gecko-dev/layout/base/nsCSSRendering.cpp
2008-01-22 12:57:35 -08:00

4532 lines
151 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:ts=2:et:sw=2:
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Mats Palmgren <mats.palmgren@bredband.net>
* Takeshi Ichimaru <ayakawa.m@gmail.com>
* Masayuki Nakano <masayuki@d-toybox.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* utility functions for drawing borders and backgrounds */
#include "nsStyleConsts.h"
#include "nsPresContext.h"
#include "nsIImage.h"
#include "nsIFrame.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsIViewManager.h"
#include "nsIPresShell.h"
#include "nsFrameManager.h"
#include "nsStyleContext.h"
#include "nsGkAtoms.h"
#include "nsTransform2D.h"
#include "nsIDeviceContext.h"
#include "nsIContent.h"
#include "nsIDocument.h"
#include "nsIScrollableFrame.h"
#include "imgIRequest.h"
#include "imgIContainer.h"
#include "gfxIImageFrame.h"
#include "nsCSSRendering.h"
#include "nsCSSColorUtils.h"
#include "nsITheme.h"
#include "nsThemeConstants.h"
#include "nsIServiceManager.h"
#include "nsIDOMHTMLBodyElement.h"
#include "nsIDOMHTMLDocument.h"
#include "nsLayoutUtils.h"
#include "nsINameSpaceManager.h"
#include "gfxContext.h"
#define BORDER_FULL 0 //entire side
#define BORDER_INSIDE 1 //inside half
#define BORDER_OUTSIDE 2 //outside half
//thickness of dashed line relative to dotted line
#define DOT_LENGTH 1 //square
#define DASH_LENGTH 3 //3 times longer than dot
//some shorthand for side bits
#define SIDE_BIT_TOP (1 << NS_SIDE_TOP)
#define SIDE_BIT_RIGHT (1 << NS_SIDE_RIGHT)
#define SIDE_BIT_BOTTOM (1 << NS_SIDE_BOTTOM)
#define SIDE_BIT_LEFT (1 << NS_SIDE_LEFT)
#define SIDE_BITS_ALL (SIDE_BIT_TOP|SIDE_BIT_RIGHT|SIDE_BIT_BOTTOM|SIDE_BIT_LEFT)
/** The following classes are used by CSSRendering for the rounded rect implementation */
#define MAXPATHSIZE 12
#define MAXPOLYPATHSIZE 1000
enum ePathTypes{
eOutside =0,
eInside,
eCalc,
eCalcRev
};
// To avoid storing this data on nsInlineFrame (bloat) and to avoid
// recalculating this for each frame in a continuation (perf), hold
// a cache of various coordinate information that we need in order
// to paint inline backgrounds.
struct InlineBackgroundData
{
InlineBackgroundData()
: mFrame(nsnull)
{
}
~InlineBackgroundData()
{
}
void Reset()
{
mBoundingBox.SetRect(0,0,0,0);
mContinuationPoint = mUnbrokenWidth = 0;
mFrame = nsnull;
}
nsRect GetContinuousRect(nsIFrame* aFrame)
{
SetFrame(aFrame);
// Assume background-origin: border and return a rect with offsets
// relative to (0,0). If we have a different background-origin,
// then our rect should be deflated appropriately by our caller.
return nsRect(-mContinuationPoint, 0, mUnbrokenWidth, mFrame->GetSize().height);
}
nsRect GetBoundingRect(nsIFrame* aFrame)
{
SetFrame(aFrame);
// Move the offsets relative to (0,0) which puts the bounding box into
// our coordinate system rather than our parent's. We do this by
// moving it the back distance from us to the bounding box.
// This also assumes background-origin: border, so our caller will
// need to deflate us if needed.
nsRect boundingBox(mBoundingBox);
nsPoint point = mFrame->GetPosition();
boundingBox.MoveBy(-point.x, -point.y);
return boundingBox;
}
protected:
nsIFrame* mFrame;
nscoord mContinuationPoint;
nscoord mUnbrokenWidth;
nsRect mBoundingBox;
void SetFrame(nsIFrame* aFrame)
{
NS_PRECONDITION(aFrame, "Need a frame");
nsIFrame *prevContinuation = aFrame->GetPrevContinuation();
if (!prevContinuation || mFrame != prevContinuation) {
// Ok, we've got the wrong frame. We have to start from scratch.
