gecko-dev/gfx/thebes/gfxASurface.cpp
Razvan Cojocaru 1629218702 Bug 1060421 - Change the type of [Int]PointTyped::[x|y] back to [Int]CoordTyped. r=botond
[Int]CoordTyped no longer inherits Units because otherwise
instances of [Int]IntPointTyped may get one Base subobject because
it inherits Units, and others because of BasePoint's Coord members,
which end up increasing the [Int]CoordTyped's objects size (since
according to the ISO C++ standard, different Base subobject are
required to have different addresses).

Differential Revision: https://phabricator.services.mozilla.com/D160713
2022-11-04 18:29:35 +00:00

504 lines
15 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsIMemoryReporter.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Base64.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Attributes.h"
#include "mozilla/MemoryReporting.h"
#include "nsISupportsImpl.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/HelpersCairo.h"
#include "gfx2DGlue.h"
#include "gfxASurface.h"
#include "gfxContext.h"
#include "gfxImageSurface.h"
#include "gfxPlatform.h"
#include "gfxRect.h"
#include "cairo.h"
#include <algorithm>
#ifdef CAIRO_HAS_WIN32_SURFACE
# include "gfxWindowsSurface.h"
#endif
#ifdef MOZ_X11
# include "gfxXlibSurface.h"
#endif
#ifdef CAIRO_HAS_QUARTZ_SURFACE
# include "gfxQuartzSurface.h"
#endif
#include <stdio.h>
#include <limits.h>
#include "nsComponentManagerUtils.h"
#include "nsISupportsUtils.h"
#include "nsCOMPtr.h"
#include "nsServiceManagerUtils.h"
#include "nsString.h"
using namespace mozilla;
using namespace mozilla::gfx;
static cairo_user_data_key_t gfxasurface_pointer_key;
gfxASurface::gfxASurface()
: mSurface(nullptr),
mFloatingRefs(0),
mBytesRecorded(0),
mSurfaceValid(false) {
MOZ_COUNT_CTOR(gfxASurface);
}
gfxASurface::~gfxASurface() {
RecordMemoryFreed();
MOZ_COUNT_DTOR(gfxASurface);
}
// Surfaces use refcounting that's tied to the cairo surface refcnt, to avoid
// refcount mismatch issues.
nsrefcnt gfxASurface::AddRef(void) {
if (mSurfaceValid) {
if (mFloatingRefs) {
// eat a floating ref
mFloatingRefs--;
} else {
cairo_surface_reference(mSurface);
}
return (nsrefcnt)cairo_surface_get_reference_count(mSurface);
}
// the surface isn't valid, but we still need to refcount
// the gfxASurface
return ++mFloatingRefs;
}
nsrefcnt gfxASurface::Release(void) {
if (mSurfaceValid) {
NS_ASSERTION(
mFloatingRefs == 0,
"gfxASurface::Release with floating refs still hanging around!");
// Note that there is a destructor set on user data for mSurface,
// which will delete this gfxASurface wrapper when the surface's refcount
// goes out of scope.
nsrefcnt refcnt = (nsrefcnt)cairo_surface_get_reference_count(mSurface);
cairo_surface_destroy(mSurface);
// |this| may not be valid any more, don't use it!
