gecko-dev/layout/generic/nsFlexContainerFrame.cpp
Ting-Yu Lin cd5b6baa4e Bug 1686961 - Don't cache ascent in CachedBAxisMeasurement. r=dholbert
CachedBAxisMeasurement::mAscent caches the ascent of a flex item after
the measuring reflow, but the ascent may change after the final reflow
if the item is stretched and does some vertical alignment internally.
However, we don't cache the new ascent. Therefore, when we reflow the
item incrementally, if the CachedBAxisMeasurement::Key is valid, we just
skip the measuring reflow, and retrieve the wrong ascent from the cache.

Instead of fixing this bug by updating the cached ascent or rejecting
the ascent cache for a stretching flex item in block axis, this patch
removes the cache and sets ReflowOutput's BlockStartAscent() to the flex
item after the item's measuring reflow. (We've done the same after the
item's final reflow.) If the ascent is ReflowOutput::ASK_FOR_BASELINE,
we resolve in FlexItem::ResolvedAscent() anyway.

Differential Revision: https://phabricator.services.mozilla.com/D121404
2021-08-09 20:55:11 +00:00

5755 lines
244 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: flex" */
#include "nsFlexContainerFrame.h"
#include <algorithm>
#include "gfxContext.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/CSSOrderAwareFrameIterator.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Logging.h"
#include "mozilla/PresShell.h"
#include "mozilla/WritingModes.h"
#include "nsBlockFrame.h"
#include "nsContentUtils.h"
#include "nsCSSAnonBoxes.h"
#include "nsDisplayList.h"
#include "nsFieldSetFrame.h"
#include "nsIFrameInlines.h"
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
using namespace mozilla;
using namespace mozilla::layout;
// Convenience typedefs for helper classes that we forward-declare in .h file
// (so that nsFlexContainerFrame methods can use them as parameters):
using FlexItem = nsFlexContainerFrame::FlexItem;
using FlexLine = nsFlexContainerFrame::FlexLine;
using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker;
using StrutInfo = nsFlexContainerFrame::StrutInfo;
using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement;
static mozilla::LazyLogModule gFlexContainerLog("FlexContainer");
#define FLEX_LOG(...) \
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (__VA_ARGS__));
#define FLEX_LOGV(...) \
MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (__VA_ARGS__));
// XXXdholbert Some of this helper-stuff should be separated out into a general
// "main/cross-axis utils" header, shared by grid & flexbox?
// (Particularly when grid gets support for align-*/justify-* properties.)
// Helper structs / classes / methods
// ==================================
// Returns true iff the given nsStyleDisplay has display:-webkit-{inline-}box
// or display:-moz-{inline-}box.
static inline bool IsDisplayValueLegacyBox(const nsStyleDisplay* aStyleDisp) {
return aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitInlineBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::MozBox ||
aStyleDisp->mDisplay == mozilla::StyleDisplay::MozInlineBox;
}
// Returns true if aFlexContainer is a frame for some element that has
// display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is
// expected to be an instance of nsFlexContainerFrame (enforced with an assert);
// otherwise, this function's state-bit-check here is bogus.
static bool IsLegacyBox(const nsIFrame* aFlexContainer) {
MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(),
"only flex containers may be passed to this function");
return aFlexContainer->HasAnyStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_BOX);
}
// Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator
// (depending on whether aFlexContainer has
// NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit).
static CSSOrderAwareFrameIterator::OrderState OrderStateForIter(
const nsFlexContainerFrame* aFlexContainer) {
return aFlexContainer->HasAnyStateBits(
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
? CSSOrderAwareFrameIterator::OrderState::Ordered
: CSSOrderAwareFrameIterator::OrderState::Unordered;
}
// Returns the OrderingProperty enum that we should pass to
// CSSOrderAwareFrameIterator (depending on whether it's a legacy box).
static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter(
const nsFlexContainerFrame* aFlexContainer) {
return IsLegacyBox(aFlexContainer)
? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup
: CSSOrderAwareFrameIterator::OrderingProperty::Order;
}
// Returns the "align-items" value that's equivalent to the legacy "box-align"
// value in the given style struct.
static StyleAlignFlags ConvertLegacyStyleToAlignItems(
const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-align corresponds to modern "align-items"
switch (aStyleXUL->mBoxAlign) {
case StyleBoxAlign::Stretch:
return StyleAlignFlags::STRETCH;
case StyleBoxAlign::Start:
return StyleAlignFlags::FLEX_START;
case StyleBoxAlign::Center:
return StyleAlignFlags::CENTER;
case StyleBoxAlign::Baseline:
return StyleAlignFlags::BASELINE;
case StyleBoxAlign::End:
return StyleAlignFlags::FLEX_END;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
// Fall back to default value of "align-items" property:
return StyleAlignFlags::STRETCH;
}
// Returns the "justify-content" value that's equivalent to the legacy
// "box-pack" value in the given style struct.
static StyleContentDistribution ConvertLegacyStyleToJustifyContent(
const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-pack corresponds to modern "justify-content"
switch (aStyleXUL->mBoxPack) {
case StyleBoxPack::Start:
return {StyleAlignFlags::FLEX_START};
case StyleBoxPack::Center:
return {StyleAlignFlags::CENTER};
case StyleBoxPack::End:
return {StyleAlignFlags::FLEX_END};
case StyleBoxPack::Justify:
return {StyleAlignFlags::SPACE_BETWEEN};
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
// Fall back to default value of "justify-content" property:
return {StyleAlignFlags::FLEX_START};
}
/**
* Converts a "flex-relative" coordinate in a single axis (a main- or cross-axis
* coordinate) into a coordinate in the corresponding physical (x or y) axis. If
* the flex-relative axis in question already maps *directly* to a physical
* axis (i.e. if it's LTR or TTB), then the physical coordinate has the same
* numeric value as the provided flex-relative coordinate. Otherwise, we have to
* subtract the flex-relative coordinate from the flex container's size in that
* axis, to flip the polarity. (So e.g. a main-axis position of 2px in a RTL
* 20px-wide container would correspond to a physical coordinate (x-value) of
* 18px.)
*/
static nscoord PhysicalCoordFromFlexRelativeCoord(nscoord aFlexRelativeCoord,
nscoord aContainerSize,
mozilla::Side aStartSide) {
if (aStartSide == eSideLeft || aStartSide == eSideTop) {
return aFlexRelativeCoord;
}
return aContainerSize - aFlexRelativeCoord;
}
// Add two nscoord values, using CheckedInt to handle integer overflow.
// This function returns the sum of its two args -- but if we trigger integer
// overflow while adding them, then this function returns nscoord_MAX instead.
static nscoord AddChecked(nscoord aFirst, nscoord aSecond) {
CheckedInt<nscoord> checkedResult = CheckedInt<nscoord>(aFirst) + aSecond;
return checkedResult.isValid() ? checkedResult.value() : nscoord_MAX;
}
// Check if the size is auto or it is a keyword in the block axis.
// |aIsInline| should represent whether aSize is in the inline axis, from the
// perspective of the writing mode of the flex item that the size comes from.
//
// max-content and min-content should behave as property's initial value.
// Bug 567039: We treat -moz-fit-content and -moz-available as property's
// initial value for now.
static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) {
return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage());
}
// Helper-macros to let us pick one of two expressions to evaluate
// (an inline-axis expression vs. a block-axis expression), to get a
// main-axis or cross-axis component.
// For code that has e.g. a LogicalSize object, the methods
// FlexboxAxisTracker::MainComponent and CrossComponent are cleaner
// than these macros. But in cases where we simply have two separate
// expressions for ISize and BSize (which may be expensive to evaluate),
// these macros can be used to ensure that only the needed expression is
// evaluated.
#define GET_MAIN_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
(axisTracker_).IsInlineAxisMainAxis((wm_)) ? (isize_) : (bsize_)
#define GET_CROSS_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \
(axisTracker_).IsInlineAxisMainAxis((wm_)) ? (bsize_) : (isize_)
// Encapsulates our flex container's main & cross axes. This class is backed by
// a FlexboxAxisInfo helper member variable, and it adds some convenience APIs
// on top of what that struct offers.
class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
public:
explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer);
// Accessors:
LogicalAxis MainAxis() const {
return IsRowOriented() ? eLogicalAxisInline : eLogicalAxisBlock;
}
LogicalAxis CrossAxis() const {
return IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
}
LogicalSide MainAxisStartSide() const;
LogicalSide MainAxisEndSide() const {
return GetOppositeSide(MainAxisStartSide());
}
LogicalSide CrossAxisStartSide() const;
LogicalSide CrossAxisEndSide() const {
return GetOppositeSide(CrossAxisStartSide());
}
mozilla::Side MainAxisPhysicalStartSide() const {
return mWM.PhysicalSide(MainAxisStartSide());
}
mozilla::Side MainAxisPhysicalEndSide() const {
return mWM.PhysicalSide(MainAxisEndSide());
}
mozilla::Side CrossAxisPhysicalStartSide() const {
return mWM.PhysicalSide(CrossAxisStartSide());
}
mozilla::Side CrossAxisPhysicalEndSide() const {
return mWM.PhysicalSide(CrossAxisEndSide());
}
// Returns the flex container's writing mode.
WritingMode GetWritingMode() const { return mWM; }
// Returns true if our main axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-direction: *-reverse')
bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; }
// Returns true if our cross axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; }
bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; }
bool IsColumnOriented() const { return !IsRowOriented(); }
// aSize is expected to match the flex container's WritingMode.
nscoord MainComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM);
}
int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height;
}
// aSize is expected to match the flex container's WritingMode.
nscoord CrossComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM);
}
int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width;
}
// NOTE: aMargin is expected to use the flex container's WritingMode.
nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our main axis is the inline axis.
return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM);
}
nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our cross axis is the block axis.
return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM);
}
/**
* Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
* into a LogicalPoint, using the flex container's writing mode.
*
* @arg aMainCoord The main-axis coordinate -- i.e an offset from the
* main-start edge of the flex container's content box.
* @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
* cross-start edge of the flex container's content box.
* @arg aContainerMainSize The main size of flex container's content box.
* @arg aContainerCrossSize The cross size of flex container's content box.
* @return A LogicalPoint, with the flex container's writing mode, that
* represents the same position. The logical coordinates are
* relative to the flex container's content box.
*/
LogicalPoint LogicalPointFromFlexRelativePoint(
nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize,
nscoord aContainerCrossSize) const {
nscoord logicalCoordInMainAxis =
IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord;
nscoord logicalCoordInCrossAxis =
IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord;
return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis,
logicalCoordInCrossAxis)
: LogicalPoint(mWM, logicalCoordInCrossAxis,
logicalCoordInMainAxis);
}
/**
* Converts a "flex-relative" size (a main-axis & cross-axis size)
* into a LogicalSize, using the flex container's writing mode.
*
* @arg aMainSize The main-axis size.
* @arg aCrossSize The cross-axis size.
* @return A LogicalSize, with the flex container's writing mode, that
* represents the same size.
*/
LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
nscoord aCrossSize) const {
return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize)
: LogicalSize(mWM, aCrossSize, aMainSize);
}
bool IsMainAxisHorizontal() const {
// If we're row-oriented, and our writing mode is NOT vertical,
// or we're column-oriented and our writing mode IS vertical,
// then our main axis is horizontal. This handles all cases:
return IsRowOriented() != mWM.IsVertical();
}
// Returns true if this flex item's inline axis in aItemWM is parallel (or
// antiparallel) to the container's main axis. Returns false, otherwise.
//
// Note: this is a helper for implementing macros and can also be used before
// constructing FlexItem. Inside of flex reflow code,
// FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal.
bool IsInlineAxisMainAxis(WritingMode aItemWM) const {
return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM);
}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
private:
const WritingMode mWM; // The flex container's writing mode.
const FlexboxAxisInfo mAxisInfo;
};
/**
* Represents a flex item.
* Includes the various pieces of input that the Flexbox Layout Algorithm uses
* to resolve a flexible width.
*/
class nsFlexContainerFrame::FlexItem final {
public:
// Normal constructor:
FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize,
nscoord aMainMaxSize, nscoord aTentativeCrossSize,
nscoord aCrossMinSize, nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker);
// Simplified constructor, to be used only for generating "struts":
// (NOTE: This "strut" constructor uses the *container's* writing mode, which
// we'll use on this FlexItem instead of the child frame's real writing mode.
// This is fine - it doesn't matter what writing mode we use for a
// strut, since it won't render any content and we already know its size.)
FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM,
const FlexboxAxisTracker& aAxisTracker);
// Clone existing FlexItem for its underlying frame's continuation.
// @param aContinuation a continuation in our next-in-flow chain.
FlexItem CloneFor(nsIFrame* const aContinuation) const {
MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(),
"aContinuation should be in aItem's continuation chain!");
FlexItem item(*this);
item.mFrame = aContinuation;
item.mHadMeasuringReflow = false;
return item;
}
// Accessors
nsIFrame* Frame() const { return mFrame; }
nscoord FlexBaseSize() const { return mFlexBaseSize; }
nscoord MainMinSize() const {
MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
"Someone's using an unresolved 'auto' main min-size");
return mMainMinSize;
}
nscoord MainMaxSize() const { return mMainMaxSize; }
// Note: These return the main-axis position and size of our *content box*.
nscoord MainSize() const { return mMainSize; }
nscoord MainPosition() const { return mMainPosn; }
nscoord CrossMinSize() const { return mCrossMinSize; }
nscoord CrossMaxSize() const { return mCrossMaxSize; }
// Note: These return the cross-axis position and size of our *content box*.
nscoord CrossSize() const { return mCrossSize; }
nscoord CrossPosition() const { return mCrossPosn; }
// Lazy getter for mAscent.
nscoord ResolvedAscent(bool aUseFirstBaseline) const {
// XXXdholbert Two concerns to follow up on here:
// (1) We probably should be checking and reacting to aUseFirstBaseline
// for all of the cases here (e.g. this first one). Maybe we need to store
// two versions of mAscent and choose the appropriate one based on
// aUseFirstBaseline? This is roughly bug 1480850, I think.
// (2) We should be using the *container's* writing-mode (mCBWM) here,
// instead of the item's (mWM). This is essentially bug 1155322.
if (mAscent != ReflowOutput::ASK_FOR_BASELINE) {
return mAscent;
}
// Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate:
bool found =
aUseFirstBaseline
? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &mAscent)
: nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &mAscent);
if (found) {
return mAscent;
}
// If the nsLayoutUtils getter fails, then ask the frame directly:
auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
if (mFrame->GetNaturalBaselineBOffset(mWM, baselineGroup, &mAscent)) {
return mAscent;
}
// We couldn't determine a baseline, so we synthesize one from border box:
mAscent = mFrame->SynthesizeBaselineBOffsetFromBorderBox(
mWM, BaselineSharingGroup::First);
return mAscent;
}
// Convenience methods to compute the main & cross size of our *margin-box*.
nscoord OuterMainSize() const {
return mMainSize + MarginBorderPaddingSizeInMainAxis();
}
nscoord OuterCrossSize() const {
return mCrossSize + MarginBorderPaddingSizeInCrossAxis();
}
// Convenience methods to synthesize a style main size or a style cross size
// with box-size considered, to provide the size overrides when constructing
// ReflowInput for flex items.
StyleSize StyleMainSize() const {
nscoord mainSize = MainSize();
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
mainSize += BorderPaddingSizeInMainAxis();
}
return StyleSize::LengthPercentage(
LengthPercentage::FromAppUnits(mainSize));
}
StyleSize StyleCrossSize() const {
nscoord crossSize = CrossSize();
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
crossSize += BorderPaddingSizeInCrossAxis();
}
return StyleSize::LengthPercentage(
LengthPercentage::FromAppUnits(crossSize));
}
// Returns the distance between this FlexItem's baseline and the cross-start
// edge of its margin-box. Used in baseline alignment.
//
// (This function needs to be told which physical start side we're measuring
// the baseline from, so that it can look up the appropriate components from
// margin.)
nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide,
bool aUseFirstLineBaseline) const;
float ShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
bool IsFrozen() const { return mIsFrozen; }
bool HadMinViolation() const {
MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items.");
return mHadMinViolation;
}
bool HadMaxViolation() const {
MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items.");
return mHadMaxViolation;
}
bool WasMinClamped() const {
MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items.");
return mHadMinViolation;
}
bool WasMaxClamped() const {
MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items.");
return mHadMaxViolation;
}
// Indicates whether this item received a preliminary "measuring" reflow
// before its actual reflow.
bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
// Indicates whether this item's computed cross-size property is 'auto'.
bool IsCrossSizeAuto() const;
// Indicates whether the cross-size property is set to something definite,
// for the purpose of preferred aspect ratio calculations.
bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const;
// Indicates whether this item's cross-size has been stretched (from having
// "align-self: stretch" with an auto cross-size and no auto margins in the
// cross axis).
bool IsStretched() const { return mIsStretched; }
// Indicates whether we need to resolve an 'auto' value for the main-axis
// min-[width|height] property.
bool NeedsMinSizeAutoResolution() const {
return mNeedsMinSizeAutoResolution;
}
bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; }
// Indicates whether this item is a "strut" left behind by an element with
// visibility:collapse.
bool IsStrut() const { return mIsStrut; }
// The main axis and cross axis are relative to mCBWM.
LogicalAxis MainAxis() const { return mMainAxis; }
LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); }
// IsInlineAxisMainAxis() returns true if this item's inline axis is parallel
// (or antiparallel) to the container's main axis. Otherwise (i.e. if this
// item's inline axis is orthogonal to the container's main axis), this
// function returns false. The next 3 methods are all other ways of asking
// the same question, and only exist for readability at callsites (depending
// on which axes those callsites are reasoning about).
bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; }
bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; }
WritingMode GetWritingMode() const { return mWM; }
StyleAlignSelf AlignSelf() const { return mAlignSelf; }
StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; }
// Returns the flex factor (flex-grow or flex-shrink), depending on
// 'aIsUsingFlexGrow'.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetFlexFactor(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
}
// Returns the weight that we should use in the "resolving flexible lengths"
// algorithm. If we're using the flex grow factor, we just return that;
// otherwise, we return the "scaled flex shrink factor" (scaled by our flex
// base size, so that when both large and small items are shrinking, the large
// items shrink more).
//
// I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
// factor", to more clearly distinguish it from the actual flex-grow &
// flex-shrink factors.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetWeight(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
if (aIsUsingFlexGrow) {
return mFlexGrow;
}
// We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
if (mFlexBaseSize == 0) {
// Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
// regardless of mFlexShrink, we should just return 0.
// (This is really a special-case for when mFlexShrink is infinity, to
// avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
return 0.0f;
}
return mFlexShrink * mFlexBaseSize;
}
bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
const AspectRatio& GetAspectRatio() const { return mAspectRatio; }
bool HasAspectRatio() const { return !!mAspectRatio; }
// Getters for margin:
// ===================
LogicalMargin Margin() const { return mMargin; }
nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); }
// Returns the margin component for a given LogicalSide in flex container's
// writing-mode.
nscoord GetMarginComponentForSide(LogicalSide aSide) const {
return mMargin.Side(aSide, mCBWM);
}
// Returns the total space occupied by this item's margins in the given axis
nscoord MarginSizeInMainAxis() const {
return mMargin.StartEnd(MainAxis(), mCBWM);
}
nscoord MarginSizeInCrossAxis() const {
return mMargin.StartEnd(CrossAxis(), mCBWM);
}
// Getters for border/padding
// ==========================
// Returns the total space occupied by this item's borders and padding in
// the given axis
LogicalMargin BorderPadding() const { return mBorderPadding; }
nscoord BorderPaddingSizeInMainAxis() const {
return mBorderPadding.StartEnd(MainAxis(), mCBWM);
}
nscoord BorderPaddingSizeInCrossAxis() const {
return mBorderPadding.StartEnd(CrossAxis(), mCBWM);
}
// Getter for combined margin/border/padding
// =========================================
// Returns the total space occupied by this item's margins, borders and
// padding in the given axis
nscoord MarginBorderPaddingSizeInMainAxis() const {
return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis();
}
nscoord MarginBorderPaddingSizeInCrossAxis() const {
return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis();
}
// Setters
// =======
// Helper to set the resolved value of min-[width|height]:auto for the main
// axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
void UpdateMainMinSize(nscoord aNewMinSize) {
NS_ASSERTION(aNewMinSize >= 0,
"How did we end up with a negative min-size?");
MOZ_ASSERT(mMainMaxSize >= aNewMinSize,
"Should only use this function for resolving min-size:auto, "
"and main max-size should be an upper-bound for resolved val");
MOZ_ASSERT(
mNeedsMinSizeAutoResolution &&
(mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
"Should only use this function for resolving min-size:auto, "
"so we shouldn't already have a nonzero min-size established "
"(unless it's a themed-widget-imposed minimum size)");
if (aNewMinSize > mMainMinSize) {
mMainMinSize = aNewMinSize;
// Also clamp main-size to be >= new min-size:
mMainSize = std::max(mMainSize, aNewMinSize);
}
mNeedsMinSizeAutoResolution = false;
}
// This sets our flex base size, and then sets our main size to the
// resulting "hypothetical main size" (the base size clamped to our
// main-axis [min,max] sizing constraints).
void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) {
MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE,
"flex base size shouldn't change after we're frozen "
"(unless we're just resolving an intrinsic size)");
mFlexBaseSize = aNewFlexBaseSize;
// Before we've resolved flexible lengths, we keep mMainSize set to
// the 'hypothetical main size', which is the flex base size, clamped
// to the [min,max] range:
mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
FLEX_LOGV(
"Set flex base size: %d, hypothetical main size: %d for flex item %p",
mFlexBaseSize, mMainSize, mFrame);
}
// Setters used while we're resolving flexible lengths
// ---------------------------------------------------
// Sets the main-size of our flex item's content-box.
void SetMainSize(nscoord aNewMainSize) {
MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
mMainSize = aNewMainSize;
}
void SetShareOfWeightSoFar(float aNewShare) {
MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f,
"shouldn't be giving this item any share of the weight "
"after it's frozen");
mShareOfWeightSoFar = aNewShare;
}
void Freeze() {
mIsFrozen = true;
// Now that we are frozen, the meaning of mHadMinViolation and
// mHadMaxViolation changes to indicate min and max clamping. Clear
// both of the member variables so that they are ready to be set
// as clamping state later, if necessary.
mHadMinViolation = false;
mHadMaxViolation = false;
}
void SetHadMinViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMinViolation = true;
}
void SetHadMaxViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMaxViolation = true;
}
void ClearViolationFlags() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be altering violation flags after we're "
"frozen");
mHadMinViolation = mHadMaxViolation = false;
}
void SetWasMinClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMinViolation member variable to track clamping
// events. This is allowable because mHadMinViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMinViolation = true;
}
void SetWasMaxClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMaxViolation member variable to track clamping
// events. This is allowable because mHadMaxViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMaxViolation = true;
}
// Setters for values that are determined after we've resolved our main size
// -------------------------------------------------------------------------
// Sets the main-axis position of our flex item's content-box.