Reset();
Init(aFrame);
return;
}
// Get our last frame's size and add its width to our continuation
// point before we cache the new frame.
mContinuationPoint += mFrame->GetSize().width;
mFrame = aFrame;
}
void Init(nsIFrame* aFrame)
{
// Start with the previous flow frame as our continuation point
// is the total of the widths of the previous frames.
nsIFrame* inlineFrame = aFrame->GetPrevContinuation();
while (inlineFrame) {
nsRect rect = inlineFrame->GetRect();
mContinuationPoint += rect.width;
mUnbrokenWidth += rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = inlineFrame->GetPrevContinuation();
}
// Next add this frame and subsequent frames to the bounding box and
// unbroken width.
inlineFrame = aFrame;
while (inlineFrame) {
nsRect rect = inlineFrame->GetRect();
mUnbrokenWidth += rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = inlineFrame->GetNextContinuation();
}
mFrame = aFrame;
}
};
static InlineBackgroundData* gInlineBGData = nsnull;
// FillRect or InvertRect depending on the renderingaInvert parameter
static void FillOrInvertRect(nsIRenderingContext& aRC,nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight, PRBool aInvert);
static void FillOrInvertRect(nsIRenderingContext& aRC,const nsRect& aRect, PRBool aInvert);
// Initialize any static variables used by nsCSSRendering.
nsresult nsCSSRendering::Init()
{
NS_ASSERTION(!gInlineBGData, "Init called twice");
gInlineBGData = new InlineBackgroundData();
if (!gInlineBGData)
return NS_ERROR_OUT_OF_MEMORY;
return NS_OK;
}
// Clean up any global variables used by nsCSSRendering.
void nsCSSRendering::Shutdown()
{
delete gInlineBGData;
gInlineBGData = nsnull;
}
// Draw a line, skipping that portion which crosses aGap. aGap defines a rectangle gap
// This services fieldset legends and only works for coords defining horizontal lines.
void nsCSSRendering::DrawLine (nsIRenderingContext& aContext,
nscoord aX1, nscoord aY1, nscoord aX2, nscoord aY2,
nsRect* aGap)
{
if (nsnull == aGap) {
aContext.DrawLine(aX1, aY1, aX2, aY2);
} else {
nscoord x1 = (aX1 < aX2) ? aX1 : aX2;
nscoord x2 = (aX1 < aX2) ? aX2 : aX1;
nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y);
nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height);
if ((aGap->y <= aY1) && (gapLowerRight.y >= aY2)) {
if ((aGap->x > x1) && (aGap->x < x2)) {
aContext.DrawLine(x1, aY1, aGap->x, aY1);
}
if ((gapLowerRight.x > x1) && (gapLowerRight.x < x2)) {
aContext.DrawLine(gapUpperRight.x, aY2, x2, aY2);
}
} else {
aContext.DrawLine(aX1, aY1, aX2, aY2);
}
}
}
// Fill a polygon, skipping that portion which crosses aGap. aGap defines a rectangle gap
// This services fieldset legends and only works for points defining a horizontal rectangle
void nsCSSRendering::FillPolygon (nsIRenderingContext& aContext,
const nsPoint aPoints[],
PRInt32 aNumPoints,
nsRect* aGap)
{
if (nsnull == aGap) {
aContext.FillPolygon(aPoints, aNumPoints);
} else if (4 == aNumPoints) {
nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y);
nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height);
// sort the 4 points by x
nsPoint points[4];
for (PRInt32 pX = 0; pX < 4; pX++) {
points[pX] = aPoints[pX];
}
for (PRInt32 i = 0; i < 3; i++) {
for (PRInt32 j = i+1; j < 4; j++) {