return --refcnt;
}
if (--mFloatingRefs == 0) {
delete this;
return 0;
}
return mFloatingRefs;
}
void gfxASurface::SurfaceDestroyFunc(void* data) {
gfxASurface* surf = (gfxASurface*)data;
// fprintf (stderr, "Deleting wrapper for %p (wrapper: %p)\n", surf->mSurface,
// data);
delete surf;
}
gfxASurface* gfxASurface::GetSurfaceWrapper(cairo_surface_t* csurf) {
if (!csurf) return nullptr;
return (gfxASurface*)cairo_surface_get_user_data(csurf,
&gfxasurface_pointer_key);
}
void gfxASurface::SetSurfaceWrapper(cairo_surface_t* csurf,
gfxASurface* asurf) {
if (!csurf) return;
cairo_surface_set_user_data(csurf, &gfxasurface_pointer_key, asurf,
SurfaceDestroyFunc);
}
already_AddRefed<gfxASurface> gfxASurface::Wrap(cairo_surface_t* csurf,
const IntSize& aSize) {
RefPtr<gfxASurface> result;
/* Do we already have a wrapper for this surface? */
result = GetSurfaceWrapper(csurf);
if (result) {
// fprintf(stderr, "Existing wrapper for %p -> %p\n", csurf, result);
return result.forget();
}
/* No wrapper; figure out the surface type and create it */
cairo_surface_type_t stype = cairo_surface_get_type(csurf);
if (stype == CAIRO_SURFACE_TYPE_IMAGE) {
result = new gfxImageSurface(csurf);
}
#ifdef CAIRO_HAS_WIN32_SURFACE
else if (stype == CAIRO_SURFACE_TYPE_WIN32 ||
stype == CAIRO_SURFACE_TYPE_WIN32_PRINTING) {
result = new gfxWindowsSurface(csurf);
}
#endif
#ifdef MOZ_X11
else if (stype == CAIRO_SURFACE_TYPE_XLIB) {
result = new gfxXlibSurface(csurf);
}
#endif
#ifdef CAIRO_HAS_QUARTZ_SURFACE
else if (stype == CAIRO_SURFACE_TYPE_QUARTZ) {
result = new gfxQuartzSurface(csurf, aSize);
}
#endif
else {
result = new gfxUnknownSurface(csurf, aSize);
}
// fprintf(stderr, "New wrapper for %p -> %p\n", csurf, result);
return result.forget();
}
void gfxASurface::Init(cairo_surface_t* surface, bool existingSurface) {
SetSurfaceWrapper(surface, this);
MOZ_ASSERT(surface, "surface should be a valid pointer");
mSurface = surface;
mSurfaceValid = !cairo_surface_status(surface);
if (!mSurfaceValid) {
gfxWarning() << "ASurface Init failed with Cairo status "
<< cairo_surface_status(surface) << " on " << hexa(surface);
}
if (existingSurface || !mSurfaceValid) {
mFloatingRefs = 0;
} else {
mFloatingRefs = 1;
if (cairo_surface_get_content(surface) != CAIRO_CONTENT_COLOR) {
cairo_surface_set_subpixel_antialiasing(
surface, CAIRO_SUBPIXEL_ANTIALIASING_DISABLED);
}
}
}
gfxSurfaceType gfxASurface::GetType() const {
if (!mSurfaceValid) return (gfxSurfaceType)-1;
return (gfxSurfaceType)cairo_surface_get_type(mSurface);
}
gfxContentType gfxASurface::GetContentType() const {
if (!mSurfaceValid) return (gfxContentType)-1;
return (gfxContentType)cairo_surface_get_content(mSurface);
}
void gfxASurface::SetDeviceOffset(const gfxPoint& offset) {
if (!mSurfaceValid) return;
cairo_surface_set_device_offset(mSurface, offset.x, offset.y);
}
gfxPoint gfxASurface::GetDeviceOffset() const {
if (!mSurfaceValid) return gfxPoint(0.0, 0.0);
gfxPoint pt;
cairo_surface_get_device_offset(mSurface, &pt.x.value, &pt.y.value);
return pt;
}
void gfxASurface::Flush() const {
if (!mSurfaceValid) return;
cairo_surface_flush(mSurface);
gfxPlatform::ClearSourceSurfaceForSurface(const_cast<gfxASurface*>(this));
}
void gfxASurface::MarkDirty() {
if (!mSurfaceValid) return;
cairo_surface_mark_dirty(mSurface);
gfxPlatform::ClearSourceSurfaceForSurface(this);
}
void gfxASurface::MarkDirty(const gfxRect& r) {
if (!mSurfaceValid) return;
cairo_surface_mark_dirty_rectangle(mSurface, (int)r.X(), (int)r.Y(),
(int)r.Width(), (int)r.Height());
gfxPlatform::ClearSourceSurfaceForSurface(this);
}
void gfxASurface::SetData(const cairo_user_data_key_t* key, void* user_data,
thebes_destroy_func_t destroy) {
if (!mSurfaceValid) return;
cairo_surface_set_user_data(mSurface, key, user_data, destroy);
}
void* gfxASurface::GetData(const cairo_user_data_key_t* key) {
if (!mSurfaceValid) return nullptr;