// (This is the distance between the main-start edge of the flex container
// and the main-start edge of the flex item's content-box.)
void SetMainPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMainPosn = aPosn;
}
// Sets the cross-size of our flex item's content-box.
void SetCrossSize(nscoord aCrossSize) {
MOZ_ASSERT(!mIsStretched,
"Cross size shouldn't be modified after it's been stretched");
mCrossSize = aCrossSize;
}
// Sets the cross-axis position of our flex item's content-box.
// (This is the distance between the cross-start edge of the flex container
// and the cross-start edge of the flex item.)
void SetCrossPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mCrossPosn = aPosn;
}
// After a FlexItem has had a reflow, this method can be used to cache its
// (possibly-unresolved) ascent, in case it's needed later for
// baseline-alignment or to establish the container's baseline.
// (NOTE: This can be marked 'const' even though it's modifying mAscent,
// because mAscent is mutable. It's nice for this to be 'const', because it
// means our final reflow can iterate over const FlexItem pointers, and we
// can be sure it's not modifying those FlexItems, except via this method.)
void SetAscent(nscoord aAscent) const {
mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE
}
void SetHadMeasuringReflow() { mHadMeasuringReflow = true; }
void SetIsStretched() {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mIsStretched = true;
}
// Setter for margin components (for resolving "auto" margins)
void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMargin.Side(aSide, mCBWM) = aLength;
}
void ResolveStretchedCrossSize(nscoord aLineCrossSize);
// Resolves flex base size if flex-basis' used value is 'content', using this
// item's preferred aspect ratio and cross size.
void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput);
uint32_t NumAutoMarginsInMainAxis() const {
return NumAutoMarginsInAxis(MainAxis());
};
uint32_t NumAutoMarginsInCrossAxis() const {
return NumAutoMarginsInAxis(CrossAxis());
};
// Once the main size has been resolved, should we bother doing layout to
// establish the cross size?
bool CanMainSizeInfluenceCrossSize() const;
// Returns a main size, clamped by any definite min and max cross size
// converted through the preferred aspect ratio. The caller is responsible for
// ensuring that the flex item's preferred aspect ratio is not zero.
nscoord ClampMainSizeViaCrossAxisConstraints(
nscoord aMainSize, const ReflowInput& aItemReflowInput) const;
// Indicates whether we think this flex item needs a "final" reflow
// (after its final flexed size & final position have been determined).
//
// @param aAvailableBSizeForItem the available block-size for this item (in
// flex container's writing-mode)
// @return true if such a reflow is needed, or false if we believe it can
// simply be moved to its final position and skip the reflow.
bool NeedsFinalReflow(const nscoord aAvailableBSizeForItem) const;
// Gets the block frame that contains the flex item's content. This is
// Frame() itself or one of its descendants.
nsBlockFrame* BlockFrame() const;
protected:
// Helper called by the constructor, to set mNeedsMinSizeAutoResolution:
void CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker);
uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const;
// Values that we already know in constructor, and remain unchanged:
// The flex item's frame.
nsIFrame* mFrame = nullptr;
float mFlexGrow = 0.0f;
float mFlexShrink = 0.0f;
AspectRatio mAspectRatio;
// The flex item's writing mode.
WritingMode mWM;
// The flex container's writing mode.
WritingMode mCBWM;
// The flex container's main axis in flex container's writing mode.
LogicalAxis mMainAxis;
// Stored in flex container's writing mode.
LogicalMargin mBorderPadding;
// Stored in flex container's writing mode. Its value can change when we
// resolve "auto" marigns.
LogicalMargin mMargin;
// These are non-const so that we can lazily update them with the item's
// intrinsic size (obtained via a "measuring" reflow), when necessary.
// (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
nscoord mFlexBaseSize = 0;
nscoord mMainMinSize = 0;
nscoord mMainMaxSize = 0;
// mCrossMinSize and mCrossMaxSize are not changed after constructor.
nscoord mCrossMinSize = 0;
nscoord mCrossMaxSize = 0;
// Values that we compute after constructor:
nscoord mMainSize = 0;
nscoord mMainPosn = 0;
nscoord mCrossSize = 0;
nscoord mCrossPosn = 0;
// Mutable b/c it's set & resolved lazily, sometimes via const pointer. See
// comment above SetAscent().
// We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in
// with a real value if we end up reflowing this flex item. (But if we don't
// reflow this flex item, then this sentinel tells us that we don't know it
// yet & anyone who cares will need to explicitly request it.)
mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE;
// Temporary state, while we're resolving flexible widths (for our main size)
// XXXdholbert To save space, we could use a union to make these variables
// overlay the same memory as some other member vars that aren't touched
// until after main-size has been resolved. In particular, these could share
// memory with mMainPosn through mAscent, and mIsStretched.
float mShareOfWeightSoFar = 0.0f;
bool mIsFrozen = false;
bool mHadMinViolation = false;
bool mHadMaxViolation = false;
// Did this item get a preliminary reflow, to measure its desired height?
bool mHadMeasuringReflow = false;
// See IsStretched() documentation.
bool mIsStretched = false;
// Is this item a "strut" left behind by an element with visibility:collapse?
bool mIsStrut = false;
// See IsInlineAxisMainAxis() documentation. This is not changed after
// constructor.
bool mIsInlineAxisMainAxis = true;
// Does this item need to resolve a min-[width|height]:auto (in main-axis).
bool mNeedsMinSizeAutoResolution = false;
// Should we take care to treat this item's resolved BSize as indefinite?
bool mTreatBSizeAsIndefinite = false;
// Does this item have an auto margin in either main or cross axis?
bool mHasAnyAutoMargin = false;
// My "align-self" computed value (with "auto" swapped out for parent"s
// "align-items" value, in our constructor).
StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO};
// Flags for 'align-self' (safe/unsafe/legacy).
StyleAlignFlags mAlignSelfFlags{0};
};
/**
* Represents a single flex line in a flex container.
* Manages an array of the FlexItems that are in the line.
*/
class nsFlexContainerFrame::FlexLine final {
public:
explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {}
nscoord SumOfGaps() const {
return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0;
}
// Returns the sum of our FlexItems' outer hypothetical main sizes plus the
// sum of main axis {row,column}-gaps between items.
// ("outer" = margin-box, and "hypothetical" = before flexing)
nscoord TotalOuterHypotheticalMainSize() const {
return mTotalOuterHypotheticalMainSize;
}
// Accessors for our FlexItems & information about them:
//
// Note: Using IsEmpty() to ensure that the FlexLine is non-empty before
// calling FirstItem() or LastItem().
FlexItem& FirstItem() { return mItems[0]; }
const FlexItem& FirstItem() const { return mItems[0]; }
FlexItem& LastItem() { return mItems.LastElement(); }
const FlexItem& LastItem() const { return mItems.LastElement(); }
bool IsEmpty() const { return mItems.IsEmpty(); }
uint32_t NumItems() const { return mItems.Length(); }
nsTArray<FlexItem>& Items() { return mItems; }
const nsTArray<FlexItem>& Items() const { return mItems; }
// Adds the last flex item's hypothetical outer main-size and
// margin/border/padding to our totals. This should be called exactly once for
// each flex item, after we've determined that this line is the correct home
// for that item.
void AddLastItemToMainSizeTotals() {
const FlexItem& lastItem = Items().LastElement();
// Update our various bookkeeping member-vars:
if (lastItem.IsFrozen()) {
mNumFrozenItems++;
}
// Note: If our flex item is (or contains) a table with
// "table-layout:fixed", it may have a value near nscoord_MAX as its
// hypothetical main size. This means we can run into absurdly large sizes
// here, even when the author didn't explicitly specify anything huge.
// We'd really rather not allow that to cause integer overflow (e.g. we
// don't want that to make mTotalOuterHypotheticalMainSize overflow to a
// negative value), because that'd make us incorrectly think that we should
// grow our flex items rather than shrink them when it comes time to
// resolve flexible items. Hence, we sum up the hypothetical sizes using a
// helper function AddChecked() to avoid overflow.
mTotalItemMBP =
AddChecked(mTotalItemMBP, lastItem.MarginBorderPaddingSizeInMainAxis());
mTotalOuterHypotheticalMainSize =
AddChecked(mTotalOuterHypotheticalMainSize, lastItem.OuterMainSize());
// If the item added was not the first item in the line, we add in any gap
// space as needed.
if (NumItems() >= 2) {
mTotalOuterHypotheticalMainSize =
AddChecked(mTotalOuterHypotheticalMainSize, mMainGapSize);
}
}
// Computes the cross-size and baseline position of this FlexLine, based on
// its FlexItems.
void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
// Returns the cross-size of this line.
nscoord LineCrossSize() const { return mLineCrossSize; }
// Setter for line cross-size -- needed for cases where the flex container
// imposes a cross-size on the line. (e.g. for single-line flexbox, or for
// multi-line flexbox with 'align-content: stretch')
void SetLineCrossSize(nscoord aLineCrossSize) {
mLineCrossSize = aLineCrossSize;
}
/**
* Returns the offset within this line where any baseline-aligned FlexItems
* should place their baseline. The return value represents a distance from
* the line's cross-start edge.
*
* If there are no baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; }
/**
* Returns the offset within this line where any last baseline-aligned
* FlexItems should place their baseline. Opposite the case of the first
* baseline offset, this represents a distance from the line's cross-end
* edge (since last baseline-aligned items are flush to the cross-end edge).
* If we're internally reversing the axes, this instead represents the
* distance from the line's cross-start edge.
*
* If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord LastBaselineOffset() const { return mLastBaselineOffset; }
/**
* Returns the gap size in the main axis for this line. Used for gap
* calculations.
*/
nscoord MainGapSize() const { return mMainGapSize; }
// Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
// CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
void ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo);
void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker);
void PositionItemsInCrossAxis(nscoord aLineStartPosition,
const FlexboxAxisTracker& aAxisTracker);
private:
// Helpers for ResolveFlexibleLengths():
void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo);
void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration);
// Stores this line's flex items.
nsTArray<FlexItem> mItems;
// Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
// Mostly used for optimization purposes, e.g. to bail out early from loops
// when we can tell they have nothing left to do.
uint32_t mNumFrozenItems = 0;
// Sum of margin/border/padding for the FlexItems in this FlexLine.
nscoord mTotalItemMBP = 0;
// Sum of FlexItems' outer hypothetical main sizes and all main-axis
// {row,columnm}-gaps between items.
// (i.e. their flex base sizes, clamped via their min/max-size properties,
// plus their main-axis margin/border/padding, plus the sum of the gaps.)
nscoord mTotalOuterHypotheticalMainSize = 0;
nscoord mLineCrossSize = 0;
nscoord mFirstBaselineOffset = nscoord_MIN;
nscoord mLastBaselineOffset = nscoord_MIN;
// Maintain size of each {row,column}-gap in the main axis
const nscoord mMainGapSize;
};
// Information about a strut left behind by a FlexItem that's been collapsed
// using "visibility:collapse".
struct nsFlexContainerFrame::StrutInfo {
StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
: mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {}
uint32_t mItemIdx; // Index in the child list.
nscoord mStrutCrossSize; // The cross-size of this strut.
};
// Flex data shared by the flex container frames in a continuation chain, owned
// by the first-in-flow. The data is initialized at the end of the
// first-in-flow's Reflow().
struct nsFlexContainerFrame::SharedFlexData {
nsTArray<FlexLine> mLines;
// The final content main/cross size computed by DoFlexLayout.
nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE;
nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE;
// The frame property under which this struct is stored. Set only on the
// first-in-flow.
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData)
};
// Forward iterate all the FlexItems in aLines.
class nsFlexContainerFrame::FlexItemIterator final {
public:
explicit FlexItemIterator(const nsTArray<FlexLine>& aLines)
: mLineIter(aLines.begin()),
mLineIterEnd(aLines.end()),
mItemIter(mLineIter->Items().begin()),
mItemIterEnd(mLineIter->Items().end()) {
MOZ_ASSERT(mLineIter != mLineIterEnd,
"Flex container should have at least one FlexLine!");
if (mItemIter == mItemIterEnd) {
// The flex container is empty, so advance to mLineIterEnd.
++mLineIter;
MOZ_ASSERT(AtEnd());
}
}
void Next() {
MOZ_ASSERT(!AtEnd());
++mItemIter;
if (mItemIter == mItemIterEnd) {
// We are pointing to the end of the flex items, so advance to the next
// line.
++mLineIter;
if (mLineIter != mLineIterEnd) {
mItemIter = mLineIter->Items().begin();
mItemIterEnd = mLineIter->Items().end();
MOZ_ASSERT(mItemIter != mItemIterEnd,
"Why do we have a FlexLine with no FlexItem?");
}
}
}
bool AtEnd() const {
MOZ_ASSERT(
(mLineIter == mLineIterEnd && mItemIter == mItemIterEnd) ||
(mLineIter != mLineIterEnd && mItemIter != mItemIterEnd),
"Line & item iterators should agree on whether we're at the end!");
return mLineIter == mLineIterEnd;
}
const FlexItem& operator*() const {
MOZ_ASSERT(!AtEnd());
return mItemIter.operator*();
}
const FlexItem* operator->() const {
MOZ_ASSERT(!AtEnd());
return mItemIter.operator->();
}
private:
nsTArray<FlexLine>::const_iterator mLineIter;
nsTArray<FlexLine>::const_iterator mLineIterEnd;
nsTArray<FlexItem>::const_iterator mItemIter;
nsTArray<FlexItem>::const_iterator mItemIterEnd;
};
static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines,
nsTArray<StrutInfo>& aStruts) {
MOZ_ASSERT(aStruts.IsEmpty(),
"We should only build up StrutInfo once per reflow, so "
"aStruts should be empty when this is called");
uint32_t itemIdxInContainer = 0;
for (const FlexLine& line : aLines) {
for (const FlexItem& item : line.Items()) {
if (StyleVisibility::Collapse ==
item.Frame()->StyleVisibility()->mVisible) {
// Note the cross size of the line as the item's strut size.
aStruts.AppendElement(
StrutInfo(itemIdxInContainer, line.LineCrossSize()));
}
itemIdxInContainer++;
}
}
}
static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem(
const StyleContentDistribution& aAlignmentVal, bool aIsAlign) {
// Mask away any explicit fallback, to get the main (non-fallback) part of
// the specified value:
StyleAlignFlags specified = aAlignmentVal.primary;
// XXX strip off <overflow-position> bits until we implement it (bug 1311892)
specified &= ~StyleAlignFlags::FLAG_BITS;
// FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
// which requires that we ignore any author-provided explicit fallback value.
if (specified == StyleAlignFlags::NORMAL) {
// In a flex container, *-content: "'normal' behaves as 'stretch'".
// Do that conversion early, so it benefits from our 'stretch' special-case.
// https://drafts.csswg.org/css-align-3/#distribution-flex
specified = StyleAlignFlags::STRETCH;
}
if (!aIsAlign && specified == StyleAlignFlags::STRETCH) {
// In a flex container, in "justify-content Axis: [...] 'stretch' behaves
// as 'flex-start' (ignoring the specified fallback alignment, if any)."
// https://drafts.csswg.org/css-align-3/#distribution-flex
// So, we just directly return 'flex-start', & ignore explicit fallback..
return StyleAlignFlags::FLEX_START;
}
// TODO: Check for an explicit fallback value (and if it's present, use it)
// here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002.
// If there's no explicit fallback, use the implied fallback values for
// space-{between,around,evenly} (since those values only make sense with
// multiple alignment subjects), and otherwise just use the specified value:
if (specified == StyleAlignFlags::SPACE_BETWEEN) {
return StyleAlignFlags::START;
}
if (specified == StyleAlignFlags::SPACE_AROUND ||
specified == StyleAlignFlags::SPACE_EVENLY) {
return StyleAlignFlags::CENTER;
}
return specified;
}
bool nsFlexContainerFrame::DrainSelfOverflowList() {
return DrainAndMergeSelfOverflowList();
}
void nsFlexContainerFrame::AppendFrames(ChildListID aListID,
nsFrameList& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::AppendFrames(aListID, aFrameList);
}
void nsFlexContainerFrame::InsertFrames(
ChildListID aListID, nsIFrame* aPrevFrame,
const nsLineList::iterator* aPrevFrameLine, nsFrameList& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
aFrameList);
}
void nsFlexContainerFrame::RemoveFrame(ChildListID aListID,
nsIFrame* aOldFrame) {
MOZ_ASSERT(aListID == kPrincipalList, "unexpected child list");
#ifdef DEBUG
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
#endif
nsContainerFrame::RemoveFrame(aListID, aOldFrame);
}
StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
const FlexboxAxisTracker axisTracker(this);
// If we're row-oriented and the caller is asking about our inline axis (or
// alternately, if we're column-oriented and the caller is asking about our
// block axis), then the caller is really asking about our *main* axis.
// Otherwise, the caller is asking about our cross axis.
const bool isMainAxis =
(axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline));
const nsStylePosition* containerStylePos = StylePosition();
const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
: axisTracker.IsCrossAxisReversed();
StyleAlignFlags alignment{0};
StyleAlignFlags alignmentFlags{0};
if (isMainAxis) {
alignment = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mJustifyContent,
/*aIsAlign = */ false);
} else {
const StyleAlignFlags alignContent =
SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mAlignContent,
/*aIsAlign = */ true);
if (StyleFlexWrap::Nowrap != containerStylePos->mFlexWrap &&
alignContent != StyleAlignFlags::STRETCH) {
// Multi-line, align-content isn't stretch --> align-content determines
// this child's alignment in the cross axis.
alignment = alignContent;
} else {
// Single-line, or multi-line but the (one) line stretches to fill
// container. Respect align-self.
alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
// Extract and strip align flag bits
alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
alignment &= ~StyleAlignFlags::FLAG_BITS;
if (alignment == StyleAlignFlags::NORMAL) {
// "the 'normal' keyword behaves as 'start' on replaced
// absolutely-positioned boxes, and behaves as 'stretch' on all other
// absolutely-positioned boxes."
// https://drafts.csswg.org/css-align/#align-abspos
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced)
? StyleAlignFlags::START
: StyleAlignFlags::STRETCH;
}
}
}
// Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
if (alignment == StyleAlignFlags::FLEX_START) {
alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::FLEX_END) {
alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END;
} else if (alignment == StyleAlignFlags::LEFT ||
alignment == StyleAlignFlags::RIGHT) {
if (aLogicalAxis == eLogicalAxisInline) {
const bool isLeft = (alignment == StyleAlignFlags::LEFT);
alignment = (isLeft == GetWritingMode().IsBidiLTR())
? StyleAlignFlags::START
: StyleAlignFlags::END;
} else {
alignment = StyleAlignFlags::START;
}
} else if (alignment == StyleAlignFlags::BASELINE) {
alignment = StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::LAST_BASELINE) {
alignment = StyleAlignFlags::END;
}
return (alignment | alignmentFlags);
}
FlexItem* nsFlexContainerFrame::GenerateFlexItemForChild(
FlexLine& aLine, nsIFrame* aChildFrame,
const ReflowInput& aParentReflowInput,
const FlexboxAxisTracker& aAxisTracker, bool aHasLineClampEllipsis) {
const auto flexWM = aAxisTracker.GetWritingMode();
const auto childWM = aChildFrame->GetWritingMode();
// Note: we use GetStyleFrame() to access the sizing & flex properties here.
// This lets us correctly handle table wrapper frames as flex items since
// their inline-size and block-size properties are always 'auto'. In order for
// 'flex-basis:auto' to actually resolve to the author's specified inline-size
// or block-size, we need to dig through to the inner table.
const auto* stylePos =
nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition();
// Construct a StyleSizeOverrides for this flex item so that its ReflowInput
// below will use and resolve its flex base size rather than its corresponding
// preferred main size property (only for modern CSS flexbox).
StyleSizeOverrides sizeOverrides;
if (!IsLegacyBox(this)) {
Maybe<StyleSize> styleFlexBaseSize;
// When resolving flex base size, flex items use their 'flex-basis' property
// in place of their preferred main size (e.g. 'width') for sizing purposes,
// *unless* they have 'flex-basis:auto' in which case they use their
// preferred main size after all.
const auto& flexBasis = stylePos->mFlexBasis;
const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM);
if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) {
// If we get here, we're resolving the flex base size for a flex item, and
// we fall into the flexbox spec section 9.2 step 3, substep C (if we have
// a definite cross size) or E (if not).
if (aChildFrame->GetAspectRatio()) {
// FIXME: This is a workaround. Once bug 1670151 is fixed, aspect-ratio
// will be considered when resolving flex item's flex base size with the
// value 'max-content'.
styleFlexBaseSize.emplace(StyleSize::Auto());
} else {
styleFlexBaseSize.emplace(StyleSize::MaxContent());
}
} else if (flexBasis.IsSize() && !flexBasis.IsAuto()) {
// For all other non-'auto' flex-basis values, we just swap in the
// flex-basis itself for the preferred main-size property.
styleFlexBaseSize.emplace(flexBasis.AsSize());
} else {
// else: flex-basis is 'auto', which is deferring to some explicit value
// in the preferred main size.
MOZ_ASSERT(flexBasis.IsAuto());
styleFlexBaseSize.emplace(styleMainSize);
}
MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!");
// Provide the size override for the preferred main size property.
if (aAxisTracker.IsInlineAxisMainAxis(childWM)) {
sizeOverrides.mStyleISize = std::move(styleFlexBaseSize);
} else {
sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize);
}
// 'flex-basis' should works on the inner table frame for a table flex item,
// just like how 'height' works on a table element.
sizeOverrides.mApplyOverridesVerbatim = true;
}
// Create temporary reflow input just for sizing -- to get hypothetical
// main-size and the computed values of min / max main-size property.
// (This reflow input will _not_ be used for reflow.)
ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame,
aParentReflowInput.ComputedSize(childWM), Nothing(), {},
sizeOverrides);
childRI.mFlags.mInsideLineClamp = GetLineClampValue() != 0;
// FLEX GROW & SHRINK WEIGHTS
// --------------------------
float flexGrow, flexShrink;
if (IsLegacyBox(this)) {
if (GetLineClampValue() != 0) {
// Items affected by -webkit-line-clamp are always inflexible.
flexGrow = flexShrink = 0;
} else {
flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
}
} else {
flexGrow = stylePos->mFlexGrow;
flexShrink = stylePos->mFlexShrink;
}
// MAIN SIZES (flex base size, min/max size)
// -----------------------------------------
nscoord flexBaseSize = GET_MAIN_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedISize(), childRI.ComputedBSize());
nscoord mainMinSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord mainMaxSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM,
childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// This is enforced by the ReflowInput where these values come from:
MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
// CROSS SIZES (tentative cross size, min/max cross size)
// ------------------------------------------------------
// Grab the cross size from the reflow input. This might be the right value,
// or we might resolve it to something else in SizeItemInCrossAxis(); hence,
// it's tentative. See comment under "Cross Size Determination" for more.
nscoord tentativeCrossSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedISize(), childRI.ComputedBSize());
nscoord crossMinSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedMinISize(),
childRI.ComputedMinBSize());
nscoord crossMaxSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, childWM, childRI.ComputedMaxISize(),
childRI.ComputedMaxBSize());
// SPECIAL-CASE FOR WIDGET-IMPOSED SIZES
// Check if we're a themed widget, in which case we might have a minimum
// main & cross size imposed by our widget (which we can't go below), or
// (more severe) our widget might have only a single valid size.
bool isFixedSizeWidget = false;
const nsStyleDisplay* disp = aChildFrame->StyleDisplay();
if (aChildFrame->IsThemed(disp)) {
LayoutDeviceIntSize widgetMinSize;
bool canOverride = true;
PresContext()->Theme()->GetMinimumWidgetSize(PresContext(), aChildFrame,
disp->EffectiveAppearance(),
&widgetMinSize, &canOverride);
nscoord widgetMainMinSize = PresContext()->DevPixelsToAppUnits(
aAxisTracker.MainComponent(widgetMinSize));
nscoord widgetCrossMinSize = PresContext()->DevPixelsToAppUnits(
aAxisTracker.CrossComponent(widgetMinSize));
// GetMinimumWidgetSize() returns border-box. We need content-box, so
// subtract borderPadding.
const LogicalMargin bpInFlexWM =
childRI.ComputedLogicalBorderPadding(flexWM);
widgetMainMinSize -= aAxisTracker.MarginSizeInMainAxis(bpInFlexWM);
widgetCrossMinSize -= aAxisTracker.MarginSizeInCrossAxis(bpInFlexWM);
// ... (but don't let that push these min sizes below 0).
widgetMainMinSize = std::max(0, widgetMainMinSize);
widgetCrossMinSize = std::max(0, widgetCrossMinSize);
if (!canOverride) {
// Fixed-size widget: freeze our main-size at the widget's mandated size.
// (Set min and max main-sizes to that size, too, to keep us from
// clamping to any other size later on.)
flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize;
tentativeCrossSize = crossMinSize = crossMaxSize = widgetCrossMinSize;
isFixedSizeWidget = true;
} else {
// Variable-size widget: ensure our min/max sizes are at least as large
// as the widget's mandated minimum size, so we don't flex below that.
mainMinSize = std::max(mainMinSize, widgetMainMinSize);
mainMaxSize = std::max(mainMaxSize, widgetMainMinSize);
if (tentativeCrossSize != NS_UNCONSTRAINEDSIZE) {
tentativeCrossSize = std::max(tentativeCrossSize, widgetCrossMinSize);
}
crossMinSize = std::max(crossMinSize, widgetCrossMinSize);
crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize);
}
}
// Construct the flex item!
FlexItem* item = aLine.Items().EmplaceBack(
childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize,
tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker);
// We may be about to do computations based on our item's cross-size
// (e.g. using it as a constraint when measuring our content in the
// main axis, or using it with the preferred aspect ratio to obtain a main
// size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size
// (if it's got 'align-self:stretch'), for a certain case where the spec says
// the stretched cross size is considered "definite". That case is if we
// have a single-line (nowrap) flex container which itself has a definite
// cross-size. Otherwise, we'll wait to do stretching, since (in other
// cases) we don't know how much the item should stretch yet.
const bool isSingleLine =
StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
// XXXdholbert Maybe this should share logic with ComputeCrossSize()...
// Alternately, maybe tentative container cross size should be passed down.
nscoord containerCrossSize = GET_CROSS_COMPONENT_LOGICAL(
aAxisTracker, flexWM, aParentReflowInput.ComputedISize(),
aParentReflowInput.ComputedBSize());
// Is container's cross size "definite"?
// - If it's column-oriented, then "yes", because its cross size is its
// inline-size which is always definite from its descendants' perspective.
// - Otherwise (if it's row-oriented), then we check the actual size
// and call it definite if it's not NS_UNCONSTRAINEDSIZE.
if (aAxisTracker.IsColumnOriented() ||
containerCrossSize != NS_UNCONSTRAINEDSIZE) {
// Container's cross size is "definite", so we can resolve the item's
// stretched cross size using that.
item->ResolveStretchedCrossSize(containerCrossSize);
}
}
// Before thinking about freezing the item at its base size, we need to give
// it a chance to recalculate the base size from its cross size and aspect
// ratio (since its cross size might've *just* now become definite due to
// 'stretch' above)
item->ResolveFlexBaseSizeFromAspectRatio(childRI);
// If we're inflexible, we can just freeze to our hypothetical main-size
// up-front. Similarly, if we're a fixed-size widget, we only have one
// valid size, so we freeze to keep ourselves from flexing.
if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) {
item->Freeze();
if (flexBaseSize < mainMinSize) {
item->SetWasMinClamped();
} else if (flexBaseSize > mainMaxSize) {
item->SetWasMaxClamped();
}
}
// Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
// require us to reflow the item to measure content height)
ResolveAutoFlexBasisAndMinSize(*item, childRI, aAxisTracker,
aHasLineClampEllipsis);
return item;
}
// Static helper-functions for ResolveAutoFlexBasisAndMinSize():
// -------------------------------------------------------------
// Partially resolves "min-[width|height]:auto" and returns the resulting value.
// By "partially", I mean we don't consider the min-content size (but we do
// consider the main-size and main max-size properties, and the preferred aspect
// ratio). The caller is responsible for computing & considering the min-content
// size in combination with the partially-resolved value that this function
// returns.
//
// Basically, this function gets the specified size suggestion; if not, the
// transferred size suggestion; if both sizes do not exist, return nscoord_MAX.
//
// Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto
static nscoord PartiallyResolveAutoMinSize(
const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
"only call for FlexItems that need min-size auto resolution");
const auto itemWM = aFlexItem.GetWritingMode();
const auto cbWM = aAxisTracker.GetWritingMode();
const auto& mainStyleSize =
aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM);
const auto& maxMainStyleSize =
aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM);
const auto boxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? aFlexItem.BorderPadding().Size(cbWM)
: LogicalSize(cbWM);
// If this flex item is a compressible replaced element list in CSS Sizing 3
// §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of
// the preferred main size property against zero, yielding a definite
// specified size suggestion. Here we can use a zero percentage basis to
// fulfill this requirement.
const auto percentBasis =
aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize,
maxMainStyleSize)
? LogicalSize(cbWM, 0, 0)
: aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM);
// Compute the specified size suggestion, which is the main-size property if
// it's definite.
nscoord specifiedSizeSuggestion = nscoord_MAX;
if (aAxisTracker.IsRowOriented()) {
if (mainStyleSize.IsLengthPercentage()) {
// NOTE: We ignore extremum inline-size. This is OK because the caller is
// responsible for computing the min-content inline-size and min()'ing it
// with the value we return.
specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue(
cbWM, percentBasis, boxSizingAdjust,
mainStyleSize.AsLengthPercentage());
}
} else {
if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) {
// NOTE: We ignore auto and extremum block-size. This is OK because the
// caller is responsible for computing the min-content block-size and
// min()'ing it with the value we return.
specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue(
percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM),
mainStyleSize.AsLengthPercentage());
}
}
if (specifiedSizeSuggestion != nscoord_MAX) {
// We have the specified size suggestion. Return it now since we don't need
// to consider transferred size suggestion.
FLEX_LOGV(" Specified size suggestion: %d", specifiedSizeSuggestion);
return specifiedSizeSuggestion;
}
// Compute the transferred size suggestion, which is the cross size converted
// through the aspect ratio (if the item is replaced, and it has an aspect
// ratio and a definite cross size).
if (const auto& aspectRatio = aFlexItem.GetAspectRatio();
aFlexItem.Frame()->IsFrameOfType(nsIFrame::eReplaced) && aspectRatio &&
aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) {
// We have a usable aspect ratio. (not going to divide by 0)
nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize(
aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust);
// Clamp the transferred size suggestion by any definite min and max
// cross size converted through the aspect ratio.
transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
transferredSizeSuggestion, aItemReflowInput);
FLEX_LOGV(" Transferred size suggestion: %d", transferredSizeSuggestion);
return transferredSizeSuggestion;
}
return nscoord_MAX;
}
// Note: If & when we handle "min-height: min-content" for flex items,
// we may want to resolve that in this function, too.
void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize(
FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker, bool aHasLineClampEllipsis) {
// (Note: We can guarantee that the flex-basis will have already been
// resolved if the main axis is the same as the item's inline
// axis. Inline-axis values should always be resolvable without reflow.)
const bool isMainSizeAuto =
(!aFlexItem.IsInlineAxisMainAxis() &&
NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize());
const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
if (!isMainSizeAuto && !isMainMinSizeAuto) {
// Nothing to do; this function is only needed for flex items
// with a used flex-basis of "auto" or a min-main-size of "auto".
return;
}
FLEX_LOGV("Resolving auto main size or auto min main size for flex item %p",
aFlexItem.Frame());
nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true)
bool minSizeNeedsToMeasureContent = false; // assume the best
if (isMainMinSizeAuto) {
// Resolve the min-size, except for considering the min-content size.
// (We'll consider that later, if we need to.)
resolvedMinSize =
PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker);
if (resolvedMinSize > 0) {
// If resolvedMinSize were already at 0, we could skip calculating content
// size suggestion because it can't go any lower.
minSizeNeedsToMeasureContent = true;
}
}
const bool flexBasisNeedsToMeasureContent = isMainSizeAuto;
// Measure content, if needed (w/ intrinsic-width method or a reflow)
if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
// Compute the content size suggestion, which is the min-content size in the
// main axis.
nscoord contentSizeSuggestion = nscoord_MAX;
if (aFlexItem.IsInlineAxisMainAxis()) {
if (minSizeNeedsToMeasureContent) {
// Compute the flex item's content size suggestion, which is the
// 'min-content' size on the main axis.
// https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
const auto cbWM = aAxisTracker.GetWritingMode();
const auto itemWM = aFlexItem.GetWritingMode();
const nscoord availISize = 0; // for min-content size
StyleSizeOverrides sizeOverrides;
sizeOverrides.mStyleISize.emplace(StyleSize::Auto());
const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize(
aItemReflowInput.mRenderingContext, itemWM,
aItemReflowInput.mContainingBlockSize, availISize,
aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM),
aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM),
sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
contentSizeSuggestion = aAxisTracker.MainComponent(
sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM));
}
NS_ASSERTION(!flexBasisNeedsToMeasureContent,
"flex-basis:auto should have been resolved in the "
"reflow input, for horizontal flexbox. It shouldn't need "
"special handling here");
} else {
// If this item is flexible (in its block axis)...
// OR if we're measuring its 'auto' min-BSize, with its main-size (in its
// block axis) being something non-"auto"...
// THEN: we assume that the computed BSize that we're reflowing with now
// could be different from the one we'll use for this flex item's
// "actual" reflow later on. In that case, we need to be sure the flex
// item treats this as a block-axis resize (regardless of whether there
// are actually any ancestors being resized in that axis).
// (Note: We don't have to do this for the inline axis, because
// InitResizeFlags will always turn on mIsIResize on when it sees that
// the computed ISize is different from current ISize, and that's all we
// need.)
bool forceBResizeForMeasuringReflow =
!aFlexItem.IsFrozen() || // Is the item flexible?
!flexBasisNeedsToMeasureContent; // Are we *only* measuring it for
// 'min-block-size:auto'?
const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput;
nscoord contentBSize =
MeasureFlexItemContentBSize(aFlexItem, forceBResizeForMeasuringReflow,
aHasLineClampEllipsis, flexContainerRI);
if (minSizeNeedsToMeasureContent) {
contentSizeSuggestion = contentBSize;
}
if (flexBasisNeedsToMeasureContent) {
aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
}
}
if (minSizeNeedsToMeasureContent) {
// Clamp the content size suggestion by any definite min and max cross
// size converted through the aspect ratio.
if (aFlexItem.HasAspectRatio()) {
contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
contentSizeSuggestion, aItemReflowInput);
}
FLEX_LOGV(" Content size suggestion: %d", contentSizeSuggestion);
resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion);
// Clamp the resolved min main size by the max main size if it's definite.
if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) {
resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize());
}
FLEX_LOGV(" Resolved auto min main size: %d", resolvedMinSize);
}
}
if (isMainMinSizeAuto) {
aFlexItem.UpdateMainMinSize(resolvedMinSize);
}
}
/**
* A cached result for a flex item's block-axis measuring reflow. This cache
* prevents us from doing exponential reflows in cases of deeply nested flex
* and scroll frames.
*
* We store the cached value in the flex item's frame property table, for
* simplicity.
*
* Right now, we cache the following as a "key", from the item's ReflowInput:
* - its ComputedSize
* - its min/max block size (in case its ComputedBSize is unconstrained)
* - its AvailableBSize
* ...and we cache the following as the "value", from the item's ReflowOutput:
* - its final content-box BSize
*
* The assumption here is that a given flex item measurement from our "value"
* won't change unless one of the pieces of the "key" change, or the flex
* item's intrinsic size is marked as dirty (due to a style or DOM change).
* (The latter will cause the cached value to be discarded, in
* nsIFrame::MarkIntrinsicISizesDirty.)
*
* Note that the components of "Key" (mComputed{MinB,MaxB,}Size and
* mAvailableBSize) are sufficient to catch any changes to the flex container's
* size that the item may care about for its measuring reflow. Specifically:
* - If the item cares about the container's size (e.g. if it has a percent
* height and the container's height changes, in a horizontal-WM container)
* then that'll be detectable via the item's ReflowInput's "ComputedSize()"
* differing from the value in our Key. And the same applies for the
* inline axis.
* - If the item is fragmentable (pending bug 939897) and its measured BSize
* depends on where it gets fragmented, then that sort of change can be
* detected due to the item's ReflowInput's "AvailableBSize()" differing
* from the value in our Key.
*
* One particular case to consider (& need to be sure not to break when
* changing this class): the flex item's computed BSize may change between
* measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects
* size computation (see bug 1336708). This is one reason we need to use the
* computed BSize as part of the key.
*/
class nsFlexContainerFrame::CachedBAxisMeasurement {
struct Key {
const LogicalSize mComputedSize;
const nscoord mComputedMinBSize;
const nscoord mComputedMaxBSize;
const nscoord mAvailableBSize;
explicit Key(const ReflowInput& aRI)
: mComputedSize(aRI.ComputedSize()),
mComputedMinBSize(aRI.ComputedMinBSize()),
mComputedMaxBSize(aRI.ComputedMaxBSize()),
mAvailableBSize(aRI.AvailableBSize()) {}
bool operator==(const Key& aOther) const {
return mComputedSize == aOther.mComputedSize &&
mComputedMinBSize == aOther.mComputedMinBSize &&
mComputedMaxBSize == aOther.mComputedMaxBSize &&
mAvailableBSize == aOther.mAvailableBSize;
}
};
const Key mKey;
// This could/should be const, but it's non-const for now just because it's
// assigned via a series of steps in the constructor body:
nscoord mBSize;
public:
CachedBAxisMeasurement(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput)
: mKey(aReflowInput) {
// To get content-box bsize, we have to subtract off border & padding
// (and floor at 0 in case the border/padding are too large):
WritingMode itemWM = aReflowInput.GetWritingMode();
nscoord borderBoxBSize = aReflowOutput.BSize(itemWM);
mBSize =
borderBoxBSize -
aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM);
mBSize = std::max(0, mBSize);
}
/**
* Returns true if this cached flex item measurement is valid for (i.e. can
* be expected to match the output of) a measuring reflow whose input
* parameters are given via aReflowInput.
*/
bool IsValidFor(const ReflowInput& aReflowInput) const {
return mKey == Key(aReflowInput);
}
nscoord BSize() const { return mBSize; }
};
/**
* When we instantiate/update a CachedFlexItemData, this enum must be used to
* indicate the sort of reflow whose results we're capturing. This impacts
* what we cache & how we use the cached information.
*/
enum class FlexItemReflowType {
// A reflow to measure the block-axis size of a flex item (as an input to the
// flex layout algorithm).
Measuring,
// A reflow with the flex item's "final" size at the end of the flex layout
// algorithm.
Final,
};
/**
* This class stores information about the conditions and results for the most
* recent ReflowChild call that we made on a given flex item. This information
* helps us reason about whether we can assume that a subsequent ReflowChild()
* invocation is unnecessary & skippable.
*/
class nsFlexContainerFrame::CachedFlexItemData {
public:
CachedFlexItemData(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput,
FlexItemReflowType aType) {
if (aType == FlexItemReflowType::Measuring) {
mBAxisMeasurement.emplace(aReflowInput, aReflowOutput);
} else {
UpdateFinalReflowSize(aReflowInput, aReflowOutput);
}
}
// This method is intended to be called just after we perform a "final
// reflow" for a given flex item.
void UpdateFinalReflowSize(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput) {
auto wm = aReflowInput.GetWritingMode();
// Update the cached size:
mFinalReflowSize.reset();
mFinalReflowSize.emplace(
aReflowOutput.Size(wm) -
aReflowInput.ComputedLogicalBorderPadding(wm).Size(wm));
// Save whether this reflow's BSize was considered definite vs. indefinite.
// (For a flex item "final reflow", this is 100% determined by the
// "mTreatBSizeAsIndefinite" ReflowInput flag -- when we get to this
// reflow, the flex container has already resolved an exact BSize for the
// flex item (it has to, in order position/size the item in its axes); and
// the only question is whether we're pretending that BSize is definite
// vs. indefinite.)
mLastReflowTreatedBSizeAsIndefinite =
aReflowInput.mFlags.mTreatBSizeAsIndefinite;
}
// This method is intended to be called for situations where we decide to
// skip a final reflow because we've just done a measuring reflow which left
// us (and our descendants) with the correct sizes. In this scenario, we
// still want to cache the size as if we did a final reflow (because we've
// determined that the recent measuring reflow was sufficient). That way,
// our flex container can still skip a final reflow for this item in the
// future as long as conditions are right.
void UpdateFinalReflowSize(const FlexItem& aItem, const LogicalSize& aSize) {
MOZ_ASSERT(!mFinalReflowSize,
"This version of the method is only intended to be called when "
"the most recent reflow was a 'measuring reflow'; and that "
"should have cleared out mFinalReflowSize");
mFinalReflowSize.reset(); // Just in case this assert^ fails.
mFinalReflowSize.emplace(aSize);
mLastReflowTreatedBSizeAsIndefinite = aItem.TreatBSizeAsIndefinite();
}
// If the flex container needs a measuring reflow for the flex item, then the
// resulting block-axis measurements can be cached here. If no measurement
// has been needed so far, then this member will be Nothing().
Maybe<CachedBAxisMeasurement> mBAxisMeasurement;
// Content-box size that the corresponding flex item used in its most recent
// "final reflow". (Note: the assumption here is that this reflow was this
// item's most recent reflow of any type. If the item ends up undergoing a
// subsequent measuring reflow, then this value needs to be cleared, because
// at that point it's no longer an accurate way of reasoning about the
// current state of the frame tree.)
Maybe<LogicalSize> mFinalReflowSize;
// True if the flex item's BSize was considered "indefinite" in its most
// recent "final reflow". (This bool is only meaningful if mFinalReflowSize
// is set; hence, the initial value is meaningless, but initialized to false
// to appease compilers' uninitialized-value checkers.)
bool mLastReflowTreatedBSizeAsIndefinite = false;
// Instances of this class are stored under this frame property, on
// frames that are flex items:
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData)
};
void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(
nsIFrame* aItemFrame) {
MOZ_ASSERT(aItemFrame->IsFlexItem());
if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) {
cache->mBAxisMeasurement.reset();
cache->mFinalReflowSize.reset();
}
}
const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem(
FlexItem& aItem, ReflowInput& aChildReflowInput) {
auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop());
if (cachedData && cachedData->mBAxisMeasurement) {
if (!aItem.Frame()->IsSubtreeDirty() &&
cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) {
return *(cachedData->mBAxisMeasurement);
}
FLEX_LOG("[perf] MeasureBSizeForFlexItem rejected cached value");
} else {
FLEX_LOG("[perf] MeasureBSizeForFlexItem didn't have a cached value");
}
ReflowOutput childReflowOutput(aChildReflowInput);
nsReflowStatus childReflowStatus;
const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame;
const WritingMode outerWM = GetWritingMode();
const LogicalPoint dummyPosition(outerWM);
const nsSize dummyContainerSize;
// We use NoMoveFrame, so the position and container size used here are
// unimportant.
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
aChildReflowInput, outerWM, dummyPosition, dummyContainerSize,
flags, childReflowStatus);
aItem.SetHadMeasuringReflow();
// We always use unconstrained available block-size to measure flex items,
// which means they should always complete.
MOZ_ASSERT(childReflowStatus.IsComplete(),
"We gave flex item unconstrained available block-size, so it "
"should be complete");
// Tell the child we're done with its initial reflow.
// (Necessary for e.g. GetBaseline() to work below w/out asserting)
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
&aChildReflowInput, outerWM, dummyPosition,
dummyContainerSize, flags);
aItem.SetAscent(childReflowOutput.BlockStartAscent());
// Update (or add) our cached measurement, so that we can hopefully skip this
// measuring reflow the next time around:
if (cachedData) {
cachedData->mBAxisMeasurement.reset();
cachedData->mBAxisMeasurement.emplace(aChildReflowInput, childReflowOutput);
// Clear any cached "last final-reflow size", too, because now the most
// recent reflow was *not* a "final reflow".
cachedData->mFinalReflowSize.reset();
} else {
cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput,
FlexItemReflowType::Measuring);
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData);
}
return *(cachedData->mBAxisMeasurement);
}
/* virtual */
void nsFlexContainerFrame::MarkIntrinsicISizesDirty() {
mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
nsContainerFrame::MarkIntrinsicISizesDirty();
}
nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize(
FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow,
bool aHasLineClampEllipsis, const ReflowInput& aParentReflowInput) {
FLEX_LOG("Measuring flex item's content block-size");
// Set up a reflow input for measuring the flex item's content block-size:
WritingMode wm = aFlexItem.Frame()->GetWritingMode();
LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
StyleSizeOverrides sizeOverrides;
if (aFlexItem.IsStretched()) {
sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize());
// Suppress any AspectRatio that we might have to prevent ComputeSize() from
// transferring our inline-size override through the aspect-ratio to set the
// block-size, because that would prevent us from measuring the content
// block-size.
sizeOverrides.mAspectRatio.emplace(AspectRatio());
FLEX_LOGV(" Cross size override: %d", aFlexItem.CrossSize());
}
sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
ReflowInput childRIForMeasuringBSize(
PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize,
Nothing(), ReflowInput::InitFlag::CallerWillInit, sizeOverrides);
childRIForMeasuringBSize.mFlags.mInsideLineClamp = GetLineClampValue() != 0;
childRIForMeasuringBSize.mFlags.mApplyLineClamp =
childRIForMeasuringBSize.mFlags.mInsideLineClamp || aHasLineClampEllipsis;
childRIForMeasuringBSize.Init(PresContext());
// When measuring flex item's content block-size, disregard the item's
// min-block-size and max-block-size by resetting both to to their
// unconstraining (extreme) values. The flexbox layout algorithm does still
// explicitly clamp both sizes when resolving the target main size.
childRIForMeasuringBSize.ComputedMinBSize() = 0;
childRIForMeasuringBSize.ComputedMaxBSize() = NS_UNCONSTRAINEDSIZE;
if (aForceBResizeForMeasuringReflow) {
childRIForMeasuringBSize.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true;
}
const CachedBAxisMeasurement& measurement =
MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize);
return measurement.BSize();
}
FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aFlexBaseSize,
nscoord aMainMinSize, nscoord aMainMaxSize,
nscoord aTentativeCrossSize, nscoord aCrossMinSize,
nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aFlexItemReflowInput.mFrame),
mFlexGrow(aFlexGrow),
mFlexShrink(aFlexShrink),
mAspectRatio(mFrame->GetAspectRatio()),
mWM(aFlexItemReflowInput.GetWritingMode()),
mCBWM(aAxisTracker.GetWritingMode()),
mMainAxis(aAxisTracker.MainAxis()),
mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)),
mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)),
mMainMinSize(aMainMinSize),
mMainMaxSize(aMainMaxSize),
mCrossMinSize(aCrossMinSize),
mCrossMaxSize(aCrossMaxSize),
mCrossSize(aTentativeCrossSize),
mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM))
// mNeedsMinSizeAutoResolution is initialized in CheckForMinSizeAuto()
// mAlignSelf, mHasAnyAutoMargin see below
{
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
MOZ_ASSERT(mIsInlineAxisMainAxis ==
nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
"public API should be consistent with internal state (about "
"whether flex item's inline axis is flex container's main axis)");
const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
if (IsLegacyBox(containerRS->mFrame)) {
// For -webkit-{inline-}box and -moz-{inline-}box, we need to:
// (1) Use prefixed "box-align" instead of "align-items" to determine the
// container's cross-axis alignment behavior.