if (points[j].x < points[i].x) {
nsPoint swap = points[i];
points[i] = points[j];
points[j] = swap;
}
}
}
nsPoint upperLeft = (points[0].y <= points[1].y) ? points[0] : points[1];
nsPoint lowerLeft = (points[0].y <= points[1].y) ? points[1] : points[0];
nsPoint upperRight = (points[2].y <= points[3].y) ? points[2] : points[3];
nsPoint lowerRight = (points[2].y <= points[3].y) ? points[3] : points[2];
if ((aGap->y <= upperLeft.y) && (gapLowerRight.y >= lowerRight.y)) {
if ((aGap->x > upperLeft.x) && (aGap->x < upperRight.x)) {
nsPoint leftRect[4];
leftRect[0] = upperLeft;
leftRect[1] = nsPoint(aGap->x, upperLeft.y);
leftRect[2] = nsPoint(aGap->x, lowerLeft.y);
leftRect[3] = lowerLeft;
aContext.FillPolygon(leftRect, 4);
}
if ((gapUpperRight.x > upperLeft.x) && (gapUpperRight.x < upperRight.x)) {
nsPoint rightRect[4];
rightRect[0] = nsPoint(gapUpperRight.x, upperRight.y);
rightRect[1] = upperRight;
rightRect[2] = lowerRight;
rightRect[3] = nsPoint(gapLowerRight.x, lowerRight.y);
aContext.FillPolygon(rightRect, 4);
}
} else {
aContext.FillPolygon(aPoints, aNumPoints);
}
}
}
/**
* Make a bevel color
*/
nscolor nsCSSRendering::MakeBevelColor(PRIntn whichSide, PRUint8 style,
nscolor aBackgroundColor,
nscolor aBorderColor)
{
nscolor colors[2];
nscolor theColor;
// Given a background color and a border color
// calculate the color used for the shading
NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor);
if ((style == NS_STYLE_BORDER_STYLE_OUTSET) ||
(style == NS_STYLE_BORDER_STYLE_RIDGE)) {
// Flip colors for these two border styles
switch (whichSide) {
case NS_SIDE_BOTTOM: whichSide = NS_SIDE_TOP; break;
case NS_SIDE_RIGHT: whichSide = NS_SIDE_LEFT; break;
case NS_SIDE_TOP: whichSide = NS_SIDE_BOTTOM; break;
case NS_SIDE_LEFT: whichSide = NS_SIDE_RIGHT; break;
}
}
switch (whichSide) {
case NS_SIDE_BOTTOM:
theColor = colors[1];
break;
case NS_SIDE_RIGHT:
theColor = colors[1];
break;
case NS_SIDE_TOP:
theColor = colors[0];
break;
case NS_SIDE_LEFT:
default:
theColor = colors[0];
break;
}
return theColor;
}
// Maximum poly points in any of the polygons we generate below
#define MAX_POLY_POINTS 4
#define ACTUAL_THICKNESS(outside, inside, frac, tpp) \
(NSToCoordRound(((outside) - (inside)) * (frac) / (tpp)) * (tpp))
/**
* Draw a dotted/dashed sides of a box
*/
//XXX dashes which span more than two edges are not handled properly MMP
void nsCSSRendering::DrawDashedSides(PRIntn startSide,
nsIRenderingContext& aContext,
/* XXX unused */ const nsRect& aDirtyRect,
const PRUint8 borderStyles[],
const nscolor borderColors[],
const nsRect& borderOutside,
const nsRect& borderInside,
PRIntn aSkipSides,
/* XXX unused */ nsRect* aGap)
{
PRIntn dashLength;
nsRect dashRect, firstRect, currRect;
PRBool bSolid = PR_TRUE;
float over = 0.0f;
PRUint8 style = borderStyles[startSide];
PRBool skippedSide = PR_FALSE;
for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) {
PRUint8 prevStyle = style;
style = borderStyles[whichSide];
if ((1<<whichSide) & aSkipSides) {
// Skipped side
skippedSide = PR_TRUE;
continue;
}
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
if ((style != prevStyle) || skippedSide) {
//style discontinuity
over = 0.0f;
bSolid = PR_TRUE;
}
// XXX units for dash & dot?