return cairo_surface_get_user_data(mSurface, key);
}
void gfxASurface::Finish() {
// null surfaces are allowed here
cairo_surface_finish(mSurface);
}
already_AddRefed<gfxImageSurface> gfxASurface::CopyToARGB32ImageSurface() {
if (!mSurface || !mSurfaceValid) {
return nullptr;
}
const IntSize size = GetSize();
RefPtr<gfxImageSurface> imgSurface =
new gfxImageSurface(size, SurfaceFormat::A8R8G8B8_UINT32);
RefPtr<DrawTarget> dt = gfxPlatform::CreateDrawTargetForSurface(
imgSurface, IntSize(size.width, size.height));
RefPtr<SourceSurface> source =
gfxPlatform::GetSourceSurfaceForSurface(dt, this);
dt->CopySurface(source, IntRect(0, 0, size.width, size.height), IntPoint());
return imgSurface.forget();
}
int gfxASurface::CairoStatus() {
if (!mSurfaceValid) return -1;
return cairo_surface_status(mSurface);
}
nsresult gfxASurface::BeginPrinting(const nsAString& aTitle,
const nsAString& aPrintToFileName) {
return NS_OK;
}
nsresult gfxASurface::EndPrinting() { return NS_OK; }
nsresult gfxASurface::AbortPrinting() { return NS_OK; }
nsresult gfxASurface::BeginPage() { return NS_OK; }
nsresult gfxASurface::EndPage() { return NS_OK; }
gfxContentType gfxASurface::ContentFromFormat(gfxImageFormat format) {
switch (format) {
case SurfaceFormat::A8R8G8B8_UINT32:
return gfxContentType::COLOR_ALPHA;
case SurfaceFormat::X8R8G8B8_UINT32:
case SurfaceFormat::R5G6B5_UINT16:
return gfxContentType::COLOR;
case SurfaceFormat::A8:
return gfxContentType::ALPHA;
case SurfaceFormat::UNKNOWN:
default:
return gfxContentType::COLOR;
}
}
int32_t gfxASurface::BytePerPixelFromFormat(gfxImageFormat format) {
switch (format) {
case SurfaceFormat::A8R8G8B8_UINT32:
case SurfaceFormat::X8R8G8B8_UINT32:
return 4;
case SurfaceFormat::R5G6B5_UINT16:
return 2;
case SurfaceFormat::A8:
return 1;
default:
NS_WARNING("Unknown byte per pixel value for Image format");
}
return 0;
}
/** Memory reporting **/
static const char* sDefaultSurfaceDescription =
"Memory used by gfx surface of the given type.";
struct SurfaceMemoryReporterAttrs {
const char* path;
const char* description;
};
static const SurfaceMemoryReporterAttrs sSurfaceMemoryReporterAttrs[] = {
{"gfx-surface-image", nullptr},
{"gfx-surface-pdf", nullptr},
{"gfx-surface-ps", nullptr},
{"gfx-surface-xlib",
"Memory used by xlib surfaces to store pixmaps. This memory lives in "
"the X server's process rather than in this application, so the bytes "
"accounted for here aren't counted in vsize, resident, explicit, or any "
"of "
"the other measurements on this page."},
{"gfx-surface-xcb", nullptr},
{"gfx-surface-glitz???", nullptr}, // should never be used
{"gfx-surface-quartz", nullptr},
{"gfx-surface-win32", nullptr},
{"gfx-surface-beos", nullptr},
{"gfx-surface-directfb???", nullptr}, // should never be used
{"gfx-surface-svg", nullptr},
{"gfx-surface-os2", nullptr},
{"gfx-surface-win32printing", nullptr},
{"gfx-surface-quartzimage", nullptr},
{"gfx-surface-script", nullptr},
{"gfx-surface-qpainter", nullptr},
{"gfx-surface-recording", nullptr},
{"gfx-surface-vg", nullptr},
{"gfx-surface-gl", nullptr},
{"gfx-surface-drm", nullptr},
{"gfx-surface-tee", nullptr},
{"gfx-surface-xml", nullptr},
{"gfx-surface-skia", nullptr},
{"gfx-surface-subsurface", nullptr},
};
static_assert(MOZ_ARRAY_LENGTH(sSurfaceMemoryReporterAttrs) ==
size_t(gfxSurfaceType::Max),
"sSurfaceMemoryReporterAttrs exceeds max capacity");
static_assert(uint32_t(CAIRO_SURFACE_TYPE_SKIA) ==
uint32_t(gfxSurfaceType::Skia),
"CAIRO_SURFACE_TYPE_SKIA not equal to gfxSurfaceType::Skia");
/* Surface size memory reporting */
class SurfaceMemoryReporter final : public nsIMemoryReporter {
~SurfaceMemoryReporter() = default;
// We can touch this array on several different threads, and we don't
// want to introduce memory barriers when recording the memory used. To
// assure dynamic race checkers like TSan that this is OK, we use
// relaxed memory ordering here.