// (2) Suppress the ability for flex items to override that with their own
// cross-axis alignment. (The legacy box model doesn't support this.)
// So, each FlexItem simply copies the container's converted "align-items"
// value and disregards their own "align-self" property.
const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)};
mAlignSelfFlags = {0};
} else {
mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
containerRS->mFrame->Style());
if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) {
mAlignSelf = {StyleAlignFlags::STRETCH};
}
// Store and strip off the <overflow-position> bits
mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS;
mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS;
}
// Our main-size is considered definite if any of these are true:
// (a) main axis is the item's inline axis.
// (b) flex container has definite main size.
// (c) flex item has a definite flex basis.
//
// Hence, we need to take care to treat the final main-size as *indefinite*
// if none of these conditions are satisfied.
if (mIsInlineAxisMainAxis) {
// The item's block-axis is the flex container's cross axis. We don't need
// any special handling to treat cross sizes as indefinite, because the
// cases where we stomp on the cross size with a definite value are all...
// - situations where the spec requires us to treat the cross size as
// definite; specifically, `align-self:stretch` whose cross size is
// definite.
// - situations where definiteness doesn't matter (e.g. for an element with
// an aspect ratio, which for now are all leaf nodes and hence
// can't have any percent-height descendants that would care about the
// definiteness of its size. (Once bug 1528375 is fixed, we might need to
// be more careful about definite vs. indefinite sizing on flex items with
// aspect ratios.)
mTreatBSizeAsIndefinite = false;
} else {
// The item's block-axis is the flex container's main axis. So, the flex
// item's main size is its BSize, and is considered definite under certain
// conditions laid out for definite flex-item main-sizes in the spec.
if (aAxisTracker.IsRowOriented() ||
(containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE &&
!containerRS->mFlags.mTreatBSizeAsIndefinite)) {
// The flex *container* has a definite main-size (either by being
// row-oriented [and using its own inline size which is by definition
// definite, or by being column-oriented and having a definite
// block-size). The spec says this means all of the flex items'
// post-flexing main sizes should *also* be treated as definite.
mTreatBSizeAsIndefinite = false;
} else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) {
// The flex item has a definite flex basis, which we'll treat as making
// its main-size definite.
mTreatBSizeAsIndefinite = false;
} else {
// Otherwise, we have to treat the item's BSize as indefinite.
mTreatBSizeAsIndefinite = true;
}
}
SetFlexBaseSizeAndMainSize(aFlexBaseSize);
CheckForMinSizeAuto(aFlexItemReflowInput, aAxisTracker);
const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin;
mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) ||
styleMargin->HasBlockAxisAuto(mCBWM);
// Assert that any "auto" margin components are set to 0.
// (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
{
for (const auto side : AllLogicalSides()) {
if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) {
MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
"Someone else tried to resolve our auto margin");
}
}
}
#endif // DEBUG
// Map align-self 'baseline' value to 'start' when baseline alignment
// is not possible because the FlexItem's block axis is orthogonal to
// the cross axis of the container. If that's the case, we just directly
// convert our align-self value here, so that we don't have to handle this
// with special cases elsewhere.
// We are treating this case as one where it is appropriate to use the
// fallback values defined at https://www.w3.org/TR/css-align/#baseline-values
if (!IsBlockAxisCrossAxis()) {
if (mAlignSelf._0 == StyleAlignFlags::BASELINE) {
mAlignSelf = {StyleAlignFlags::FLEX_START};
} else if (mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) {
mAlignSelf = {StyleAlignFlags::FLEX_END};
}
}
}
// Simplified constructor for creating a special "strut" FlexItem, for a child
// with visibility:collapse. The strut has 0 main-size, and it only exists to
// impose a minimum cross size on whichever FlexLine it ends up in.
FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
WritingMode aContainerWM,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aChildFrame),
mWM(aContainerWM),
mCBWM(aContainerWM),
mMainAxis(aAxisTracker.MainAxis()),
mBorderPadding(mCBWM),
mMargin(mCBWM),
mCrossSize(aCrossSize),
// Struts don't do layout, so its WM doesn't matter at this point. So, we
// just share container's WM for simplicity:
mIsFrozen(true),
mIsStrut(true), // (this is the constructor for making struts, after all)
mAlignSelf({StyleAlignFlags::FLEX_START}) {
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(StyleVisibility::Collapse == mFrame->StyleVisibility()->mVisible,
"Should only make struts for children with 'visibility:collapse'");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
}
void FlexItem::CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
const nsStylePosition* pos = aFlexItemReflowInput.mStylePosition;
const nsStyleDisplay* disp = aFlexItemReflowInput.mStyleDisplay;
// We'll need special behavior for "min-[width|height]:auto" (whichever is in
// the flex container's main axis) iff:
// (a) its computed value is "auto"
// (b) the "overflow" sub-property in the same axis (the main axis) has a
// computed value of "visible" and the item does not create a scroll
// container.
const auto& mainMinSize = aAxisTracker.IsRowOriented()
? pos->MinISize(aAxisTracker.GetWritingMode())
: pos->MinBSize(aAxisTracker.GetWritingMode());
// If the scrollable overflow makes us create a scroll container, then we
// don't need to do any extra resolution for our `min-size:auto` value.
// We don't need to check for scrollable overflow in a particular axis
// because this will be true for both or neither axis.
mNeedsMinSizeAutoResolution =
IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) &&
!disp->IsScrollableOverflow();
}
nscoord FlexItem::BaselineOffsetFromOuterCrossEdge(
mozilla::Side aStartSide, bool aUseFirstLineBaseline) const {
// NOTE:
// * We only use baselines for aligning in the flex container's cross axis.
// * Baselines are a measurement in the item's block axis.
// ...so we only expect to get here if the item's block axis is parallel (or
// antiparallel) to the container's cross axis. (Otherwise, the FlexItem
// constructor should've resolved mAlignSelf with a fallback value, which
// would prevent this function from being called.)
MOZ_ASSERT(IsBlockAxisCrossAxis(),
"Only expecting to be doing baseline computations when the "
"cross axis is the block axis");
mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart);
nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) +
PhysicalMargin().Side(itemBlockStartSide);
return (aStartSide == itemBlockStartSide)
? marginBStartToBaseline
: OuterCrossSize() - marginBStartToBaseline;
}
bool FlexItem::IsCrossSizeAuto() const {
const nsStylePosition* stylePos =
nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition();
// Check whichever component is in the flex container's cross axis.
// (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in
// terms of our own WritingMode, mWM.)
return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto()
: stylePos->BSize(mWM).IsAuto();
}
bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const {
if (IsStretched()) {
// Definite cross-size, imposed via 'align-self:stretch' & flex container.
return true;
}
const nsStylePosition* pos = aItemReflowInput.mStylePosition;
const auto itemWM = GetWritingMode();
// The logic here should be similar to the logic for isAutoISize/isAutoBSize
// in nsContainerFrame::ComputeSizeWithIntrinsicDimensions().
if (IsInlineAxisCrossAxis()) {
return !pos->ISize(itemWM).IsAuto();
}
nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM);
return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize);
}
void FlexItem::ResolveFlexBaseSizeFromAspectRatio(
const ReflowInput& aItemReflowInput) {
// This implements the Flex Layout Algorithm Step 3B:
// https://drafts.csswg.org/css-flexbox-1/#algo-main-item
// If the flex item has ...
// - an aspect ratio,
// - a [used] flex-basis of 'content', and
// - a definite cross size
// then the flex base size is calculated from its inner cross size and the
// flex item's preferred aspect ratio.
if (HasAspectRatio() &&
nsFlexContainerFrame::IsUsedFlexBasisContent(
aItemReflowInput.mStylePosition->mFlexBasis,
aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) &&
IsCrossSizeDefinite(aItemReflowInput)) {
const LogicalSize contentBoxSizeToBoxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? BorderPadding().Size(mCBWM)
: LogicalSize(mCBWM);
const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust);
SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
}
}
uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const {
uint32_t numAutoMargins = 0;
const auto& styleMargin = mFrame->StyleMargin()->mMargin;
for (const auto edge : {eLogicalEdgeStart, eLogicalEdgeEnd}) {
const auto side = MakeLogicalSide(aAxis, edge);
if (styleMargin.Get(mCBWM, side).IsAuto()) {
numAutoMargins++;
}
}
// Mostly for clarity:
MOZ_ASSERT(numAutoMargins <= 2,
"We're just looking at one item along one dimension, so we "
"should only have examined 2 margins");
return numAutoMargins;
}
bool FlexItem::CanMainSizeInfluenceCrossSize() const {
if (mIsStretched) {
// We've already had our cross-size stretched for "align-self:stretch").
// The container is imposing its cross size on us.
return false;
}
if (mIsStrut) {
// Struts (for visibility:collapse items) have a predetermined size;
// no need to measure anything.
return false;
}
if (HasAspectRatio()) {
// For flex items that have an aspect ratio (and maintain it, i.e. are
// not stretched, which we already checked above): changes to main-size
// *do* influence the cross size.
return true;
}
if (IsInlineAxisCrossAxis()) {
// If we get here, this function is really asking: "can changes to this
// item's block size have an influence on its inline size"? For blocks and
// tables, the answer is "no".
if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) {
// XXXdholbert (Maybe use an IsFrameOfType query or something more
// general to test this across all frame types? For now, I'm just
// optimizing for block and table, since those are common containers that
// can contain arbitrarily-large subtrees (and that reliably have ISize
// being unaffected by BSize, per CSS2). So optimizing away needless
// relayout is possible & especially valuable for these containers.)
return false;
}
// Other opt-outs can go here, as they're identified as being useful
// (particularly for containers where an extra reflow is expensive). But in
// general, we have to assume that a flexed BSize *could* influence the
// ISize. Some examples where this can definitely happen:
// * Intrinsically-sized multicol with fixed-ISize columns, which adds
// columns (i.e. grows in inline axis) depending on its block size.
// * Intrinsically-sized multi-line column-oriented flex container, which
// adds flex lines (i.e. grows in inline axis) depending on its block size.
}
// Default assumption, if we haven't proven otherwise: the resolved main size
// *can* change the cross size.
return true;
}
nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints(
nscoord aMainSize, const ReflowInput& aItemReflowInput) const {
MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!");
const LogicalSize contentBoxSizeToBoxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? BorderPadding().Size(mCBWM)
: LogicalSize(mCBWM);
const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust);
nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio);
if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) {
const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust);
clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio);
}
return clampedMainSize;
}
/**
* Returns true if aFrame or any of its children have the
* NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or
* their descendants) might have a relative-BSize dependency on aFrame (or its
* ancestors).
*/
static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) {
if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
return true;
}
for (const auto& childList : aFrame->ChildLists()) {
for (nsIFrame* childFrame : childList.mList) {
if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
return true;
}
}
}
return false;
}
bool FlexItem::NeedsFinalReflow(const nscoord aAvailableBSizeForItem) const {
MOZ_ASSERT(
aAvailableBSizeForItem == NS_UNCONSTRAINEDSIZE ||
aAvailableBSizeForItem > 0,
"We can only handle unconstrained or positive available block-size.");
// NOTE: even if aAvailableBSizeForItem == NS_UNCONSTRAINEDSIZE we can still
// have continuations from an earlier constrained reflow.
if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) {
// This is an item has continuation(s). Reflow it.
FLEX_LOG("[frag] Flex item %p needed a final reflow due to continuation(s)",
mFrame);
return true;
}
// Bug 1637091: We can do better and skip this flex item's final reflow if
// both this flex item's block-size and overflow areas can fit the
// aAvailableBSizeForItem.
if (aAvailableBSizeForItem != NS_UNCONSTRAINEDSIZE) {
FLEX_LOG(
"[frag] Flex item %p needed both a measuring reflow and a final "
"reflow due to constrained available block-size",
mFrame);
return true;
}
// Flex item's final content-box size (in terms of its own writing-mode):
const LogicalSize finalSize = mIsInlineAxisMainAxis
? LogicalSize(mWM, mMainSize, mCrossSize)
: LogicalSize(mWM, mCrossSize, mMainSize);
if (HadMeasuringReflow()) {
// We've already reflowed this flex item once, to measure it. In that
// reflow, did its frame happen to end up with the correct final size
// that the flex container would like it to have?
if (finalSize != mFrame->ContentSize(mWM)) {
// The measuring reflow left the item with a different size than its
// final flexed size. So, we need to reflow to give it the correct size.
FLEX_LOG(
"[perf] Flex item %p needed both a measuring reflow and a final "
"reflow due to measured size disagreeing with final size",
mFrame);
return true;
}
if (FrameHasRelativeBSizeDependency(mFrame)) {
// This item has descendants with relative BSizes who may care that its
// size may now be considered "definite" in the final reflow (whereas it
// was indefinite during the measuring reflow).
FLEX_LOG(
"[perf] Flex item %p needed both a measuring reflow and a final "
"reflow due to BSize potentially becoming definite",
mFrame);
return true;
}
// If we get here, then this flex item had a measuring reflow, it left us
// with the correct size, none of its descendants care that its BSize may
// now be considered definite, and it can fit into the available block-size.
// So it doesn't need a final reflow.
//
// We now cache this size as if we had done a final reflow (because we've
// determined that the measuring reflow was effectively equivalent). This
// way, in our next time through flex layout, we may be able to skip both
// the measuring reflow *and* the final reflow (if conditions are the same
// as they are now).
if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) {
cache->UpdateFinalReflowSize(*this, finalSize);
}
return false;
}
// This item didn't receive a measuring reflow (at least, not during this
// reflow of our flex container). We may still be able to skip reflowing it
// (i.e. return false from this function), if its subtree is clean & its most
// recent "final reflow" had it at the correct content-box size &
// definiteness.
// Let's check for each condition that would still require us to reflow:
if (mFrame->IsSubtreeDirty()) {
FLEX_LOG(
"[perf] Flex item %p needed a final reflow due to its subtree "
"being dirty",
mFrame);
return true;
}
// Cool; this item & its subtree haven't experienced any style/content
// changes that would automatically require a reflow.
// (Note that if e.g. 'padding' had changed, that would cause our frame to
// be marked as dirty; this is how we can get away with only considering
// the content-box size below, even though the frame technically includes
// the space for border & padding. Also: hypothetically if our padding
// changed via being a percent value and its percent-basis changing, then
// the percent-basis change should've cleared descendant intrinsic sizes,
// which would purge cached values via MarkCachedFlexMeasurementsDirty
// and would make us fail the "if (cache...") check below.)
// Did we cache the content-box size from its most recent "final reflow"?
auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop());
if (!cache || !cache->mFinalReflowSize) {
FLEX_LOG(
"[perf] Flex item %p needed a final reflow due to lacking a "
"cached mFinalReflowSize (maybe cache was cleared)",
mFrame);
return true;
}
// Does the cached size match our current size?
if (*cache->mFinalReflowSize != finalSize) {
FLEX_LOG(
"[perf] Flex item %p needed a final reflow due to having a "
"different content box size vs. its most recent final reflow",
mFrame);
return true;
}
// The flex container is giving this flex item the same size that the item
// had on its most recent "final reflow". But if its definiteness changed and
// one of the descendants cares, then it would still need a reflow.
if (cache->mLastReflowTreatedBSizeAsIndefinite != mTreatBSizeAsIndefinite &&
FrameHasRelativeBSizeDependency(mFrame)) {
FLEX_LOG(
"[perf] Flex item %p needed a final reflow due to having "
"its BSize change definiteness & having a rel-BSize child",
mFrame);
return true;
}
// If we get here, we can skip the final reflow! (The item's subtree isn't
// dirty, and our current conditions are sufficiently similar to the most
// recent "final reflow" that it should have left our subtree in the correct
// state.)
return false;
}
// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
class MOZ_STACK_CLASS PositionTracker {
public:
// Accessor for the current value of the position that we're tracking.
inline nscoord Position() const { return mPosition; }
inline LogicalAxis Axis() const { return mAxis; }
inline LogicalSide StartSide() {
return MakeLogicalSide(
mAxis, mIsAxisReversed ? eLogicalEdgeEnd : eLogicalEdgeStart);
}
inline LogicalSide EndSide() {
return MakeLogicalSide(
mAxis, mIsAxisReversed ? eLogicalEdgeStart : eLogicalEdgeEnd);
}
// Advances our position across the start edge of the given margin, in the
// axis we're tracking.
void EnterMargin(const LogicalMargin& aMargin) {
mPosition += aMargin.Side(StartSide(), mWM);
}
// Advances our position across the end edge of the given margin, in the axis
// we're tracking.
void ExitMargin(const LogicalMargin& aMargin) {
mPosition += aMargin.Side(EndSide(), mWM);
}
// Advances our current position from the start side of a child frame's
// border-box to the frame's upper or left edge (depending on our axis).
// (Note that this is a no-op if our axis grows in the same direction as
// the corresponding logical axis.)
void EnterChildFrame(nscoord aChildFrameSize) {
if (mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Advances our current position from a frame's upper or left border-box edge
// (whichever is in the axis we're tracking) to the 'end' side of the frame
// in the axis that we're tracking. (Note that this is a no-op if our axis
// is reversed with respect to the corresponding logical axis.)
void ExitChildFrame(nscoord aChildFrameSize) {
if (!mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
PositionTracker(const PositionTracker&) = delete;
PositionTracker& operator=(const PositionTracker&) = delete;
protected:
// Protected constructor, to be sure we're only instantiated via a subclass.
PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed)
: mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {}
// Member data:
// The position we're tracking.
nscoord mPosition = 0;
// The flex container's writing mode.
const WritingMode mWM;
// The axis along which we're moving.
const LogicalAxis mAxis = eLogicalAxisInline;
// Is the axis along which we're moving reversed (e.g. LTR vs RTL) with
// respect to the corresponding axis on the flex container's WM?
const bool mIsAxisReversed = false;
};
// Tracks our position in the main axis, when we're laying out flex items.
// The "0" position represents the main-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
public:
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
const FlexLine* aLine,
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize);
~MainAxisPositionTracker() {
MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
"miscounted the number of packing spaces");
MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
"miscounted the number of auto margins");
}
// Advances past the gap space (if any) between two flex items
void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
// Advances past the packing space (if any) between two flex items
void TraversePackingSpace();
// If aItem has any 'auto' margins in the main axis, this method updates the
// corresponding values in its margin.
void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
private:
nscoord mPackingSpaceRemaining = 0;
uint32_t mNumAutoMarginsInMainAxis = 0;
uint32_t mNumPackingSpacesRemaining = 0;
StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO};
};
// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line).
// The "0" position represents the cross-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
public:
CrossAxisPositionTracker(nsTArray<FlexLine>& aLines,
const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize,
bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aCrossGapSize);
// Advances past the gap (if any) between two flex lines
void TraverseGap() { mPosition += mCrossGapSize; }
// Advances past the packing space (if any) between two flex lines
void TraversePackingSpace();
// Advances past the given FlexLine
void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); }
// Redeclare the frame-related methods from PositionTracker with
// = delete, to be sure (at compile time) that no client code can invoke
// them. (Unlike the other PositionTracker derived classes, this class here
// deals with FlexLines, not with individual FlexItems or frames.)
void EnterMargin(const LogicalMargin& aMargin) = delete;
void ExitMargin(const LogicalMargin& aMargin) = delete;
void EnterChildFrame(nscoord aChildFrameSize) = delete;
void ExitChildFrame(nscoord aChildFrameSize) = delete;
private:
nscoord mPackingSpaceRemaining = 0;
uint32_t mNumPackingSpacesRemaining = 0;
StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO};
const nscoord mCrossGapSize;
};
// Utility class for managing our position along the cross axis, *within* a
// single flex line.
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker
: public PositionTracker {
public:
explicit SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker);
void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem);
void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker);
// Resets our position to the cross-start edge of this line.
inline void ResetPosition() { mPosition = 0; }
};
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
// Suppose D is the distance from a flex container fragment's content-box
// block-start edge to whichever is larger of either (a) the block-end edge of
// its children, or (b) the available space's block-end edge. D is conceptually
// the sum of the block-size of the children, the packing space before & in
// between them, and part of the packing space after them if (b) happens.
//
// SumOfBlockEndEdgeOfChildrenProperty stores the sum of the D of the current
// flex container fragment and the D's of its prev-in-flows from the last
// reflow. It's intended to prevent quadratic operations resulting from each
// fragment having to walk its full prev-in-flow chain, and also serves as an
// argument to the flex fragmentainer next-in-flow's ReflowChildren(), to
// compute the position offset for each flex item.
NS_DECLARE_FRAME_PROPERTY_SMALL_VALUE(SumOfChildrenBlockSizeProperty, nscoord)
nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell,
ComputedStyle* aStyle) {
return new (aPresShell)
nsFlexContainerFrame(aStyle, aPresShell->GetPresContext());
}
//----------------------------------------------------------------------
// nsFlexContainerFrame Method Implementations
// ===========================================
/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame() = default;
/* virtual */
void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
const nsStyleDisplay* styleDisp = Style()->StyleDisplay();
// Figure out if we should set a frame state bit to indicate that this frame
// represents a legacy -webkit-{inline-}box or -moz-{inline-}box container.