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashLength = DASH_LENGTH;
} else {
dashLength = DOT_LENGTH;
}
aContext.SetColor(borderColors[whichSide]);
switch (whichSide) {
case NS_SIDE_LEFT:
//XXX need to properly handle wrap around from last edge to first edge
//(this is the first edge) MMP
dashRect.width = borderInside.x - borderOutside.x;
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderOutside.x;
dashRect.y = borderInside.YMost() - dashRect.height;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
firstRect.y = dashRect.y + (dashRect.height - firstRect.height);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.YMost() > borderInside.y) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y - currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_TOP:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderOutside.x, borderOutside.y,
borderInside.x - borderOutside.x,
borderInside.y - borderOutside.y);
}
dashRect.height = borderInside.y - borderOutside.y;
dashRect.width = dashRect.height * dashLength;
dashRect.x = borderInside.x;
dashRect.y = borderOutside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.x < borderInside.XMost()) {
//clip if necessary
if (currRect.XMost() > borderInside.XMost()) {
over = float(dashRect.XMost() - borderInside.XMost()) /
float(dashRect.width);
currRect.width = currRect.width -
(currRect.XMost() - borderInside.XMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x + currRect.width;
currRect = dashRect;
}
break;
case NS_SIDE_RIGHT:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderOutside.y,
borderOutside.XMost() - borderInside.XMost(),
borderInside.y - borderOutside.y);
}
dashRect.width = borderOutside.XMost() - borderInside.XMost();
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderInside.XMost();
dashRect.y = borderInside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.y < borderInside.YMost()) {
//clip if necessary
if (currRect.YMost() > borderInside.YMost()) {
over = float(dashRect.YMost() - borderInside.YMost()) /
float(dashRect.height);
currRect.height = currRect.height -
(currRect.YMost() - borderInside.YMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y + currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_BOTTOM:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderInside.YMost(),
borderOutside.XMost() - borderInside.XMost(),
borderOutside.YMost() - borderInside.YMost());
}
dashRect.height = borderOutside.YMost() - borderInside.YMost();
dashRect.width = nscoord(dashRect.height * dashLength);
dashRect.x = borderInside.XMost() - dashRect.width;
dashRect.y = borderInside.YMost();
if (over > 0.0f) {
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
firstRect.x = dashRect.x + (dashRect.width - firstRect.width);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.XMost() > borderInside.x) {
//clip if necessary
if (currRect.x < borderInside.x) {
over = float(borderInside.x - dashRect.x) / float(dashRect.width);
currRect.width = currRect.width - (borderInside.x - currRect.x);
currRect.x = borderInside.x;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x - currRect.width;
currRect = dashRect;
}
break;
}
}
skippedSide = PR_FALSE;
}
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 10/22/99 dwc
*/
void nsCSSRendering::DrawDashedSides(PRIntn startSide,
nsIRenderingContext& aContext,
const nsRect& aDirtyRect,
const nsStyleColor* aColorStyle,
const nsStyleBorder* aBorderStyle,
const nsStyleOutline* aOutlineStyle,
PRBool aDoOutline,
const nsRect& borderOutside,
const nsRect& borderInside,
PRIntn aSkipSides,
/* XXX unused */ nsRect* aGap)
{
PRIntn dashLength;
nsRect dashRect, currRect;
nscoord temp, temp1, adjust;
PRBool bSolid = PR_TRUE;
float over = 0.0f;
PRBool skippedSide = PR_FALSE;
NS_ASSERTION(aColorStyle &&
((aDoOutline && aOutlineStyle) || (!aDoOutline && aBorderStyle)),
"null params not allowed");
PRUint8 style = aDoOutline
? aOutlineStyle->GetOutlineStyle()
: aBorderStyle->GetBorderStyle(startSide);
// find the x and y width
nscoord xwidth = aDirtyRect.XMost();
nscoord ywidth = aDirtyRect.YMost();
for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) {
PRUint8 prevStyle = style;
style = aDoOutline
? aOutlineStyle->GetOutlineStyle()
: aBorderStyle->GetBorderStyle(whichSide);
if ((1<<whichSide) & aSkipSides) {
// Skipped side
skippedSide = PR_TRUE;
continue;
}
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
if ((style != prevStyle) || skippedSide) {
//style discontinuity
over = 0.0f;
bSolid = PR_TRUE;
}
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashLength = DASH_LENGTH;
} else {
dashLength = DOT_LENGTH;
}
// default to current color in case color cannot be resolved
// (because invert is not supported on cur platform)
nscolor sideColor(aColorStyle->mColor);
PRBool isInvert = PR_FALSE;
if (aDoOutline) {
if (!aOutlineStyle->GetOutlineInitialColor()) {
aOutlineStyle->GetOutlineColor(sideColor);
}
#ifdef GFX_HAS_INVERT
else {
isInvert = PR_TRUE;
}
#endif
} else {
PRBool transparent;
PRBool foreground;
aBorderStyle->GetBorderColor(whichSide, sideColor, transparent, foreground);
if (foreground)
sideColor = aColorStyle->mColor;
if (transparent)
continue; // side is transparent
}
aContext.SetColor(sideColor);
switch (whichSide) {
case NS_SIDE_RIGHT:
case NS_SIDE_LEFT:
bSolid = PR_FALSE;
// This is our dot or dash..