static Atomic<size_t, Relaxed>
sSurfaceMemoryUsed[size_t(gfxSurfaceType::Max)];
public:
static void AdjustUsedMemory(gfxSurfaceType aType, int32_t aBytes) {
// A read-modify-write operation like += would require a memory barrier
// here, which would defeat the purpose of using relaxed memory
// ordering. So separate out the read and write operations.
sSurfaceMemoryUsed[size_t(aType)] =
sSurfaceMemoryUsed[size_t(aType)] + aBytes;
};
// This memory reporter is sometimes allocated on the compositor thread,
// but always released on the main thread, so its refcounting needs to be
// threadsafe.
NS_DECL_THREADSAFE_ISUPPORTS
NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData, bool aAnonymize) override {
const size_t len = ArrayLength(sSurfaceMemoryReporterAttrs);
for (size_t i = 0; i < len; i++) {
int64_t amount = sSurfaceMemoryUsed[i];
if (amount != 0) {
const char* path = sSurfaceMemoryReporterAttrs[i].path;
const char* desc = sSurfaceMemoryReporterAttrs[i].description;
if (!desc) {
desc = sDefaultSurfaceDescription;
}
aHandleReport->Callback(""_ns, nsCString(path), KIND_OTHER, UNITS_BYTES,
amount, nsCString(desc), aData);
}
}
return NS_OK;
}
};
Atomic<size_t, Relaxed>
SurfaceMemoryReporter::sSurfaceMemoryUsed[size_t(gfxSurfaceType::Max)];
NS_IMPL_ISUPPORTS(SurfaceMemoryReporter, nsIMemoryReporter)
void gfxASurface::RecordMemoryUsedForSurfaceType(gfxSurfaceType aType,
int32_t aBytes) {
if (int(aType) < 0 || aType >= gfxSurfaceType::Max) {
NS_WARNING("Invalid type to RecordMemoryUsedForSurfaceType!");
return;
}
static bool registered = false;
if (!registered) {
RegisterStrongMemoryReporter(new SurfaceMemoryReporter());
registered = true;
}
SurfaceMemoryReporter::AdjustUsedMemory(aType, aBytes);
}
void gfxASurface::RecordMemoryUsed(int32_t aBytes) {
RecordMemoryUsedForSurfaceType(GetType(), aBytes);
mBytesRecorded += aBytes;
}
void gfxASurface::RecordMemoryFreed() {
if (mBytesRecorded) {
RecordMemoryUsedForSurfaceType(GetType(), -mBytesRecorded);
mBytesRecorded = 0;
}
}
size_t gfxASurface::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
// We don't measure mSurface because cairo doesn't allow it.
return 0;
}
size_t gfxASurface::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
/* static */
uint8_t gfxASurface::BytesPerPixel(gfxImageFormat aImageFormat) {
switch (aImageFormat) {
case SurfaceFormat::A8R8G8B8_UINT32:
return 4;
case SurfaceFormat::X8R8G8B8_UINT32:
return 4;
case SurfaceFormat::R5G6B5_UINT16:
return 2;
case SurfaceFormat::A8:
return 1;
case SurfaceFormat::UNKNOWN:
default:
MOZ_ASSERT_UNREACHABLE("Not really sure what you want me to say here");
return 0;
}
}
void gfxASurface::SetOpaqueRect(const gfxRect& aRect) {
if (aRect.IsEmpty()) {
mOpaqueRect = nullptr;
} else if (!!mOpaqueRect) {
*mOpaqueRect = aRect;
} else {
mOpaqueRect = MakeUnique<gfxRect>(aRect);
}
}
/* static */ const gfxRect& gfxASurface::GetEmptyOpaqueRect() {
static const gfxRect empty(0, 0, 0, 0);
return empty;
}
const IntSize gfxASurface::GetSize() const { return IntSize(-1, -1); }
SurfaceFormat gfxASurface::GetSurfaceFormat() const {
if (!mSurfaceValid) {
return SurfaceFormat::UNKNOWN;
}
return GfxFormatForCairoSurface(mSurface);
}
already_AddRefed<gfxImageSurface> gfxASurface::GetAsImageSurface() {
return nullptr;
}