// First, the trivial case: just check "display" directly.
bool isLegacyBox = IsDisplayValueLegacyBox(styleDisp);
// If this frame is for a scrollable element, then it will actually have
// "display:block", and its *parent frame* will have the real
// flex-flavored display value. So in that case, check the parent frame to
// find out if we're legacy.
if (!isLegacyBox && styleDisp->mDisplay == mozilla::StyleDisplay::Block) {
ComputedStyle* parentComputedStyle = GetParent()->Style();
NS_ASSERTION(
Style()->GetPseudoType() == PseudoStyleType::buttonContent ||
Style()->GetPseudoType() == PseudoStyleType::scrolledContent,
"The only way a nsFlexContainerFrame can have 'display:block' "
"should be if it's the inner part of a scrollable or button "
"element");
isLegacyBox = IsDisplayValueLegacyBox(parentComputedStyle->StyleDisplay());
}
if (isLegacyBox) {
AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_BOX);
}
}
#ifdef DEBUG_FRAME_DUMP
nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"FlexContainer"_ns, aResult);
}
#endif
nscoord nsFlexContainerFrame::GetLogicalBaseline(
mozilla::WritingMode aWM) const {
NS_ASSERTION(mBaselineFromLastReflow != NS_INTRINSIC_ISIZE_UNKNOWN,
"baseline has not been set");
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// Return a baseline synthesized from our margin-box.
return nsContainerFrame::GetLogicalBaseline(aWM);
}
return mBaselineFromLastReflow;
}
void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
nsDisplayListCollection tempLists(aBuilder);
DisplayBorderBackgroundOutline(aBuilder, tempLists);
if (GetPrevInFlow()) {
DisplayOverflowContainers(aBuilder, tempLists);
}
// Our children are all block-level, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds());
CSSOrderAwareFrameIterator iter(
this, kPrincipalList, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
OrderStateForIter(this), OrderingPropertyForIter(this));
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
BuildDisplayListForChild(aBuilder, childFrame, childLists,
childFrame->DisplayFlagForFlexOrGridItem());
}
tempLists.MoveTo(aLists);
}
void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow,
ComputedFlexLineInfo* aLineInfo) {
// After we've established the type of flexing we're doing (growing vs.
// shrinking), and before we try to flex any items, we freeze items that
// obviously *can't* flex.
//
// Quoting the spec:
// # Freeze, setting its target main size to its hypothetical main size...
// # - any item that has a flex factor of zero
// # - if using the flex grow factor: any item that has a flex base size
// # greater than its hypothetical main size
// # - if using the flex shrink factor: any item that has a flex base size
// # smaller than its hypothetical main size
// https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths
//
// (NOTE: At this point, item->MainSize() *is* the item's hypothetical
// main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
// item hasn't had a chance to flex away from that yet.)
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow));
if (!shouldFreeze) {
if (aIsUsingFlexGrow) {
if (item.FlexBaseSize() > item.MainSize()) {
shouldFreeze = true;
}
} else { // using flex-shrink
if (item.FlexBaseSize() < item.MainSize()) {
shouldFreeze = true;
}
}
}
if (shouldFreeze) {
// Freeze item! (at its hypothetical main size)
item.Freeze();
if (item.FlexBaseSize() < item.MainSize()) {
item.SetWasMinClamped();
} else if (item.FlexBaseSize() > item.MainSize()) {
item.SetWasMaxClamped();
}
mNumFrozenItems++;
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
}
// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration) {
enum FreezeType {
eFreezeEverything,
eFreezeMinViolations,
eFreezeMaxViolations
};
FreezeType freezeType;
if (aTotalViolation == 0) {
freezeType = eFreezeEverything;
} else if (aTotalViolation > 0) {
freezeType = eFreezeMinViolations;
} else { // aTotalViolation < 0
freezeType = eFreezeMaxViolations;
}
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
"Can have either min or max violation, but not both");
bool hadMinViolation = item.HadMinViolation();
bool hadMaxViolation = item.HadMaxViolation();
if (eFreezeEverything == freezeType ||
(eFreezeMinViolations == freezeType && hadMinViolation) ||
(eFreezeMaxViolations == freezeType && hadMaxViolation)) {
MOZ_ASSERT(item.MainSize() >= item.MainMinSize(),
"Freezing item at a size below its minimum");
MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(),
"Freezing item at a size above its maximum");
item.Freeze();
if (hadMinViolation) {
item.SetWasMinClamped();
} else if (hadMaxViolation) {
item.SetWasMaxClamped();
}
mNumFrozenItems++;
} else if (MOZ_UNLIKELY(aIsFinalIteration)) {
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ERROR(
"Final iteration still has unfrozen items, this shouldn't"
" happen unless there was nscoord under/overflow.");
item.Freeze();
mNumFrozenItems++;
} // else, we'll reset this item's main size to its flex base size on the
// next iteration of this algorithm.
if (!item.IsFrozen()) {
// Clear this item's violation(s), now that we've dealt with them
item.ClearViolationFlags();
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
}
void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo) {
// Before we start resolving sizes: if we have an aLineInfo structure to fill
// out, we inform it of each item's base size, and we initialize the "delta"
// for each item to 0. (And if the flex algorithm wants to grow or shrink the
// item, we'll update this delta further down.)
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem& item : Items()) {
aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize();
aLineInfo->mItems[itemIndex].mMainDeltaSize = 0;
++itemIndex;
}
}
// Determine whether we're going to be growing or shrinking items.
const bool isUsingFlexGrow =
(mTotalOuterHypotheticalMainSize < aFlexContainerMainSize);
if (aLineInfo) {
aLineInfo->mGrowthState =
isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing
: mozilla::dom::FlexLineGrowthState::Shrinking;
}
// Do an "early freeze" for flex items that obviously can't flex in the
// direction we've chosen:
FreezeItemsEarly(isUsingFlexGrow, aLineInfo);
if ((mNumFrozenItems == NumItems()) && !aLineInfo) {
// All our items are frozen, so we have no flexible lengths to resolve,
// and we aren't being asked to generate computed line info.
FLEX_LOG("No flexible length to resolve");
return;
}
MOZ_ASSERT(!IsEmpty() || aLineInfo,
"empty lines should take the early-return above");
FLEX_LOG("Resolving flexible lengths for items");
// Subtract space occupied by our items' margins/borders/padding/gaps, so
// we can just be dealing with the space available for our flex items' content
// boxes.
nscoord spaceAvailableForFlexItemsContentBoxes =
aFlexContainerMainSize - (mTotalItemMBP + SumOfGaps());
nscoord origAvailableFreeSpace;
bool isOrigAvailFreeSpaceInitialized = false;
// NOTE: I claim that this chunk of the algorithm (the looping part) needs to
// run the loop at MOST NumItems() times. This claim should hold up
// because we'll freeze at least one item on each loop iteration, and once
// we've run out of items to freeze, there's nothing left to do. However,
// in most cases, we'll break out of this loop long before we hit that many
// iterations.
for (uint32_t iterationCounter = 0; iterationCounter < NumItems();
iterationCounter++) {
// Set every not-yet-frozen item's used main size to its
// flex base size, and subtract all the used main sizes from our
// total amount of space to determine the 'available free space'
// (positive or negative) to be distributed among our flexible items.
nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
for (FlexItem& item : Items()) {
if (!item.IsFrozen()) {
item.SetMainSize(item.FlexBaseSize());
}
availableFreeSpace -= item.MainSize();
}
FLEX_LOG(" available free space = %d", availableFreeSpace);
// The sign of our free space should agree with the type of flexing
// (grow/shrink) that we're doing (except if we've had integer overflow;
// then, all bets are off). Any disagreement should've made us use the
// other type of flexing, or should've been resolved in FreezeItemsEarly.
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ASSERTION((isUsingFlexGrow && availableFreeSpace >= 0) ||
(!isUsingFlexGrow && availableFreeSpace <= 0),
"availableFreeSpace's sign should match isUsingFlexGrow");
// If we have any free space available, give each flexible item a portion
// of availableFreeSpace.
if (availableFreeSpace != 0) {
// The first time we do this, we initialize origAvailableFreeSpace.
if (!isOrigAvailFreeSpaceInitialized) {
origAvailableFreeSpace = availableFreeSpace;
isOrigAvailFreeSpaceInitialized = true;
}
// STRATEGY: On each item, we compute & store its "share" of the total
// weight that we've seen so far:
// curWeight / weightSum
//
// Then, when we go to actually distribute the space (in the next loop),
// we can simply walk backwards through the elements and give each item
// its "share" multiplied by the remaining available space.
//
// SPECIAL CASE: If the sum of the weights is larger than the
// maximum representable float (overflowing to infinity), then we can't
// sensibly divide out proportional shares anymore. In that case, we
// simply treat the flex item(s) with the largest weights as if
// their weights were infinite (dwarfing all the others), and we
// distribute all of the available space among them.
float weightSum = 0.0f;
float flexFactorSum = 0.0f;
float largestWeight = 0.0f;
uint32_t numItemsWithLargestWeight = 0;
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
float curWeight = item.GetWeight(isUsingFlexGrow);
float curFlexFactor = item.GetFlexFactor(isUsingFlexGrow);
MOZ_ASSERT(curWeight >= 0.0f, "weights are non-negative");
MOZ_ASSERT(curFlexFactor >= 0.0f, "flex factors are non-negative");
weightSum += curWeight;
flexFactorSum += curFlexFactor;
if (IsFinite(weightSum)) {
if (curWeight == 0.0f) {
item.SetShareOfWeightSoFar(0.0f);
} else {
item.SetShareOfWeightSoFar(curWeight / weightSum);
}
} // else, the sum of weights overflows to infinity, in which
// case we don't bother with "SetShareOfWeightSoFar" since
// we know we won't use it. (instead, we'll just give every
// item with the largest weight an equal share of space.)
// Update our largest-weight tracking vars
if (curWeight > largestWeight) {
largestWeight = curWeight;
numItemsWithLargestWeight = 1;
} else if (curWeight == largestWeight) {
numItemsWithLargestWeight++;
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
if (weightSum != 0.0f) {
MOZ_ASSERT(flexFactorSum != 0.0f,
"flex factor sum can't be 0, if a weighted sum "
"of its components (weightSum) is nonzero");
if (flexFactorSum < 1.0f) {
// Our unfrozen flex items don't want all of the original free space!
// (Their flex factors add up to something less than 1.)
// Hence, make sure we don't distribute any more than the portion of
// our original free space that these items actually want.
nscoord totalDesiredPortionOfOrigFreeSpace =
NSToCoordRound(origAvailableFreeSpace * flexFactorSum);
// Clamp availableFreeSpace to be no larger than that ^^.
// (using min or max, depending on sign).
// This should not change the sign of availableFreeSpace (except
// possibly by setting it to 0), as enforced by this assertion:
NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == 0 ||
((totalDesiredPortionOfOrigFreeSpace > 0) ==
(availableFreeSpace > 0)),
"When we reduce available free space for flex "
"factors < 1, we shouldn't change the sign of the "
"free space...");
if (availableFreeSpace > 0) {
availableFreeSpace = std::min(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
} else {
availableFreeSpace = std::max(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
}
}
FLEX_LOG(" Distributing available space:");
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
// NOTE: It's important that we traverse our items in *reverse* order
// here, for correct width distribution according to the items'
// "ShareOfWeightSoFar" progressively-calculated values.
for (FlexItem& item : Reversed(Items())) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
// To avoid rounding issues, we compute the change in size for this
// item, and then subtract it from the remaining available space.
nscoord sizeDelta = 0;
if (IsFinite(weightSum)) {
float myShareOfRemainingSpace = item.ShareOfWeightSoFar();
MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f &&
myShareOfRemainingSpace <= 1.0f,
"my share should be nonnegative fractional amount");
if (myShareOfRemainingSpace == 1.0f) {
// (We special-case 1.0f to avoid float error from converting
// availableFreeSpace from integer*1.0f --> float --> integer)
sizeDelta = availableFreeSpace;
} else if (myShareOfRemainingSpace > 0.0f) {
sizeDelta = NSToCoordRound(availableFreeSpace *
myShareOfRemainingSpace);
}
} else if (item.GetWeight(isUsingFlexGrow) == largestWeight) {
// Total flexibility is infinite, so we're just distributing
// the available space equally among the items that are tied for
// having the largest weight (and this is one of those items).
sizeDelta = NSToCoordRound(availableFreeSpace /
float(numItemsWithLargestWeight));
numItemsWithLargestWeight--;
}
availableFreeSpace -= sizeDelta;
item.SetMainSize(item.MainSize() + sizeDelta);
FLEX_LOG(" flex item %p receives %d, for a total of %d",
item.Frame(), sizeDelta, item.MainSize());
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
// If we have an aLineInfo structure to fill out, capture any
// size changes that may have occurred in the previous loop.
// We don't do this inside the previous loop, because we don't
// want to burden layout when aLineInfo is null.
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem& item : Items()) {
if (!item.IsFrozen()) {
// Calculate a deltaSize that represents how much the flex sizing
// algorithm "wants" to stretch or shrink this item during this
// pass through the algorithm. Later passes through the algorithm
// may overwrite this, until this item is frozen. Note that this
// value may not reflect how much the size of the item is
// actually changed, since the size of the item will be clamped
// to min and max values later in this pass. That's intentional,
// since we want to report the value that the sizing algorithm
// tried to stretch or shrink the item.
nscoord deltaSize =
item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize;
aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize;
}
++itemIndex;
}
}
}
}
// Fix min/max violations:
nscoord totalViolation = 0; // keeps track of adjustments for min/max
FLEX_LOG(" Checking for violations:");
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
if (item.MainSize() < item.MainMinSize()) {
// min violation
totalViolation += item.MainMinSize() - item.MainSize();
item.SetMainSize(item.MainMinSize());
item.SetHadMinViolation();
} else if (item.MainSize() > item.MainMaxSize()) {
// max violation
totalViolation += item.MainMaxSize() - item.MainSize();
item.SetMainSize(item.MainMaxSize());
item.SetHadMaxViolation();
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
FreezeOrRestoreEachFlexibleSize(totalViolation,
iterationCounter + 1 == NumItems());
FLEX_LOG(" Total violation: %d", totalViolation);
if (mNumFrozenItems == NumItems()) {
break;
}
MOZ_ASSERT(totalViolation != 0,
"Zero violation should've made us freeze all items & break");
}
#ifdef DEBUG
// Post-condition: all items should've been frozen.
// Make sure the counts match:
MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen");
// For good measure, check each item directly, in case our counts are busted:
for (const FlexItem& item : Items()) {
MOZ_ASSERT(item.IsFrozen(), "All items should be frozen");
}
#endif // DEBUG
}
MainAxisPositionTracker::MainAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine,
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(),
aAxisTracker.IsMainAxisReversed()),
// we chip away at this below
mPackingSpaceRemaining(aContentBoxMainSize),
mJustifyContent(aJustifyContent) {
// Extract the flag portion of mJustifyContent and strip off the flag bits
// NOTE: This must happen before any assignment to mJustifyContent to
// avoid overwriting the flag bits.
StyleAlignFlags justifyContentFlags =
mJustifyContent.primary & StyleAlignFlags::FLAG_BITS;
mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS;
// 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
// in the main axis
// https://drafts.csswg.org/css-align-3/#propdef-justify-content
if (mJustifyContent.primary == StyleAlignFlags::NORMAL ||
mJustifyContent.primary == StyleAlignFlags::STRETCH) {
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
}
// mPackingSpaceRemaining is initialized to the container's main size. Now
// we'll subtract out the main sizes of our flex items, so that it ends up
// with the *actual* amount of packing space.
for (const FlexItem& item : aLine->Items()) {
mPackingSpaceRemaining -= item.OuterMainSize();
mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis();
}
// Subtract space required for row/col gap from the remaining packing space
mPackingSpaceRemaining -= aLine->SumOfGaps();
if (mPackingSpaceRemaining <= 0) {
// No available packing space to use for resolving auto margins.
mNumAutoMarginsInMainAxis = 0;
// If packing space is negative and <overflow-position> is set to 'safe'
// all justify options fall back to 'start'
if (justifyContentFlags & StyleAlignFlags::SAFE) {
mJustifyContent.primary = StyleAlignFlags::START;
}
}
// If packing space is negative or we only have one item, 'space-between'
// falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back
// to 'center'. In those cases, it's simplest to just pretend we have a
// different 'justify-content' value and share code.
if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) {
if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
mJustifyContent.primary = StyleAlignFlags::CENTER;
}
}
// Map 'left'/'right' to 'start'/'end'
if (mJustifyContent.primary == StyleAlignFlags::LEFT ||
mJustifyContent.primary == StyleAlignFlags::RIGHT) {
const auto wm = aAxisTracker.GetWritingMode();
if (aAxisTracker.IsColumnOriented() && !wm.IsVertical()) {
// Container's alignment axis (main axis) is *not* parallel to the
// line-left <-> line-right axis or the physical left <-> physical right
// axis, so we map both 'left' and 'right' to 'start'.
mJustifyContent.primary = StyleAlignFlags::START;
} else {
MOZ_ASSERT(
aAxisTracker.MainAxis() == eLogicalAxisInline ||
wm.PhysicalAxis(aAxisTracker.MainAxis()) == eAxisHorizontal,
"The container's main axis should be parallel to either line-left "
"<-> line-right axis or physical left <-> physical right axis!");
// Otherwise, we map 'left' and 'right' to 'start' or 'end', depending on
// the container's writing mode.
const bool isLTR = wm.IsPhysicalLTR();
const bool isJustifyLeft =
(mJustifyContent.primary == StyleAlignFlags::LEFT);
mJustifyContent.primary = (isJustifyLeft == isLTR)
? StyleAlignFlags::START
: StyleAlignFlags::END;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mJustifyContent.primary == StyleAlignFlags::START) {
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (mJustifyContent.primary == StyleAlignFlags::END) {
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// Figure out how much space we'll set aside for auto margins or
// packing spaces, and advance past any leading packing-space.
if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 &&
!aLine->IsEmpty()) {
if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) {
// All packing space should go at the end --> nothing to do here.
} else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) {
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
} else if (mJustifyContent.primary == StyleAlignFlags::CENTER) {
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
nsFlexContainerFrame::CalculatePackingSpace(
aLine->NumItems(), mJustifyContent, &mPosition,
&mNumPackingSpacesRemaining, &mPackingSpaceRemaining);
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
}
}
MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0,
"extra space should either go to packing space or to "
"auto margins, but not to both");
}
void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) {
if (mNumAutoMarginsInMainAxis) {
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (const auto side : {StartSide(), EndSide()}) {
if (styleMargin.Get(mWM, side).IsAuto()) {
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curAutoMarginSize =
mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"resolve them");
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
mNumAutoMarginsInMainAxis--;
mPackingSpaceRemaining -= curAutoMarginSize;
}
}
}
}
void MainAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
CrossAxisPositionTracker::CrossAxisPositionTracker(
nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
aAxisTracker.IsCrossAxisReversed()),
mAlignContent(aReflowInput.mStylePosition->mAlignContent),
mCrossGapSize(aCrossGapSize) {
// Extract and strip the flag bits from alignContent
StyleAlignFlags alignContentFlags =
mAlignContent.primary & StyleAlignFlags::FLAG_BITS;
mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS;
// 'normal' behaves as 'stretch'
if (mAlignContent.primary == StyleAlignFlags::NORMAL) {
mAlignContent.primary = StyleAlignFlags::STRETCH;
}
const bool isSingleLine =
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
MOZ_ASSERT(aLines.Length() == 1,
"If we're styled as single-line, we should only have 1 line");
// "If the flex container is single-line and has a definite cross size, the
// cross size of the flex line is the flex container's inner cross size."
//
// SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
// NOTE: This means (by definition) that there's no packing space, which
// means we don't need to be concerned with "align-content" at all and we
// can return early. This is handy, because this is the usual case (for
// single-line flexbox).
if (aIsCrossSizeDefinite) {
aLines[0].SetLineCrossSize(aContentBoxCrossSize);
return;
}
// "If the flex container is single-line, then clamp the line's
// cross-size to be within the container's computed min and max cross-size
// properties."
aLines[0].SetLineCrossSize(NS_CSS_MINMAX(aLines[0].LineCrossSize(),
aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize()));
}
// NOTE: The rest of this function should essentially match
// MainAxisPositionTracker's constructor, though with FlexLines instead of
// FlexItems, and with the additional value "stretch" (and of course with
// cross sizes instead of main sizes.)
// Figure out how much packing space we have (container's cross size minus
// all the lines' cross sizes). Also, share this loop to count how many
// lines we have. (We need that count in some cases below.)
mPackingSpaceRemaining = aContentBoxCrossSize;
uint32_t numLines = 0;
for (FlexLine& line : aLines) {
mPackingSpaceRemaining -= line.LineCrossSize();
numLines++;
}
// Subtract space required for row/col gap from the remaining packing space
MOZ_ASSERT(numLines >= 1,
"GenerateFlexLines should've produced at least 1 line");
mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
// If <overflow-position> is 'safe' and packing space is negative
// all align options fall back to 'start'
if ((alignContentFlags & StyleAlignFlags::SAFE) &&
mPackingSpaceRemaining < 0) {
mAlignContent.primary = StyleAlignFlags::START;
}
// If packing space is negative, 'space-between' and 'stretch' behave like
// 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
// In those cases, it's simplest to just pretend we have a different
// 'align-content' value and share code. (If we only have one line, all of
// the 'space-*' keywords fall back as well, but 'stretch' doesn't because
// even a single line can still stretch.)
if (mPackingSpaceRemaining < 0 &&
mAlignContent.primary == StyleAlignFlags::STRETCH) {
mAlignContent.primary = StyleAlignFlags::FLEX_START;
} else if (mPackingSpaceRemaining < 0 || numLines == 1) {
if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
mAlignContent.primary = StyleAlignFlags::FLEX_START;
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
mAlignContent.primary = StyleAlignFlags::CENTER;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mAlignContent.primary == StyleAlignFlags::START) {
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (mAlignContent.primary == StyleAlignFlags::END) {
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// Figure out how much space we'll set aside for packing spaces, and advance
// past any leading packing-space.
if (mPackingSpaceRemaining != 0) {
if (mAlignContent.primary == StyleAlignFlags::BASELINE ||
mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) {
NS_WARNING(
"NYI: "
"align-items/align-self:left/right/self-start/self-end/baseline/"
"last baseline");
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) {
// All packing space should go at the end --> nothing to do here.
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) {
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
} else if (mAlignContent.primary == StyleAlignFlags::CENTER) {
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
nsFlexContainerFrame::CalculatePackingSpace(
numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining,
&mPackingSpaceRemaining);
} else if (mAlignContent.primary == StyleAlignFlags::STRETCH) {
// Split space equally between the lines:
MOZ_ASSERT(mPackingSpaceRemaining > 0,
"negative packing space should make us use 'flex-start' "
"instead of 'stretch' (and we shouldn't bother with this "
"code if we have 0 packing space)");
uint32_t numLinesLeft = numLines;
for (FlexLine& line : aLines) {
// Our share is the amount of space remaining, divided by the number
// of lines remainig.
MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
nscoord newSize = line.LineCrossSize() + shareOfExtraSpace;
line.SetLineCrossSize(newSize);
mPackingSpaceRemaining -= shareOfExtraSpace;
numLinesLeft--;
}
MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
}
}
}
void CrossAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
aAxisTracker.IsCrossAxisReversed()) {}
void FlexLine::ComputeCrossSizeAndBaseline(
const FlexboxAxisTracker& aAxisTracker) {
nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
nscoord largestOuterCrossSize = 0;
for (const FlexItem& item : Items()) {
nscoord curOuterCrossSize = item.OuterCrossSize();
if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE ||
item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) &&
item.NumAutoMarginsInCrossAxis() == 0) {
const bool useFirst = (item.AlignSelf()._0 == StyleAlignFlags::BASELINE);
// FIXME: Once we support "writing-mode", we'll have to do baseline
// alignment in vertical flex containers here (w/ horizontal cross-axes).