if(whichSide==NS_SIDE_LEFT){
dashRect.width = borderInside.x - borderOutside.x;
} else {
dashRect.width = borderOutside.XMost() - borderInside.XMost();
}
if( dashRect.width >0 ) {
dashRect.height = dashRect.width * dashLength;
dashRect.y = borderOutside.y;
if(whichSide == NS_SIDE_RIGHT){
dashRect.x = borderInside.XMost();
} else {
dashRect.x = borderOutside.x;
}
temp = borderOutside.height;
temp1 = temp/dashRect.height;
currRect = dashRect;
if((temp1%2)==0){
adjust = (dashRect.height-(temp%dashRect.height))/2; // adjust back
// draw in the left and right
FillOrInvertRect(aContext, dashRect.x, borderOutside.y,dashRect.width, dashRect.height-adjust,isInvert);
FillOrInvertRect(aContext,dashRect.x,(borderOutside.YMost()-(dashRect.height-adjust)),dashRect.width, dashRect.height-adjust,isInvert);
currRect.y += (dashRect.height-adjust);
temp-= (dashRect.height-adjust);
} else {
adjust = (temp%dashRect.width)/2; // adjust a tad longer
// draw in the left and right
FillOrInvertRect(aContext, dashRect.x, borderOutside.y,dashRect.width, dashRect.height+adjust,isInvert);
FillOrInvertRect(aContext, dashRect.x,(borderOutside.YMost()-(dashRect.height+adjust)),dashRect.width, dashRect.height+adjust,isInvert);
currRect.y += (dashRect.height+adjust);
temp-= (dashRect.height+adjust);
}
temp += borderOutside.y;
if( temp > ywidth)
temp = ywidth;
// get the currRect's x into the view before we start
if( currRect.y < aDirtyRect.y){
temp1 = NSToCoordFloor((float)((aDirtyRect.y-currRect.y)/dashRect.height));
currRect.y += temp1*dashRect.height;
if((temp1%2)==1){
bSolid = PR_TRUE;
}
}
while(currRect.y<temp) {
//draw if necessary
if (bSolid) {
FillOrInvertRect(aContext, currRect,isInvert);
}
bSolid = PRBool(!bSolid);
currRect.y += dashRect.height;
}
}
break;
case NS_SIDE_BOTTOM:
case NS_SIDE_TOP:
bSolid = PR_FALSE;
// This is our dot or dash..
