXPECTED);
return nullptr;
}
if (response.type() == OpenHeapSnapshotTempFileResponse::Tnsresult) {
rv.Throw(response.get_nsresult());
return nullptr;
}
auto opened = response.get_OpenedFile();
outFilePath = opened.path();
nsCOMPtr<nsIOutputStream> outputStream =
FileDescriptorOutputStream::Create(opened.descriptor());
if (NS_WARN_IF(!outputStream)) {
rv.Throw(NS_ERROR_UNEXPECTED);
return nullptr;
}
return outputStream.forget();
}
}
} // namespace devtools
namespace dom {
using namespace JS;
using namespace devtools;
/* static */ void
ThreadSafeChromeUtils::SaveHeapSnapshot(GlobalObject& global,
const HeapSnapshotBoundaries& boundaries,
nsAString& outFilePath,
ErrorResult& rv)
{
auto start = TimeStamp::Now();
bool wantNames = true;
CompartmentSet compartments;
uint32_t nodeCount = 0;
uint32_t edgeCount = 0;
nsCOMPtr<nsIOutputStream> outputStream = getCoreDumpOutputStream(rv, start, outFilePath);
if (NS_WARN_IF(rv.Failed()))
return;
ZeroCopyNSIOutputStream zeroCopyStream(outputStream);
::google::protobuf::io::GzipOutputStream gzipStream(&zeroCopyStream);
JSContext* cx = global.Context();
StreamWriter writer(cx, gzipStream, wantNames);
if (NS_WARN_IF(!writer.init())) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return;
}
{
Maybe<AutoCheckCannotGC> maybeNoGC;
ubi::RootList rootList(JS_GetRuntime(cx), maybeNoGC, wantNames);
if (!EstablishBoundaries(cx, rv, boundaries, rootList, compartments))
return;
MOZ_ASSERT(maybeNoGC.isSome());
ubi::Node roots(&rootList);
// Serialize the initial heap snapshot metadata to the core dump.
if (!writer.writeMetadata(PR_Now()) ||
// Serialize the heap graph to the core dump, starting from our list of
// roots.
!WriteHeapGraph(cx,
roots,
writer,
wantNames,
compartments.initialized() ? &compartments : nullptr,
maybeNoGC.ref(),
nodeCount,
edgeCount))
{
rv.Throw(zeroCopyStream.failed()
? zeroCopyStream.result()
: NS_ERROR_UNEXPECTED);
return;
}
}
Telemetry::AccumulateTimeDelta(Telemetry::DEVTOOLS_SAVE_HEAP_SNAPSHOT_MS,
start);
Telemetry::Accumulate(Telemetry::DEVTOOLS_HEAP_SNAPSHOT_NODE_COUNT,
nodeCount);
Telemetry::Accumulate(Telemetry::DEVTOOLS_HEAP_SNAPSHOT_EDGE_COUNT,
edgeCount);
}
/* static */ already_AddRefed<HeapSnapshot>
ThreadSafeChromeUtils::ReadHeapSnapshot(GlobalObject& global,
const nsAString& filePath,
ErrorResult& rv)
{
auto start = TimeStamp::Now();
UniquePtr<char[]> path(ToNewCString(filePath));
if (!path) {
rv.Throw(NS_ERROR_OUT_OF_MEMORY);
return nullptr;
}
AutoMemMap mm;
rv = mm.init(path.get());
if (rv.Failed())
return nullptr;
RefPtr<HeapSnapshot> snapshot = HeapSnapshot::Create(
global.Context(), global, reinterpret_cast<const uint8_t*>(mm.address()),
mm.size(), rv);
if (!rv.Failed())
Telemetry::AccumulateTimeDelta(Telemetry::DEVTOOLS_READ_HEAP_SNAPSHOT_MS,
start);
return snapshot.forget();
}
} // namespace dom
} // namespace mozilla