// Find distance from our item's cross-start and cross-end margin-box
// edges to its baseline.
//
// Here's a diagram of a flex-item that we might be doing this on.
// "mmm" is the margin-box, "bbb" is the border-box. The bottom of
// the text "BASE" is the baseline.
//
// ---(cross-start)---
// ___ ___ ___
// mmmmmmmmmmmm | |margin-start |
// m m | _|_ ___ |
// m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline
// m b b m | |ascent |
// m b BASE b m | _|_ _|_
// m b b m | |
// m bbbbbbbb m | |crossEndToBaseline
// m m | |
// mmmmmmmmmmmm _|_ _|_
//
// ---(cross-end)---
//
// We already have the curOuterCrossSize, margin-start, and the ascent.
// * We can get crossStartToBaseline by adding margin-start + ascent.
// * If we subtract that from the curOuterCrossSize, we get
// crossEndToBaseline.
nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge(
aAxisTracker.CrossAxisPhysicalStartSide(), useFirst);
nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
// Now, update our "largest" values for these (across all the flex items
// in this flex line), so we can use them in computing the line's cross
// size below:
if (useFirst) {
crossStartToFurthestFirstBaseline =
std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
crossEndToFurthestFirstBaseline =
std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
} else {
crossStartToFurthestLastBaseline =
std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
crossEndToFurthestLastBaseline =
std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
}
} else {
largestOuterCrossSize =
std::max(largestOuterCrossSize, curOuterCrossSize);
}
}
// The line's baseline offset is the distance from the line's edge to the
// furthest item-baseline. The item(s) with that baseline will be exactly
// aligned with the line's edge.
mFirstBaselineOffset = crossStartToFurthestFirstBaseline;
mLastBaselineOffset = crossEndToFurthestLastBaseline;
// The line's cross-size is the larger of:
// (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all baseline-aligned items with no cross-axis auto margins...
// and
// (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all last baseline-aligned items with no cross-axis auto margins...
// and
// (c) largest cross-size of all other children.
mLineCrossSize = std::max(
std::max(
crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
largestOuterCrossSize);
}
void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) {
// We stretch IFF we are align-self:stretch, have no auto margins in
// cross axis, and have cross-axis size property == "auto". If any of those
// conditions don't hold up, we won't stretch.
if (mAlignSelf._0 != StyleAlignFlags::STRETCH ||
NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) {
return;
}
// If we've already been stretched, we can bail out early, too.
// No need to redo the calculation.
if (mIsStretched) {
return;
}
// Reserve space for margins & border & padding, and then use whatever
// remains as our item's cross-size (clamped to its min/max range).
nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis();
stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
// Update the cross-size & make a note that it's stretched, so we know to
// override the reflow input's computed cross-size in our final reflow.
SetCrossSize(stretchedSize);
mIsStretched = true;
}
static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) {
if (nsBlockFrame* block = do_QueryFrame(aFrame)) {
return block;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) {
return block;
}
}
return nullptr;
}
nsBlockFrame* FlexItem::BlockFrame() const {
return FindFlexItemBlockFrame(Frame());
}
void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis(
const FlexLine& aLine, FlexItem& aItem) {
// Subtract the space that our item is already occupying, to see how much
// space (if any) is available for its auto margins.
nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize();
if (spaceForAutoMargins <= 0) {
return; // No available space --> nothing to do
}
uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis();
if (numAutoMargins == 0) {
return; // No auto margins --> nothing to do.
}
// OK, we have at least one auto margin and we have some available space.
// Give each auto margin a share of the space.
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (const auto side : {StartSide(), EndSide()}) {
if (styleMargin.Get(mWM, side).IsAuto()) {
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"update them");
// NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
// If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
numAutoMargins--;
spaceForAutoMargins -= curAutoMarginSize;
}
}
}
void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace(
const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker) {
// We don't do align-self alignment on items that have auto margins
// in the cross axis.
if (aItem.NumAutoMarginsInCrossAxis()) {
return;
}
StyleAlignFlags alignSelf = aItem.AlignSelf()._0;
// NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
// auto-sized items (which we've already done).
if (alignSelf == StyleAlignFlags::STRETCH) {
alignSelf = StyleAlignFlags::FLEX_START;
}
// Map 'self-start'/'self-end' to 'start'/'end'
if (alignSelf == StyleAlignFlags::SELF_START ||
alignSelf == StyleAlignFlags::SELF_END) {
const LogicalAxis logCrossAxis =
aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline;
const WritingMode cWM = aAxisTracker.GetWritingMode();
const bool sameStart =
cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode());
alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START)
? StyleAlignFlags::START
: StyleAlignFlags::END;
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (alignSelf == StyleAlignFlags::START) {
alignSelf = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (alignSelf == StyleAlignFlags::END) {
alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we
// have cross axis overflow
// XXX we should really be falling back to 'start' as of bug 1472843
if (aLine.LineCrossSize() < aItem.OuterCrossSize() &&
(aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) {
alignSelf = StyleAlignFlags::FLEX_START;
}
if (alignSelf == StyleAlignFlags::FLEX_START) {
// No space to skip over -- we're done.
} else if (alignSelf == StyleAlignFlags::FLEX_END) {
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
} else if (alignSelf == StyleAlignFlags::CENTER) {
// Note: If cross-size is odd, the "after" space will get the extra unit.
mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2;
} else if (alignSelf == StyleAlignFlags::BASELINE ||
alignSelf == StyleAlignFlags::LAST_BASELINE) {
const bool useFirst = (alignSelf == StyleAlignFlags::BASELINE);
// Baseline-aligned items are collectively aligned with the line's physical
// cross-start or cross-end side, depending on whether we're doing
// first-baseline or last-baseline alignment.
const mozilla::Side baselineAlignStartSide =
useFirst ? aAxisTracker.CrossAxisPhysicalStartSide()
: aAxisTracker.CrossAxisPhysicalEndSide();
nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge(
baselineAlignStartSide, useFirst);
nscoord lineBaselineOffset =
useFirst ? aLine.FirstBaselineOffset() : aLine.LastBaselineOffset();
NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
"failed at finding largest baseline offset");
// How much do we need to adjust our position (from the line edge),
// to get the item's baseline to hit the line's baseline offset:
nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset;
if (useFirst) {
// mPosition is already at line's flex-start edge.
// From there, we step *forward* by the baseline adjustment:
mPosition += baselineDiff;
} else {
// Advance to align item w/ line's flex-end edge (as in FLEX_END case):
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
// ...and step *back* by the baseline adjustment:
mPosition -= baselineDiff;
}
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
}
}
FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) {
MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(),
"Only flex containers may be passed to this constructor!");
if (IsLegacyBox(aFlexContainer)) {
InitAxesFromLegacyProps(aFlexContainer);
} else {
InitAxesFromModernProps(aFlexContainer);
}
}
void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) {
const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
const bool boxOrientIsVertical =
(styleXUL->mBoxOrient == StyleBoxOrient::Vertical);
const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical();
// If box-orient agrees with our writing-mode, then we're "row-oriented"
// (i.e. the flexbox main axis is the same as our writing mode's inline
// direction). Otherwise, we're column-oriented (i.e. the flexbox's main
// axis is perpendicular to the writing-mode's inline direction).
mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
// Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
// main axis (so it runs in the reverse direction of the inline axis):
mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse;
// Legacy flexbox does not support reversing the cross axis -- it has no
// equivalent of modern flexbox's "flex-wrap: wrap-reverse".
mIsCrossAxisReversed = false;
}
void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) {
const nsStylePosition* stylePos = aFlexContainer->StylePosition();
StyleFlexDirection flexDirection = stylePos->mFlexDirection;
// Determine main axis:
switch (flexDirection) {
case StyleFlexDirection::Row:
mIsRowOriented = true;
mIsMainAxisReversed = false;
break;
case StyleFlexDirection::RowReverse:
mIsRowOriented = true;
mIsMainAxisReversed = true;
break;
case StyleFlexDirection::Column:
mIsRowOriented = false;
mIsMainAxisReversed = false;
break;
case StyleFlexDirection::ColumnReverse:
mIsRowOriented = false;
mIsMainAxisReversed = true;
break;
}
// "flex-wrap: wrap-reverse" reverses our cross axis.
mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse;
}
FlexboxAxisTracker::FlexboxAxisTracker(
const nsFlexContainerFrame* aFlexContainer)
: mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {}
LogicalSide FlexboxAxisTracker::MainAxisStartSide() const {
return MakeLogicalSide(
MainAxis(), IsMainAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
}
LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const {
return MakeLogicalSide(
CrossAxis(), IsCrossAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart);
}
bool nsFlexContainerFrame::ShouldUseMozBoxCollapseBehavior(
const nsStyleDisplay* aFlexStyleDisp) {
MOZ_ASSERT(StyleDisplay() == aFlexStyleDisp, "wrong StyleDisplay passed in");
// Quick filter to screen out *actual* (not-coopted-for-emulation)
// flex containers, using state bit:
if (!IsLegacyBox(this)) {
return false;
}
// Check our own display value:
if (aFlexStyleDisp->mDisplay == mozilla::StyleDisplay::MozBox ||
aFlexStyleDisp->mDisplay == mozilla::StyleDisplay::MozInlineBox) {
return true;
}
// Check our parent's display value, if we're an anonymous box (with a
// potentially-untrustworthy display value):
auto pseudoType = Style()->GetPseudoType();
if (pseudoType == PseudoStyleType::scrolledContent ||
pseudoType == PseudoStyleType::buttonContent) {
const nsStyleDisplay* disp = GetParent()->StyleDisplay();
if (disp->mDisplay == mozilla::StyleDisplay::MozBox ||
disp->mDisplay == mozilla::StyleDisplay::MozInlineBox) {
return true;
}
}
return false;
}
void nsFlexContainerFrame::GenerateFlexLines(
const ReflowInput& aReflowInput, nscoord aContentBoxMainSize,
const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize, bool aHasLineClampEllipsis,
nsTArray<nsIFrame*>& aPlaceholders, /* out */
nsTArray<FlexLine>& aLines /* out */) {
MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty");
auto ConstructNewFlexLine = [&aLines, aMainGapSize]() {
return aLines.EmplaceBack(aMainGapSize);
};
const bool isSingleLine =
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
// We have at least one FlexLine. Even an empty flex container has a single
// (empty) flex line.
FlexLine* curLine = ConstructNewFlexLine();
nscoord wrapThreshold;
if (isSingleLine) {
// Not wrapping. Set threshold to sentinel value that tells us not to wrap.
wrapThreshold = NS_UNCONSTRAINEDSIZE;
} else {
// Wrapping! Set wrap threshold to flex container's content-box main-size.
wrapThreshold = aContentBoxMainSize;
// If the flex container doesn't have a definite content-box main-size
// (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
// least wrap when we hit its max main-size.
if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
const nscoord flexContainerMaxMainSize = GET_MAIN_COMPONENT_LOGICAL(
aAxisTracker, aAxisTracker.GetWritingMode(),
aReflowInput.ComputedMaxISize(), aReflowInput.ComputedMaxBSize());
wrapThreshold = flexContainerMaxMainSize;
}
}
// Tracks the index of the next strut, in aStruts (and when this hits
// aStruts.Length(), that means there are no more struts):
uint32_t nextStrutIdx = 0;
// Overall index of the current flex item in the flex container. (This gets
// checked against entries in aStruts.)
uint32_t itemIdxInContainer = 0;
CSSOrderAwareFrameIterator iter(
this, kPrincipalList, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
CSSOrderAwareFrameIterator::OrderState::Unknown,
OrderingPropertyForIter(this));
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
iter.ItemsAreAlreadyInOrder());
bool prevItemRequestedBreakAfter = false;
const bool useMozBoxCollapseBehavior =
ShouldUseMozBoxCollapseBehavior(aReflowInput.mStyleDisplay);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
// Don't create flex items / lines for placeholder frames:
if (childFrame->IsPlaceholderFrame()) {
aPlaceholders.AppendElement(childFrame);
continue;
}
// If we're multi-line and current line isn't empty, create a new flex line
// to satisfy the previous flex item's request or to honor "break-before".
if (!isSingleLine && !curLine->IsEmpty() &&
(prevItemRequestedBreakAfter ||
childFrame->StyleDisplay()->BreakBefore())) {
curLine = ConstructNewFlexLine();
prevItemRequestedBreakAfter = false;
}
if (useMozBoxCollapseBehavior &&
(StyleVisibility::Collapse ==
childFrame->StyleVisibility()->mVisible)) {
// Legacy visibility:collapse behavior: make a 0-sized strut. (No need to
// bother with aStruts and remembering cross size.)
curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(),
aAxisTracker);
} else if (nextStrutIdx < aStruts.Length() &&
aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
// Use the simplified "strut" FlexItem constructor:
curLine->Items().EmplaceBack(childFrame,
aStruts[nextStrutIdx].mStrutCrossSize,
aReflowInput.GetWritingMode(), aAxisTracker);
nextStrutIdx++;
} else {
GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker,
aHasLineClampEllipsis);
}
// Check if we need to wrap the newly appended item to a new line, i.e. if
// its outer hypothetical main size pushes our line over the threshold.
// But we don't wrap if the line-length is unconstrained, nor do we wrap if
// this was the first item on the line.
if (wrapThreshold != NS_UNCONSTRAINEDSIZE &&
curLine->Items().Length() > 1) {
// If the line will be longer than wrapThreshold because of the newly
// appended item, then wrap and move the item to a new line.
//
// NOTE: We have to account for the fact that the item's outer
// hypothetical main-size might be huge, if our item is (or contains) a
// table with "table-layout:fixed". So we use AddChecked() rather than
// (possibly-overflowing) normal addition, to be sure we don't make the
// wrong judgement about whether the item fits on this line.
nscoord newOuterSize =
AddChecked(curLine->TotalOuterHypotheticalMainSize(),
curLine->Items().LastElement().OuterMainSize());
// Account for gap between this line's previous item and this item
newOuterSize = AddChecked(newOuterSize, aMainGapSize);
if (newOuterSize == nscoord_MAX || newOuterSize > wrapThreshold) {
curLine = ConstructNewFlexLine();
// Get the previous line after adding a new line because the address can
// change if nsTArray needs to reallocate a new space for the new line.
FlexLine& prevLine = aLines[aLines.Length() - 2];
// Move the item from the end of prevLine to the end of curLine.
curLine->Items().AppendElement(prevLine.Items().PopLastElement());
}
}
// Update the line's bookkeeping about how large its items collectively are.
curLine->AddLastItemToMainSizeTotals();
// Honor "break-after" if we're multi-line. If we have more children, we
// will create a new flex line in the next iteration.
if (!isSingleLine && childFrame->StyleDisplay()->BreakAfter()) {
prevItemRequestedBreakAfter = true;
}
itemIdxInContainer++;
}
}
void nsFlexContainerFrame::GenerateFlexLines(const SharedFlexData& aData,
nsTArray<FlexLine>& aLines) {
MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!");
// Pretend we have only one line and zero main gap size.
aLines.AppendElement(FlexLine(0));
// The order state of the children is consistent across entire continuation
// chain due to calling nsContainerFrame::NormalizeChildLists() at the
// beginning of Reflow(), so we can align our state bit with our
// prev-in-flow's state. Setup here before calling OrderStateForIter() below.
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
GetPrevInFlow()->HasAnyStateBits(
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER));
// Construct flex items for this flex container fragment from existing flex
// items in SharedFlexData.
CSSOrderAwareFrameIterator iter(
this, kPrincipalList,
CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders,
OrderStateForIter(this), OrderingPropertyForIter(this));
FlexItemIterator itemIter(aData.mLines);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* const child = *iter;
nsIFrame* const childFirstInFlow = child->FirstInFlow();
MOZ_ASSERT(!itemIter.AtEnd(),
"Why can't we find FlexItem for our child frame?");
for (; !itemIter.AtEnd(); itemIter.Next()) {
if (itemIter->Frame() == childFirstInFlow) {
aLines[0].Items().AppendElement(itemIter->CloneFor(child));
itemIter.Next();
break;
}
}
}
}
// Retrieves the content-box main-size of our flex container from the
// reflow input (specifically, the main-size of *this continuation* of the
// flex container).
nscoord nsFlexContainerFrame::GetMainSizeFromReflowInput(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
nscoord aConsumedBSize) {
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
return aReflowInput.ComputedISize();
}
// Note: This may be unconstrained, if our block size is "auto":
return GetEffectiveComputedBSize(aReflowInput, aConsumedBSize);
}
// Returns the largest outer hypothetical main-size of any line in |aLines|.
// (i.e. the hypothetical main-size of the largest line)
static nscoord GetLargestLineMainSize(nsTArray<FlexLine>& aLines) {
nscoord largestLineOuterSize = 0;
for (const FlexLine& line : aLines) {
largestLineOuterSize =
std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize());
}
return largestLineOuterSize;
}
nscoord nsFlexContainerFrame::ComputeMainSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
nscoord aTentativeMainSize, nsTArray<FlexLine>& aLines) const {
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
return aTentativeMainSize;
}
if (aTentativeMainSize != NS_UNCONSTRAINEDSIZE) {
// Column-oriented case, with fixed BSize:
// Just use our fixed block-size because we always assume the available
// block-size is unconstrained, and the reflow input has already done the
// appropriate min/max-BSize clamping.
return aTentativeMainSize;
}
// Column-oriented case, with size-containment:
// Behave as if we had no content and just use our MinBSize.
if (aReflowInput.mStyleDisplay->IsContainSize()) {
return aReflowInput.ComputedMinBSize();
}
// Column-oriented case, with auto BSize:
// Resolve auto BSize to the largest FlexLine length, clamped to our
// computed min/max main-size properties.
nscoord largestLineOuterSize = GetLargestLineMainSize(aLines);
return NS_CSS_MINMAX(largestLineOuterSize, aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
nscoord nsFlexContainerFrame::ComputeCrossSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
nscoord aSumLineCrossSizes, nscoord aConsumedBSize,
bool* aIsDefinite) const {
MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented --> our cross axis is the inline axis, so our cross size
// is our inline size (which should already be resolved).
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
*aIsDefinite = true;
// FIXME: Bug 1661847 - there are cases where aReflowInput.ComputedISize()
// might not be the right thing to return here. Specifically: if our cross
// size is an intrinsic size, and we have flex items that are flexible and
// have aspect ratios, then we may need to take their post-flexing
// main sizes into account (multiplied through their aspect ratios to get
// their cross sizes), in order to determine their flex line's size & the
// flex container's cross size (e.g. as `aSumLineCrossSizes`).
return aReflowInput.ComputedISize();
}
nscoord effectiveComputedBSize =
GetEffectiveComputedBSize(aReflowInput, aConsumedBSize);
if (effectiveComputedBSize != NS_UNCONSTRAINEDSIZE) {
// Row-oriented case (cross axis is block-axis), with fixed BSize:
*aIsDefinite = true;
// Just use our fixed block-size because we always assume the available
// block-size is unconstrained, and the reflow input has already done the
// appropriate min/max-BSize clamping.
return effectiveComputedBSize;
}
// Row-oriented case, with size-containment:
// Behave as if we had no content and just use our MinBSize.
if (aReflowInput.mStyleDisplay->IsContainSize()) {
*aIsDefinite = true;
return aReflowInput.ComputedMinBSize();
}
// Row-oriented case (cross axis is block axis), with auto BSize:
// Shrink-wrap our line(s), subject to our min-size / max-size
// constraints in that (block) axis.
*aIsDefinite = false;
return NS_CSS_MINMAX(aSumLineCrossSizes, aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
}
LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems(
const ReflowInput& aReflowInput,
const mozilla::LogicalMargin& aBorderPadding) const {
const WritingMode wm = GetWritingMode();
nscoord availableBSize = aReflowInput.AvailableBSize();
if (availableBSize != NS_UNCONSTRAINEDSIZE) {
// Available block-size is constrained. Subtract block-start border and
// padding from it.
availableBSize -= aBorderPadding.BStart(wm);
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone) {
// We have box-decoration-break:clone. Subtract block-end border and
// padding from the available block-size as well.
availableBSize -= aBorderPadding.BEnd(wm);
}
// Available block-size can became negative after subtracting block-axis
// border and padding. Per spec, to guarantee progress, fragmentainers are
// assumed to have a minimum block size of 1px regardless of their used
// size. https://drafts.csswg.org/css-break/#breaking-rules
availableBSize =
std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize);
}
return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize);
}
void FlexLine::PositionItemsInMainAxis(
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) {
MainAxisPositionTracker mainAxisPosnTracker(
aAxisTracker, this, aJustifyContent, aContentBoxMainSize);
for (FlexItem& item : Items()) {
nscoord itemMainBorderBoxSize =
item.MainSize() + item.BorderPaddingSizeInMainAxis();
// Resolve any main-axis 'auto' margins on aChild to an actual value.
mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item);
// Advance our position tracker to child's upper-left content-box corner,
// and use that as its position in the main axis.
mainAxisPosnTracker.EnterMargin(item.Margin());
mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
item.SetMainPosition(mainAxisPosnTracker.Position());
mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
mainAxisPosnTracker.ExitMargin(item.Margin());
mainAxisPosnTracker.TraversePackingSpace();
if (&item != &Items().LastElement()) {
mainAxisPosnTracker.TraverseGap(mMainGapSize);
}
}
}
/**
* Given the flex container's "flex-relative ascent" (i.e. distance from the
* flex container's content-box cross-start edge to its baseline), returns
* its actual physical ascent value (the distance from the *border-box* top
* edge to its baseline).
*/
static nscoord ComputePhysicalAscentFromFlexRelativeAscent(
nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize,
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker) {
return aReflowInput.ComputedPhysicalBorderPadding().top +
PhysicalCoordFromFlexRelativeCoord(
aFlexRelativeAscent, aContentBoxCrossSize,
aAxisTracker.CrossAxisPhysicalStartSide());
}
void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput,
FlexItem& aItem) {
// If cross axis is the item's inline axis, just use ISize from reflow input,
// and don't bother with a full reflow.
if (aItem.IsInlineAxisCrossAxis()) {
aItem.SetCrossSize(aChildReflowInput.ComputedISize());
return;
}
MOZ_ASSERT(!aItem.HadMeasuringReflow(),
"We shouldn't need more than one measuring reflow");
if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) {
// This item's got "align-self: stretch", so we probably imposed a
// stretched computed cross-size on it during its previous
// reflow. We're not imposing that BSize for *this* "measuring" reflow, so
// we need to tell it to treat this reflow as a resize in its block axis
// (regardless of whether any of its ancestors are actually being resized).