if(whichSide==NS_SIDE_TOP){
dashRect.height = borderInside.y - borderOutside.y;
} else {
dashRect.height = borderOutside.YMost() - borderInside.YMost();
}
if( dashRect.height >0 ) {
dashRect.width = dashRect.height * dashLength;
dashRect.x = borderOutside.x;
if(whichSide == NS_SIDE_BOTTOM){
dashRect.y = borderInside.YMost();
} else {
dashRect.y = borderOutside.y;
}
temp = borderOutside.width;
temp1 = temp/dashRect.width;
currRect = dashRect;
if((temp1%2)==0){
adjust = (dashRect.width-(temp%dashRect.width))/2; // even, adjust back
// draw in the left and right
FillOrInvertRect(aContext, borderOutside.x,dashRect.y,dashRect.width-adjust,dashRect.height,isInvert);
FillOrInvertRect(aContext, (borderOutside.XMost()-(dashRect.width-adjust)),dashRect.y,dashRect.width-adjust,dashRect.height,isInvert);
currRect.x += (dashRect.width-adjust);
temp-= (dashRect.width-adjust);
} else {
adjust = (temp%dashRect.width)/2;
// draw in the left and right
FillOrInvertRect(aContext, borderOutside.x,dashRect.y,dashRect.width+adjust,dashRect.height,isInvert);
FillOrInvertRect(aContext, (borderOutside.XMost()-(dashRect.width+adjust)),dashRect.y,dashRect.width+adjust,dashRect.height,isInvert);
currRect.x += (dashRect.width+adjust);
temp-= (dashRect.width+adjust);
}
temp += borderOutside.x;
if( temp > xwidth)
temp = xwidth;
// get the currRect's x into the view before we start
if( currRect.x < aDirtyRect.x){
temp1 = NSToCoordFloor((float)((aDirtyRect.x-currRect.x)/dashRect.width));
currRect.x += temp1*dashRect.width;
if((temp1%2)==1){
bSolid = PR_TRUE;
}
}
while(currRect.x<temp) {
//draw if necessary
if (bSolid) {
FillOrInvertRect(aContext, currRect,isInvert);
}
bSolid = PRBool(!bSolid);
currRect.x += dashRect.width;
}
}
break;
}
}
skippedSide = PR_FALSE;
}
}
nscolor
nsCSSRendering::TransformColor(nscolor aMapColor,PRBool aNoBackGround)
{
PRUint16 hue,sat,value;
nscolor newcolor;
newcolor = aMapColor;
if (PR_TRUE == aNoBackGround){
// convert the RBG to HSV so we can get the lightness (which is the v)
NS_RGB2HSV(newcolor,hue,sat,value);
// The goal here is to send white to black while letting colored
// stuff stay colored... So we adopt the following approach.
// Something with sat = 0 should end up with value = 0. Something
// with a high sat can end up with a high value and it's ok.... At
// the same time, we don't want to make things lighter. Do
// something simple, since it seems to work.
if (value > sat) {
value = sat;
// convert this color back into the RGB color space.
NS_HSV2RGB(newcolor,hue,sat,value);
}
}
return newcolor;
}
//----------------------------------------------------------------------
// Thebes Border Rendering Code Start
#undef DEBUG_NEW_BORDERS
#ifdef DEBUG_NEW_BORDERS
#include <stdarg.h>
static inline void S(const gfxPoint& p) {
fprintf (stderr, "[%f,%f]", p.x, p.y);
}
static inline void S(const gfxSize& s) {
fprintf (stderr, "[%f %f]", s.width, s.height);
}
static inline void S(const gfxRect& r) {
fprintf (stderr, "[%f %f %f %f]", r.pos.x, r.pos.y, r.size.width, r.size.height);
}
static inline void S(const gfxFloat f) {
fprintf (stderr, "%f", f);
}
static inline void S(const char *s) {
fprintf (stderr, "%s", s);
}
static inline void SN(const char *s = nsnull) {
if (s)
fprintf (stderr, "%s", s);
fprintf (stderr, "\n");
fflush (stderr);
}
static inline void SF(const char *fmt, ...) {
va_list vl;
va_start(vl, fmt);
vfprintf (stderr, fmt, vl);
va_end(vl);
}
static inline void SX(gfxContext *ctx) {
gfxPoint p = ctx->CurrentPoint();
fprintf (stderr, "p: %f %f\n", p.x, p.y);
return;
ctx->MoveTo(p + gfxPoint(-2, -2)); ctx->LineTo(p + gfxPoint(2, 2));
ctx->MoveTo(p + gfxPoint(-2, 2)); ctx->LineTo(p + gfxPoint(2, -2));
ctx->MoveTo(p);
}
#else
static inline void S(const gfxPoint& p) {}
static inline void S(const gfxSize& s) {}
static inline void S(const gfxRect& r) {}
static inline void S(const gfxFloat f) {}
static inline void S(const char *s) {}
static inline void SN(const char *s = nsnull) {}
static inline void SF(const char *fmt, ...) {}
static inline void SX(gfxContext *ctx) {}
#endif
// the static order in which we paint sides
static const PRUint8 gBorderSideOrder[] = { NS_SIDE_TOP, NS_SIDE_RIGHT, NS_SIDE_BOTTOM, NS_SIDE_LEFT };
// little helper function to check if the array of 4 floats given are
// equal to the given value
static PRBool
CheckFourFloatsEqual(const gfxFloat *vals, gfxFloat k)
{
if (vals[0] == k &&
vals[1] == k &&
vals[2] == k &&
vals[3] == k)
return PR_TRUE;
return PR_FALSE;
}
// another helper function to convert a nsRect to a gfxRect
static gfxRect
RectToGfxRect(const nsRect& rect, nscoord twipsPerPixel)
{
return gfxRect(gfxFloat(rect.x) / twipsPerPixel,
gfxFloat(rect.y) / twipsPerPixel,
gfxFloat(rect.width) / twipsPerPixel,
gfxFloat(rect.height) / twipsPerPixel);
}
/*
* Figure out whether we need to draw using separate side rendering or
* not.