// (Note: we know that the cross axis is the item's *block* axis -- if it
// weren't, then we would've taken the early-return above.)
aChildReflowInput.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
aChildReflowInput.mFlags.mIsBResizeForPercentages = true;
}
// Potentially reflow the item, and get the sizing info.
const CachedBAxisMeasurement& measurement =
MeasureBSizeForFlexItem(aItem, aChildReflowInput);
// Save the sizing info that we learned from this reflow
// -----------------------------------------------------
// Tentatively store the child's desired content-box cross-size.
aItem.SetCrossSize(measurement.BSize());
}
void FlexLine::PositionItemsInCrossAxis(
nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) {
SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
for (FlexItem& item : Items()) {
// First, stretch the item's cross size (if appropriate), and resolve any
// auto margins in this axis.
item.ResolveStretchedCrossSize(mLineCrossSize);
lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item);
// Compute the cross-axis position of this item
nscoord itemCrossBorderBoxSize =
item.CrossSize() + item.BorderPaddingSizeInCrossAxis();
lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker);
lineCrossAxisPosnTracker.EnterMargin(item.Margin());
lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
item.SetCrossPosition(aLineStartPosition +
lineCrossAxisPosnTracker.Position());
// Back out to cross-axis edge of the line.
lineCrossAxisPosnTracker.ResetPosition();
}
}
void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aReflowOutput,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aReflowOutput, aStatus);
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
MOZ_ASSERT(aPresContext == PresContext());
FLEX_LOG("Reflow() for nsFlexContainerFrame %p", this);
if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) {
return;
}
NormalizeChildLists();
#ifdef DEBUG
mDidPushItemsBitMayLie = false;
SanityCheckChildListsBeforeReflow();
#endif // DEBUG
// We (and our children) can only depend on our ancestor's bsize if we have
// a percent-bsize, or if we're positioned and we have "block-start" and
// "block-end" set and have block-size:auto. (There are actually other cases,
// too -- e.g. if our parent is itself a block-dir flex container and we're
// flexible -- but we'll let our ancestors handle those sorts of cases.)
//
// TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's
// too conservative. min/max-content don't really depend on the container.
WritingMode wm = aReflowInput.GetWritingMode();
const nsStylePosition* stylePos = StylePosition();
const auto& bsize = stylePos->BSize(wm);
if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() &&
(bsize.IsAuto() || !bsize.IsLengthPercentage()) &&
!stylePos->mOffset.GetBStart(wm).IsAuto() &&
!stylePos->mOffset.GetBEnd(wm).IsAuto())) {
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
// Check if there is a -webkit-line-clamp ellipsis somewhere inside at least
// one of the flex items, so we can clear the flag before the block frame
// re-sets it on the appropriate line during its bsize measuring reflow.
bool hasLineClampEllipsis =
HasAnyStateBits(NS_STATE_FLEX_HAS_LINE_CLAMP_ELLIPSIS);
RemoveStateBits(NS_STATE_FLEX_HAS_LINE_CLAMP_ELLIPSIS);
const FlexboxAxisTracker axisTracker(this);
// Check to see if we need to create a computed info structure, to
// be filled out for use by devtools.
ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo();
const nscoord consumedBSize = CalcAndCacheConsumedBSize();
nscoord contentBoxMainSize =
GetMainSizeFromReflowInput(aReflowInput, axisTracker, consumedBSize);
nscoord contentBoxCrossSize;
nscoord flexContainerAscent;
// Calculate gap size for main and cross axis
nscoord mainGapSize;
nscoord crossGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
contentBoxMainSize);
crossGapSize = nsLayoutUtils::ResolveGapToLength(
stylePos->mRowGap,
GetEffectiveComputedBSize(aReflowInput, consumedBSize));
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
contentBoxMainSize);
NS_WARNING_ASSERTION(aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result "
"from huge sizes (not intrinsic sizing w/ orthogonal "
"flows)");
crossGapSize = nsLayoutUtils::ResolveGapToLength(
stylePos->mColumnGap, aReflowInput.ComputedISize());
}
AutoTArray<FlexLine, 1> lines;
AutoTArray<StrutInfo, 1> struts;
AutoTArray<nsIFrame*, 1> placeholders;
if (!GetPrevInFlow()) {
// When fragmenting a flex container, we run the flex algorithm without
// regards to pagination in order to compute the flex container's desired
// content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo
//
// Note: For a multi-line column-oriented flex container, the sample
// algorithm suggests we wrap the flex line at the block-end edge of a
// column/page, but we do not implement it intentionally. This brings the
// layout result closer to the one as if there's no fragmentation.
DoFlexLayout(aReflowInput, contentBoxMainSize, contentBoxCrossSize,
flexContainerAscent, lines, struts, placeholders, axisTracker,
mainGapSize, crossGapSize, consumedBSize, hasLineClampEllipsis,
containerInfo);
if (!struts.IsEmpty()) {
// We're restarting flex layout, with new knowledge of collapsed items.
lines.Clear();
placeholders.Clear();
DoFlexLayout(aReflowInput, contentBoxMainSize, contentBoxCrossSize,
flexContainerAscent, lines, struts, placeholders,
axisTracker, mainGapSize, crossGapSize, consumedBSize,
hasLineClampEllipsis, containerInfo);
}
} else {
auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop());
MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!");
GenerateFlexLines(*data, lines);
contentBoxMainSize = data->mContentBoxMainSize;
contentBoxCrossSize = data->mContentBoxCrossSize;
}
const LogicalSize contentBoxSize =
axisTracker.LogicalSizeFromFlexRelativeSizes(contentBoxMainSize,
contentBoxCrossSize);
const nscoord effectiveContentBSize =
contentBoxSize.BSize(wm) - consumedBSize;
LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm);
bool mayNeedNextInFlow = false;
if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) {
// We assume we are the last fragment by using
// PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and
// padding if needed.
borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides());
// Check if we may need a next-in-flow. If so, we'll need to skip block-end
// border and padding.
const LogicalSize availableSizeForItems =
ComputeAvailableSizeForItems(aReflowInput, borderPadding);
mayNeedNextInFlow = effectiveContentBSize > availableSizeForItems.BSize(wm);
if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
borderPadding.BEnd(wm) = 0;
}
}
// Determine this frame's tentative border-box size. This is used for logical
// to physical coordinate conversion when positioning children.
//
// Note that vertical-rl writing-mode is the only case where the block flow
// direction progresses in a negative physical direction, and therefore block
// direction coordinate conversion depends on knowing the width of the
// coordinate space in order to translate between the logical and physical
// origins. As a result, if our final border-box block-size is different from
// this tentative one, and we are in vertical-rl writing mode, we need to
// adjust our children's position after reflowing them.
const LogicalSize tentativeBorderBoxSize(
wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm),
std::min(effectiveContentBSize + borderPadding.BStartEnd(wm),
aReflowInput.AvailableBSize()));
const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm);
const auto* prevInFlow = static_cast<nsFlexContainerFrame*>(GetPrevInFlow());
OverflowAreas ocBounds;
nsReflowStatus ocStatus;
nscoord sumOfChildrenBlockSize;
if (prevInFlow) {
ReflowOverflowContainerChildren(
aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default,
ocStatus, MergeSortedFrameListsFor, Some(containerSize));
sumOfChildrenBlockSize =
prevInFlow->GetProperty(SumOfChildrenBlockSizeProperty());
} else {
sumOfChildrenBlockSize = 0;
}
const LogicalSize availableSizeForItems =
ComputeAvailableSizeForItems(aReflowInput, borderPadding);
const auto [maxBlockEndEdgeOfChildren, areChildrenComplete] =
ReflowChildren(aReflowInput, contentBoxMainSize, contentBoxCrossSize,
containerSize, availableSizeForItems, borderPadding,
sumOfChildrenBlockSize, flexContainerAscent, lines,
placeholders, axisTracker, hasLineClampEllipsis);
// maxBlockEndEdgeOfChildren is relative to border-box, so we need to subtract
// block-start border and padding to make it relative to our content-box. Note
// that if there is a packing space in between the last flex item's block-end
// edge and the available space's block-end edge, we want to record the
// available size of item to consume part of the packing space.
sumOfChildrenBlockSize +=
std::max(maxBlockEndEdgeOfChildren - borderPadding.BStart(wm),
availableSizeForItems.BSize(wm));
PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize,
borderPadding, consumedBSize, mayNeedNextInFlow,
maxBlockEndEdgeOfChildren, areChildrenComplete,
flexContainerAscent, lines, axisTracker);
if (wm.IsVerticalRL()) {
// If the final border-box block-size is different from the tentative one,
// adjust our children's position.
const nscoord deltaBCoord =
tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm);
if (deltaBCoord != 0) {
const LogicalPoint delta(wm, 0, deltaBCoord);
for (const FlexLine& line : lines) {
for (const FlexItem& item : line.Items()) {
item.Frame()->MovePositionBy(wm, delta);
}
}
}
}
// Overflow area = union(my overflow area, children's overflow areas)
aReflowOutput.SetOverflowAreasToDesiredBounds();
for (nsIFrame* childFrame : mFrames) {
ConsiderChildOverflow(aReflowOutput.mOverflowAreas, childFrame);
}
MOZ_ASSERT(!lines.IsEmpty(),
"Flex container should have at least one FlexLine!");
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent &&
!lines.IsEmpty() && !lines[0].IsEmpty()) {
MOZ_ASSERT(aReflowInput.ComputedLogicalBorderPadding(wm) ==
aReflowInput.ComputedLogicalPadding(wm),
"A scrolled inner frame shouldn't have any border!");
const LogicalMargin& padding = borderPadding;
// The CSS Overflow spec [1] requires that a scrollable container's
// scrollable overflow should include the following areas.
//
// a) "the box's own content and padding areas": we treat the *content* as
// the scrolled inner frame's theoretical content-box that's intrinsically
// sized to the union of all the flex items' margin boxes, _without_
// relative positioning applied. The *padding areas* is just inflation on
// top of the theoretical content-box by the flex container's padding.
//
// b) "the margin areas of grid item and flex item boxes for which the box
// establishes a containing block": a) already includes the flex items'
// normal-positioned margin boxes into the scrollable overflow, but their
// relative-positioned margin boxes should also be included because relpos
// children are still flex items.
//
// [1] https://drafts.csswg.org/css-overflow-3/#scrollable.
// Union of normal-positioned margin boxes for all the items.
nsRect itemMarginBoxes;
// Union of relative-positioned margin boxes for the relpos items only.
nsRect relPosItemMarginBoxes;
for (const FlexLine& line : lines) {
for (const FlexItem& item : line.Items()) {
const nsIFrame* f = item.Frame();
if (MOZ_UNLIKELY(f->IsRelativelyPositioned())) {
const nsRect marginRect = f->GetMarginRectRelativeToSelf();
itemMarginBoxes =
itemMarginBoxes.Union(marginRect + f->GetNormalPosition());
relPosItemMarginBoxes =
relPosItemMarginBoxes.Union(marginRect + f->GetPosition());
} else {
itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect());
}
}
}
itemMarginBoxes.Inflate(padding.GetPhysicalMargin(wm));
aReflowOutput.mOverflowAreas.UnionAllWith(itemMarginBoxes);
aReflowOutput.mOverflowAreas.UnionAllWith(relPosItemMarginBoxes);
}
// Merge overflow container bounds and status.
aReflowOutput.mOverflowAreas.UnionWith(ocBounds);
aStatus.MergeCompletionStatusFrom(ocStatus);
FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput,
aStatus);
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aReflowOutput)
// Finally update our line and item measurements in our containerInfo.
if (MOZ_UNLIKELY(containerInfo)) {
UpdateFlexLineAndItemInfo(*containerInfo, lines);
}
// If we are the first-in-flow, we want to store data for our next-in-flows,
// or clear the existing data if it is not needed.
if (!GetPrevInFlow()) {
SharedFlexData* data = GetProperty(SharedFlexData::Prop());
if (!aStatus.IsFullyComplete()) {
if (!data) {
data = new SharedFlexData;
SetProperty(SharedFlexData::Prop(), data);
}
data->mLines = std::move(lines);
data->mContentBoxMainSize = contentBoxMainSize;
data->mContentBoxCrossSize = contentBoxCrossSize;
SetProperty(SumOfChildrenBlockSizeProperty(), sumOfChildrenBlockSize);
} else if (data) {
// We are fully-complete, so no next-in-flow is needed. Delete the
// existing data.
RemoveProperty(SharedFlexData::Prop());
RemoveProperty(SumOfChildrenBlockSizeProperty());
}
} else {
SetProperty(SumOfChildrenBlockSizeProperty(), sumOfChildrenBlockSize);
}
}
void nsFlexContainerFrame::CalculatePackingSpace(
uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal,
nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining,
nscoord* aPackingSpaceRemaining) {
StyleAlignFlags val = aAlignVal.primary;
MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN ||
val == StyleAlignFlags::SPACE_AROUND ||
val == StyleAlignFlags::SPACE_EVENLY,
"Unexpected alignment value");
MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
"Should not be called with negative packing space");
// Note: In the aNumThingsToPack==1 case, the fallback behavior for
// 'space-between' depends on precise information about the axes that we
// don't have here. So, for that case, we just depend on the caller to
// explicitly convert 'space-{between,around,evenly}' keywords to the
// appropriate fallback alignment and skip this function.
MOZ_ASSERT(aNumThingsToPack > 1,
"Should not be called unless there's more than 1 thing to pack");
// Packing spaces between items:
*aNumPackingSpacesRemaining = aNumThingsToPack - 1;
if (val == StyleAlignFlags::SPACE_BETWEEN) {
// No need to reserve space at beginning/end, so we're done.
return;
}
// We need to add 1 or 2 packing spaces, split between beginning/end, for
// space-around / space-evenly:
size_t numPackingSpacesForEdges =
val == StyleAlignFlags::SPACE_AROUND ? 1 : 2;
// How big will each "full" packing space be:
nscoord packingSpaceSize =
*aPackingSpaceRemaining /
(*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
// How much packing-space are we allocating to the edges:
nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
// Use half of that edge packing space right now:
*aFirstSubjectOffset += totalEdgePackingSpace / 2;
// ...but we need to subtract all of it right away, so that we won't
// hand out any of it to intermediate packing spaces.
*aPackingSpaceRemaining -= totalEdgePackingSpace;
}
ComputedFlexContainerInfo*
nsFlexContainerFrame::CreateOrClearFlexContainerInfo() {
if (!ShouldGenerateComputedInfo()) {
return nullptr;
}
// The flag that sets ShouldGenerateComputedInfo() will never be cleared.
// That's acceptable because it's only set in a Chrome API invoked by
// devtools, and won't impact normal browsing.
// Re-use the ComputedFlexContainerInfo, if it exists.
ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo());
if (info) {
// We can reuse, as long as we clear out old data.
info->mLines.Clear();
} else {
info = new ComputedFlexContainerInfo();
SetProperty(FlexContainerInfo(), info);
}
return info;
}
void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo(
ComputedFlexContainerInfo& aContainerInfo,
const nsTArray<FlexLine>& aLines) {
for (const FlexLine& line : aLines) {
ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement();
// Most of the remaining lineInfo properties will be filled out in
// UpdateFlexLineAndItemInfo (some will be provided by other functions),
// when we have real values. But we still add all the items here, so
// we can capture computed data for each item as we proceed.
for (const FlexItem& item : line.Items()) {
nsIFrame* frame = item.Frame();
// The frame may be for an element, or it may be for an
// anonymous flex item, e.g. wrapping one or more text nodes.
// DevTools wants the content node for the actual child in
// the DOM tree, so we descend through anonymous boxes.
nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame);
nsIContent* content = targetFrame->GetContent();
// Skip over content that is only whitespace, which might
// have been broken off from a text node which is our real
// target.
while (content && content->TextIsOnlyWhitespace()) {
// If content is only whitespace, try the frame sibling.
targetFrame = targetFrame->GetNextSibling();
if (targetFrame) {
content = targetFrame->GetContent();
} else {
content = nullptr;
}
}
ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement();
itemInfo->mNode = content;
// itemInfo->mMainBaseSize and mMainDeltaSize will be filled out
// in ResolveFlexibleLengths(). Other measurements will be captured in
// UpdateFlexLineAndItemInfo.
}
}
}
void nsFlexContainerFrame::ComputeFlexDirections(
ComputedFlexContainerInfo& aContainerInfo,
const FlexboxAxisTracker& aAxisTracker) {
auto ConvertPhysicalStartSideToFlexPhysicalDirection =
[](mozilla::Side aStartSide) {
switch (aStartSide) {
case eSideLeft:
return dom::FlexPhysicalDirection::Horizontal_lr;
case eSideRight:
return dom::FlexPhysicalDirection::Horizontal_rl;
case eSideTop:
return dom::FlexPhysicalDirection::Vertical_tb;
case eSideBottom:
return dom::FlexPhysicalDirection::Vertical_bt;
}
MOZ_ASSERT_UNREACHABLE("We should handle all sides!");
return dom::FlexPhysicalDirection::Horizontal_lr;
};
aContainerInfo.mMainAxisDirection =
ConvertPhysicalStartSideToFlexPhysicalDirection(
aAxisTracker.MainAxisPhysicalStartSide());
aContainerInfo.mCrossAxisDirection =
ConvertPhysicalStartSideToFlexPhysicalDirection(
aAxisTracker.CrossAxisPhysicalStartSide());
}
void nsFlexContainerFrame::UpdateFlexLineAndItemInfo(
ComputedFlexContainerInfo& aContainerInfo,
const nsTArray<FlexLine>& aLines) {
uint32_t lineIndex = 0;
for (const FlexLine& line : aLines) {
ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex];
lineInfo.mCrossSize = line.LineCrossSize();
lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset();
lineInfo.mLastBaselineOffset = line.LastBaselineOffset();
uint32_t itemIndex = 0;
for (const FlexItem& item : line.Items()) {
ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex];
itemInfo.mFrameRect = item.Frame()->GetRect();
itemInfo.mMainMinSize = item.MainMinSize();
itemInfo.mMainMaxSize = item.MainMaxSize();
itemInfo.mCrossMinSize = item.CrossMinSize();
itemInfo.mCrossMaxSize = item.CrossMaxSize();
itemInfo.mClampState =
item.WasMinClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_min
: (item.WasMaxClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_max
: mozilla::dom::FlexItemClampState::Unclamped);
++itemIndex;
}
++lineIndex;
}
}
nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo(
nsIFrame* aFrame) {
// Prepare a lambda function that we may need to call multiple times.
auto GetFlexContainerFrame = [](nsIFrame* aFrame) {
// Return the aFrame's content insertion frame, iff it is
// a flex container frame.
nsFlexContainerFrame* flexFrame = nullptr;
if (aFrame) {
nsIFrame* inner = aFrame;
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
}
// Since "Get" methods like GetInner and GetContentInsertionFrame can
// return null, we check the return values before dereferencing. Our
// calling pattern makes this unlikely, but we're being careful.
nsIFrame* insertionFrame =
inner ? inner->GetContentInsertionFrame() : nullptr;
nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame;
flexFrame = possibleFlexFrame->IsFlexContainerFrame()
? static_cast<nsFlexContainerFrame*>(possibleFlexFrame)
: nullptr;
}
return flexFrame;
};
nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame);
if (flexFrame) {
// Generate the FlexContainerInfo data, if it's not already there.
bool reflowNeeded = !flexFrame->HasProperty(FlexContainerInfo());
if (reflowNeeded) {
// Trigger a reflow that generates additional flex property data.
// Hold onto aFrame while we do this, in case reflow destroys it.
AutoWeakFrame weakFrameRef(aFrame);
RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell();
flexFrame->SetShouldGenerateComputedInfo(true);
presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::Resize,
NS_FRAME_IS_DIRTY);
presShell->FlushPendingNotifications(FlushType::Layout);
// Since the reflow may have side effects, get the flex frame
// again. But if the weakFrameRef is no longer valid, then we
// must bail out.
if (!weakFrameRef.IsAlive()) {
return nullptr;
}
flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame());
NS_WARNING_ASSERTION(
!flexFrame || flexFrame->HasProperty(FlexContainerInfo()),
"The state bit should've made our forced-reflow "
"generate a FlexContainerInfo object");
}
}
return flexFrame;
}
/* static */
bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) {
MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
const WritingMode flexItemWM = aFrame->GetWritingMode();
const nsIFrame* flexContainer = aFrame->GetParent();
if (IsLegacyBox(flexContainer)) {
// For legacy boxes, the main axis is determined by "box-orient", and we can
// just directly check if that's vertical, and compare that to whether the
// item's WM is also vertical:
bool boxOrientIsVertical =
(flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical);
return flexItemWM.IsVertical() == boxOrientIsVertical;
}
// For modern CSS flexbox, we get our return value by asking two questions
// and comparing their answers.
// Question 1: does aFrame have the same inline axis as its flex container?
bool itemInlineAxisIsParallelToParent =
!flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
// Question 2: is aFrame's flex container row-oriented? (This tells us
// whether the flex container's main axis is its inline axis.)
auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
bool flexContainerIsRowOriented =
flexDirection == StyleFlexDirection::Row ||
flexDirection == StyleFlexDirection::RowReverse;
// aFrame's inline axis is its flex container's main axis IFF the above
// questions have the same answer.
return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
}
/* static */
bool nsFlexContainerFrame::IsUsedFlexBasisContent(
const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) {
// We have a used flex-basis of 'content' if flex-basis explicitly has that
// value, OR if flex-basis is 'auto' (deferring to the main-size property)
// and the main-size property is also 'auto'.
// See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
if (aFlexBasis.IsContent()) {
return true;
}
return aFlexBasis.IsAuto() && aMainSize.IsAuto();
}
void nsFlexContainerFrame::DoFlexLayout(
const ReflowInput& aReflowInput, nscoord& aContentBoxMainSize,
nscoord& aContentBoxCrossSize, nscoord& aFlexContainerAscent,
nsTArray<FlexLine>& aLines, nsTArray<StrutInfo>& aStruts,
nsTArray<nsIFrame*>& aPlaceholders, const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize, nscoord aCrossGapSize, nscoord aConsumedBSize,
bool aHasLineClampEllipsis,
ComputedFlexContainerInfo* const aContainerInfo) {
MOZ_ASSERT(aLines.IsEmpty(), "Caller should pass an empty array for lines!");
MOZ_ASSERT(aPlaceholders.IsEmpty(),
"Caller should pass an empty array for placeholders!");
GenerateFlexLines(aReflowInput, aContentBoxMainSize, aStruts, aAxisTracker,
aMainGapSize, aHasLineClampEllipsis, aPlaceholders, aLines);
if ((aLines.Length() == 1 && aLines[0].IsEmpty()) ||
aReflowInput.mStyleDisplay->IsContainLayout()) {
// We have no flex items, or we're layout-contained. So, we have no
// baseline, and our parent should synthesize a baseline if needed.
AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
}
// Construct our computed info if we've been asked to do so. This is
// necessary to do now so we can capture some computed values for
// FlexItems during layout that would not otherwise be saved (like
// size adjustments). We'll later fix up the line properties,
// because the correct values aren't available yet.
if (aContainerInfo) {
MOZ_ASSERT(ShouldGenerateComputedInfo(),
"We should only have the info struct if "
"ShouldGenerateComputedInfo() is true!");
if (!aStruts.IsEmpty()) {
// We restarted DoFlexLayout, and may have stale mLines to clear:
aContainerInfo->mLines.Clear();
} else {
MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet.");
}
CreateFlexLineAndFlexItemInfo(*aContainerInfo, aLines);
ComputeFlexDirections(*aContainerInfo, aAxisTracker);
}
aContentBoxMainSize =
ComputeMainSize(aReflowInput, aAxisTracker, aContentBoxMainSize, aLines);
uint32_t lineIndex = 0;
for (FlexLine& line : aLines) {
ComputedFlexLineInfo* lineInfo =
aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr;
line.ResolveFlexibleLengths(aContentBoxMainSize, lineInfo);
++lineIndex;
}
// Cross Size Determination - Flexbox spec section 9.4
// https://drafts.csswg.org/css-flexbox-1/#cross-sizing
// ===================================================
// Calculate the hypothetical cross size of each item:
// 'sumLineCrossSizes' includes the size of all gaps between lines. We
// initialize it with the sum of all the gaps, and add each line's cross size
// at the end of the following for-loop.
nscoord sumLineCrossSizes = aCrossGapSize * (aLines.Length() - 1);
for (FlexLine& line : aLines) {
for (FlexItem& item : line.Items()) {
// The item may already have the correct cross-size; only recalculate
// if the item's main size resolution (flexing) could have influenced it:
if (item.CanMainSizeInfluenceCrossSize()) {
StyleSizeOverrides sizeOverrides;
if (item.IsInlineAxisMainAxis()) {
sizeOverrides.mStyleISize.emplace(item.StyleMainSize());
} else {
sizeOverrides.mStyleBSize.emplace(item.StyleMainSize());
}
FLEX_LOG("Sizing flex item %p in cross axis", item.Frame());
FLEX_LOGV(" Main size override: %d", item.MainSize());
const WritingMode wm = item.GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(),
availSize, Nothing(), {}, sizeOverrides);
childReflowInput.mFlags.mInsideLineClamp = GetLineClampValue() != 0;
if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) {
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
}
SizeItemInCrossAxis(childReflowInput, item);
}
}
// Now that we've finished with this line's items, size the line itself:
line.ComputeCrossSizeAndBaseline(aAxisTracker);
sumLineCrossSizes += line.LineCrossSize();
}
bool isCrossSizeDefinite;
aContentBoxCrossSize =
ComputeCrossSize(aReflowInput, aAxisTracker, sumLineCrossSizes,
aConsumedBSize, &isCrossSizeDefinite);
// Set up state for cross-axis alignment, at a high level (outside the
// scope of a particular flex line)
CrossAxisPositionTracker crossAxisPosnTracker(
aLines, aReflowInput, aContentBoxCrossSize, isCrossSizeDefinite,
aAxisTracker, aCrossGapSize);
// Now that we know the cross size of each line (including
// "align-content:stretch" adjustments, from the CrossAxisPositionTracker
// constructor), we can create struts for any flex items with
// "visibility: collapse" (and restart flex layout).
if (aStruts.IsEmpty() && // (Don't make struts if we already did)
!ShouldUseMozBoxCollapseBehavior(aReflowInput.mStyleDisplay)) {
BuildStrutInfoFromCollapsedItems(aLines, aStruts);
if (!aStruts.IsEmpty()) {
// Restart flex layout, using our struts.
return;
}
}
// If the container should derive its baseline from the first FlexLine,
// do that here (while crossAxisPosnTracker is conveniently pointing
// at the cross-start edge of that line, which the line's baseline offset is
// measured from):
if (nscoord firstLineBaselineOffset = aLines[0].FirstBaselineOffset();
firstLineBaselineOffset == nscoord_MIN) {
// No baseline-aligned items in line. Use sentinel value to prompt us to
// get baseline from the first FlexItem after we've reflowed it.
aFlexContainerAscent = nscoord_MIN;
} else {
aFlexContainerAscent = ComputePhysicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.Position() + firstLineBaselineOffset,
aContentBoxCrossSize, aReflowInput, aAxisTracker);
}
const auto justifyContent =
IsLegacyBox(aReflowInput.mFrame)
? ConvertLegacyStyleToJustifyContent(StyleXUL())
: aReflowInput.mStylePosition->mJustifyContent;
lineIndex = 0;
for (FlexLine& line : aLines) {
// Main-Axis Alignment - Flexbox spec section 9.5
// https://drafts.csswg.org/css-flexbox-1/#main-alignment
// ==============================================
line.PositionItemsInMainAxis(justifyContent, aContentBoxMainSize,
aAxisTracker);
// See if we need to extract some computed info for this line.
if (MOZ_UNLIKELY(aContainerInfo)) {
ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex];
lineInfo.mCrossStart = crossAxisPosnTracker.Position();
}
// Cross-Axis Alignment - Flexbox spec section 9.6
// https://drafts.csswg.org/css-flexbox-1/#cross-alignment
// ===============================================
line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(),
aAxisTracker);
crossAxisPosnTracker.TraverseLine(line);
crossAxisPosnTracker.TraversePackingSpace();
if (&line != &aLines.LastElement()) {
crossAxisPosnTracker.TraverseGap();
}
++lineIndex;
}
}
std::tuple<nscoord, bool> nsFlexContainerFrame::ReflowChildren(
const ReflowInput& aReflowInput, const nscoord aContentBoxMainSize,
const nscoord aContentBoxCrossSize, const nsSize& aContainerSize,
const LogicalSize& aAvailableSizeForItems,
const LogicalMargin& aBorderPadding,
const nscoord aSumOfPrevInFlowsChildrenBlockSize,
nscoord& aFlexContainerAscent, nsTArray<FlexLine>& aLines,
nsTArray<nsIFrame*>& aPlaceholders, const FlexboxAxisTracker& aAxisTracker,
bool aHasLineClampEllipsis) {
// Before giving each child a final reflow, calculate the origin of the
// flex container's content box (with respect to its border-box), so that
// we can compute our flex item's final positions.
WritingMode flexWM = aReflowInput.GetWritingMode();
const LogicalPoint containerContentBoxOrigin(
flexWM, aBorderPadding.IStart(flexWM), aBorderPadding.BStart(flexWM));
// If the flex container has no baseline-aligned items, it will use the first
// item to determine its baseline:
const FlexItem* firstItem =
aLines[0].IsEmpty() ? nullptr : &aLines[0].FirstItem();
// The block-end of children is relative to the flex container's border-box.
nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM);
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
// FINAL REFLOW: Give each child frame another chance to reflow, now that
// we know its final size and position.
for (const FlexLine& line : aLines) {
for (const FlexItem& item : line.Items()) {
LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
item.MainPosition(), item.CrossPosition(), aContentBoxMainSize,
aContentBoxCrossSize);
if (item.Frame()->GetPrevInFlow()) {
// The item is a continuation. Lay it out at the beginning of the
// available space.
framePos.B(flexWM) = 0;
} else {
// We haven't laid the item out. Subtract its block-direction position
// by the sum of our prev-in-flows' content block-end.
framePos.B(flexWM) -= aSumOfPrevInFlowsChildrenBlockSize;
}
// Adjust available block-size for the item. (We compute it here because
// framePos is still relative to the container's content-box.)
//
// Note: The available block-size can become negative if item's
// block-direction position is below available space's block-end.
const nscoord availableBSizeForItem =
aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE
? NS_UNCONSTRAINEDSIZE
: aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM);
// Adjust framePos to be relative to the container's border-box
// (i.e. its frame rect), instead of the container's content-box:
framePos += containerContentBoxOrigin;
// (Intentionally snapshotting this before ApplyRelativePositioning, to
// maybe use for setting the flex container's baseline.)
const nscoord itemNormalBPos = framePos.B(flexWM);
// Check if we actually need to reflow the item -- if the item's position
// is below the available space's block-end, push it to our next-in-flow;
// if it does need a reflow, and we already reflowed it with the right
// content-box size, and there is no need to do a reflow to clear out a
// -webkit-line-clamp ellipsis, we can just reposition it as-needed.
const bool childBPosExceedAvailableSpaceBEnd =
availableBSizeForItem != NS_UNCONSTRAINEDSIZE &&
availableBSizeForItem <= 0;
if (childBPosExceedAvailableSpaceBEnd) {
// Note: Even if all of our items are beyond the available space & get
// pushed here, we'll be guaranteed to place at least one of them (and
// make progress) in one of the flex container's *next* fragment. It's
// because ComputeAvailableSizeForItems() always reserves at least 1px
// available block-size for its children, and we consume all available
// block-size and add it to SumOfChildrenBlockSizeProperty even if we
// are not laying out any child.
FLEX_LOG(
"[frag] Flex item %p needed to be pushed to container's "
"next-in-flow due to position below available space's block-end",
item.Frame());
pushedItems.Insert(item.Frame());
} else if (item.NeedsFinalReflow(availableBSizeForItem)) {
// The available size must be in item's writing-mode.
const WritingMode itemWM = item.GetWritingMode();
const auto availableSize =
LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM),
availableBSizeForItem)
.ConvertTo(itemWM, flexWM);
const nsReflowStatus childReflowStatus = ReflowFlexItem(
aAxisTracker, aReflowInput, item, framePos, availableSize,
aContainerSize, aHasLineClampEllipsis);
if (childReflowStatus.IsIncomplete()) {
incompleteItems.Insert(item.Frame());
} else if (childReflowStatus.IsOverflowIncomplete()) {
overflowIncompleteItems.Insert(item.Frame());
}
} else {
MoveFlexItemToFinalPosition(aReflowInput, item, framePos,
aContainerSize);
// We didn't perform a final reflow of the item. If we still have a
// -webkit-line-clamp ellipsis hanging around, but we shouldn't have
// one any more, we need to clear that now. Technically, we only need
// to do this if we *didn't* do a bsize measuring reflow of the item
// earlier (since that is normally when we deal with -webkit-line-clamp
// ellipses) but not all flex items need such a reflow.
// XXXdholbert This comment implies that we could skip this if
// HadMeasuringReflow() is true. Maybe we should try doing that?
if (aHasLineClampEllipsis && GetLineClampValue() == 0) {
item.BlockFrame()->ClearLineClampEllipsis();
}
}
if (!childBPosExceedAvailableSpaceBEnd) {
// The item (or a fragment thereof) was placed in this flex container
// fragment. Update the max block-end edge with the item's block-end
// edge.
maxBlockEndEdgeOfChildren =
std::max(maxBlockEndEdgeOfChildren,
itemNormalBPos + item.Frame()->BSize(flexWM));
}
// If the item has auto margins, and we were tracking the UsedMargin
// property, set the property to the computed margin values.
if (item.HasAnyAutoMargin()) {
nsMargin* propValue =
item.Frame()->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = item.PhysicalMargin();
}
}
// If this is our first item and we haven't established a baseline for
// the container yet (i.e. if we don't have 'align-self: baseline' on any
// children), then use this child's first baseline as the container's
// baseline.
if (&item == firstItem && aFlexContainerAscent == nscoord_MIN) {
aFlexContainerAscent = itemNormalBPos + item.ResolvedAscent(true);
}
}
}
if (!aPlaceholders.IsEmpty()) {
ReflowPlaceholders(aReflowInput, aPlaceholders, containerContentBoxOrigin,
aContainerSize);
}
const bool anyChildIncomplete = PushIncompleteChildren(
pushedItems, incompleteItems, overflowIncompleteItems);
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS);
}
return {maxBlockEndEdgeOfChildren, anyChildIncomplete};
}
void nsFlexContainerFrame::PopulateReflowOutput(
ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput,
nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize,
const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize,
const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren,
const bool aAnyChildIncomplete, nscoord aFlexContainerAscent,
nsTArray<FlexLine>& aLines, const FlexboxAxisTracker& aAxisTracker) {
const WritingMode flexWM = aReflowInput.GetWritingMode();
// Compute flex container's desired size (in its own writing-mode).
LogicalSize desiredSizeInFlexWM(flexWM);
desiredSizeInFlexWM.ISize(flexWM) =
aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM);
// Unconditionally skip adding block-end border and padding for now. We add it
// lower down, after we've established baseline and decided whether bottom
// border-padding fits (if we're fragmented).
const nscoord effectiveContentBSizeWithBStartBP =
aContentBoxSize.BSize(flexWM) - aConsumedBSize +
aBorderPadding.BStart(flexWM);
nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM);
if (aMayNeedNextInFlow) {
// We assume our status should be reported as incomplete because we may need
// a next-in-flow.
bool isStatusIncomplete = true;
const nscoord availableBSizeMinusBEndBP =
aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM);
if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) {
// Consume all the available block-size.
desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP;
} else {
// This case happens if we have some tall unbreakable children exceeding
// the available block-size.
desiredSizeInFlexWM.BSize(flexWM) = std::min(
effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren);
if (aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) {
// Some unbreakable children force us to consume all of our content
// block-size, and make us complete.
isStatusIncomplete = false;
// We also potentially need to get the unskipped block-end border and
// padding (if we assumed it'd be skipped as part of our tentative
// assumption that we'd be complete).
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
blockEndContainerBP =
aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM);
}
}
}
if (isStatusIncomplete) {
aStatus.SetIncomplete();
}
} else {
// Our own effective content-box block-size can fit within the available
// block-size.
desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP;
}
if (aFlexContainerAscent == nscoord_MIN) {
// Still don't have our baseline set -- this happens if we have no
// children (or if our children are huge enough that they have nscoord_MIN
// as their baseline... in which case, we'll use the wrong baseline, but no
// big deal)
NS_WARNING_ASSERTION(
aLines[0].IsEmpty(),
"Have flex items but didn't get an ascent - that's odd (or there are "
"just gigantic sizes involved)");
// Per spec, synthesize baseline from the flex container's content box
// (i.e. use block-end side of content-box)
// XXXdholbert This only makes sense if parent's writing mode is
// horizontal (& even then, really we should be using the BSize in terms
// of the parent's writing mode, not ours). Clean up in bug 1155322.
aFlexContainerAscent = desiredSizeInFlexWM.BSize(flexWM);
}
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// This will force our parent to call GetLogicalBaseline, which will
// synthesize a margin-box baseline.
aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
} else {
// XXXdholbert aFlexContainerAscent needs to be in terms of
// our parent's writing-mode here. See bug 1155322.
aReflowOutput.SetBlockStartAscent(aFlexContainerAscent);
}
// Now, we account for how the block-end border and padding (if any) impacts
// our desired size. If adding it pushes us over the available block-size,
// then we become incomplete (unless we already weren't asking for any
// block-size, in which case we stay complete to avoid looping forever).
//
// NOTE: If we have auto block-size, we allow our block-end border and padding
// to push us over the available block-size without requesting a continuation,
// for consistency with the behavior of "display:block" elements.
const nscoord effectiveContentBSizeWithBStartEndBP =
desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() &&
desiredSizeInFlexWM.BSize(flexWM) != 0 &&
aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
// We couldn't fit with the block-end border and padding included, so we'll
// need a continuation.
aStatus.SetIncomplete();
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
blockEndContainerBP = 0;
}
}
// The variable "blockEndContainerBP" now accurately reflects how much (if
// any) block-end border and padding we want for this frame, so we can proceed
// to add it in.
desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP;
if (aStatus.IsComplete() && aAnyChildIncomplete) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
// Calculate the container baselines so that our parent can baseline-align us.
mBaselineFromLastReflow = aFlexContainerAscent;
mLastBaselineFromLastReflow = aLines.LastElement().LastBaselineOffset();
if (mLastBaselineFromLastReflow == nscoord_MIN) {
// XXX we fall back to a mirrored first baseline here for now, but this
// should probably use the last baseline of the last item or something.
mLastBaselineFromLastReflow =
desiredSizeInFlexWM.BSize(flexWM) - aFlexContainerAscent;
}
// Convert flex container's final desired size to parent's WM, for outparam.
aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM);
}
void nsFlexContainerFrame::MoveFlexItemToFinalPosition(
const ReflowInput& aReflowInput, const FlexItem& aItem,
LogicalPoint& aFramePos, const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
// If item is relpos, look up its offsets (cached from prev reflow)
LogicalMargin logicalOffsets(outerWM);
if (StylePositionProperty::Relative ==
aItem.Frame()->StyleDisplay()->mPosition) {
nsMargin* cachedOffsets =
aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
MOZ_ASSERT(cachedOffsets,
"relpos previously-reflowed frame should've cached its offsets");
logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
}
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, logicalOffsets,
&aFramePos, aContainerSize);
aItem.Frame()->SetPosition(outerWM, aFramePos, aContainerSize);
PositionFrameView(aItem.Frame());
PositionChildViews(aItem.Frame());
}
nsReflowStatus nsFlexContainerFrame::ReflowFlexItem(
const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput,
const FlexItem& aItem, LogicalPoint& aFramePos,
const LogicalSize& aAvailableSize, const nsSize& aContainerSize,
bool aHasLineClampEllipsis) {
FLEX_LOG("Doing final reflow for flex item %p", aItem.Frame());
WritingMode outerWM = aReflowInput.GetWritingMode();
StyleSizeOverrides sizeOverrides;
// Override flex item's main size.
if (aItem.IsInlineAxisMainAxis()) {
sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize());
} else {
sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize());
}
FLEX_LOGV(" Main size override: %d", aItem.MainSize());
// Override flex item's cross size if it was stretched in the cross axis (in
// which case we're imposing a cross size).
if (aItem.IsStretched()) {
if (aItem.IsInlineAxisCrossAxis()) {
sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize());
} else {
sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize());
}
FLEX_LOGV(" Cross size override: %d", aItem.CrossSize());
}
if (sizeOverrides.mStyleBSize && aItem.HadMeasuringReflow()) {
// Because we are overriding the block-size, *and* we had an earlier
// "measuring" reflow, then this upcoming reflow needs to be treated as a
// resize. This sets relevant flags in ReflowInput::InitResizeFlags().
aItem.Frame()->SetHasBSizeChange(true);
}
ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(),
aAvailableSize, Nothing(), {}, sizeOverrides);
childReflowInput.mFlags.mInsideLineClamp = GetLineClampValue() != 0;
// This is the final reflow of this flex item; if we previously had a
// -webkit-line-clamp, and we missed our chance to clear the ellipsis
// because we didn't need to call MeasureFlexItemContentBSize, we set
// mApplyLineClamp to cause it to get cleared here.
childReflowInput.mFlags.mApplyLineClamp =
!childReflowInput.mFlags.mInsideLineClamp && aHasLineClampEllipsis;
if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) {
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
}
if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) {
// This item is stretched (in the cross axis), and that axis is its block
// axis. That stretching effectively gives it a relative BSize.
// XXXdholbert This flag only makes a difference if we use the flex items'
// frame-state when deciding whether to reflow them -- and we don't, as of
// the changes in bug 851607. So this has no effect right now, but it might
// make a difference if we optimize to use dirty bits in the
// future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are
// intended to catch any regressions here, if we end up relying on this bit
// & neglecting to set it.)
aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
// NOTE: Be very careful about doing anything else with childReflowInput
// after this point, because some of its methods (e.g. SetComputedWidth)
// internally call InitResizeFlags and stomp on mVResize & mHResize.
ReflowOutput childReflowOutput(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput,
outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default,
childReflowStatus);
// XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532.
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
&childReflowInput, outerWM, aFramePos, aContainerSize,
ReflowChildFlags::ApplyRelativePositioning);
aItem.SetAscent(childReflowOutput.BlockStartAscent());
// Update our cached flex item info:
if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) {
cached->UpdateFinalReflowSize(childReflowInput, childReflowOutput);
} else {
cached = new CachedFlexItemData(childReflowInput, childReflowOutput,
FlexItemReflowType::Final);
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached);
}
return childReflowStatus;
}
void nsFlexContainerFrame::ReflowPlaceholders(
const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders,
const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
// As noted in this method's documentation, we'll reflow every entry in
// |aPlaceholders| at the container's content-box origin.
for (nsIFrame* placeholder : aPlaceholders) {
MOZ_ASSERT(placeholder->IsPlaceholderFrame(),
"placeholders array should only contain placeholder frames");
WritingMode wm = placeholder->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder,
availSize);
// No need to set the -webkit-line-clamp related flags when reflowing
// a placeholder.
ReflowOutput childReflowOutput(childReflowInput);
nsReflowStatus childReflowStatus;
ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput,
outerWM, aContentBoxOrigin, aContainerSize,
ReflowChildFlags::Default, childReflowStatus);
FinishReflowChild(placeholder, PresContext(), childReflowOutput,
&childReflowInput, outerWM, aContentBoxOrigin,
aContainerSize, ReflowChildFlags::Default);
// Mark the placeholder frame to indicate that it's not actually at the
// element's static position, because we need to apply CSS Alignment after
// we determine the OOF's size:
placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
}
nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
IntrinsicISizeType aType) {
nscoord containerISize = 0;
const nsStylePosition* stylePos = StylePosition();
const FlexboxAxisTracker axisTracker(this);
nscoord mainGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
NS_UNCONSTRAINEDSIZE);
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
NS_UNCONSTRAINEDSIZE);
}
const bool useMozBoxCollapseBehavior =
ShouldUseMozBoxCollapseBehavior(StyleDisplay());
// The loop below sets aside space for a gap before each item besides the
// first. This bool helps us handle that special-case.
bool onFirstChild = true;
for (nsIFrame* childFrame : mFrames) {
// Skip out-of-flow children because they don't participate in flex layout.
if (childFrame->IsPlaceholderFrame()) {
continue;
}
// If we're using legacy "visibility:collapse" behavior, then we don't
// care about the sizes of any collapsed children.
if (!useMozBoxCollapseBehavior ||
(StyleVisibility::Collapse !=
childFrame->StyleVisibility()->mVisible)) {
nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, childFrame, aType);
// * For a row-oriented single-line flex container, the intrinsic
// {min/pref}-isize is the sum of its items' {min/pref}-isizes and
// (n-1) column gaps.
// * For a column-oriented flex container, the intrinsic min isize
// is the max of its items' min isizes.
// * For a row-oriented multi-line flex container, the intrinsic
// pref isize is former (sum), and its min isize is the latter (max).
bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap);
if (axisTracker.IsRowOriented() &&
(isSingleLine || aType == IntrinsicISizeType::PrefISize)) {
containerISize += childISize;
if (!onFirstChild) {
containerISize += mainGapSize;
}
onFirstChild = false;
} else { // (col-oriented, or MinISize for multi-line row flex container)
containerISize = std::max(containerISize, childISize);
}
}
}
return containerISize;
}
/* virtual */
nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) {
DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
mCachedMinISize =
StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize);
}
return mCachedMinISize;
}
/* virtual */
nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) {
DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
mCachedPrefISize =
StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize);
}
return mCachedPrefISize;
}
uint32_t nsFlexContainerFrame::GetLineClampValue() const {
// -webkit-line-clamp should only work on items in flex containers that are
// display:-webkit-(inline-)box and -webkit-box-orient:vertical.
//
// This check makes -webkit-line-clamp work on display:-moz-box too, but
// that shouldn't be a big deal.
if (!HasAnyStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_BOX) ||
StyleXUL()->mBoxOrient != StyleBoxOrient::Vertical) {
return 0;
}
return StyleDisplay()->mLineClamp;
}