*
* The only case where we can draw the border in one pass if, for all sides:
* - the same style is used, and it is SOLID, DOUBLE, DASHED, or DOTTED
* - the same color is used
*
* We can draw the border in two passes if, for all sides:
* - the same style is used, and it is INSET, OUTSET, GROOVE, or RIDGE
* - the same color is used
*
* Otherwise, we have do all 4 sides separately. Generally this only
* happens if we have different colors on the different sides.
*/
static PRUint8
NumBorderPasses (PRUint8 *borderStyles,
nscolor *borderColors,
nsBorderColors **compositeColors)
{
PRUint8 numBorderPasses = 1;
PRUint8 firstSideStyle = borderStyles[0];
nscolor firstSideColor = borderColors[0];
for (int i = 0; i < 4; i++) {
PRUint8 borderRenderStyle = borderStyles[i];
// split into 4 if:
// - the styles don't match
// - the colors don't match
// - there are any compositeColors
if (borderRenderStyle != firstSideStyle ||
borderColors[i] != firstSideColor ||
compositeColors[i])
return 4;
switch (borderRenderStyle) {
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
/* XXX See bug 397303 why this is 4 instead of 2; this could be optimized further */
numBorderPasses = 4;
break;
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DOUBLE:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_DOTTED:
// we can do this as 1, if everything else is ok
break;
default:
return 4;
}
}
// everything's transparent
if (firstSideColor == 0x0)
return 0;
return numBorderPasses;
}
#define C_TL 0
#define C_TR 1
#define C_BR 2
#define C_BL 3
#ifndef NS_PI
#define NS_PI 3.14159265358979323846
#endif
/* Return the dimensions of the corners of the border area, taking
* into account any border radius. The width and height of each
* corner (in order of TL, TR, BR, BL) is returned in oDims, which
* should be a 4-element array of gfxSize.
*/
// How much of the actual corner size to call the "corner" for the
// dimensions. Must be >= 1.0; anything over 1.0 will give more of a
// corner in dotted/dashed rendering cases. It's not clear whether >=
// 1.0 looks better.
#define CORNER_FACTOR 1.0
static void
GetBorderCornerDimensions(const gfxRect& oRect,
const gfxRect& iRect,
const gfxFloat *radii,
gfxSize *oDims)
{
gfxFloat halfWidth = oRect.size.width / 2.0;
gfxFloat halfHeight = oRect.size.height / 2.0;
gfxFloat topWidth = iRect.pos.y - oRect.pos.y;
gfxFloat leftWidth = iRect.pos.x - oRect.pos.x;
gfxFloat rightWidth = oRect.size.width - iRect.size.width - leftWidth;
gfxFloat bottomWidth = oRect.size.height - iRect.size.height - topWidth;
if (radii) {
leftWidth = PR_MAX(leftWidth, PR_MAX(radii[C_TL], radii[C_BL]));
topWidth = PR_MAX(topWidth, PR_MAX(radii[C_TL], radii[C_TR]));
rightWidth = PR_MAX(rightWidth, PR_MAX(radii[C_TR], radii[C_BR]));
bottomWidth = PR_MAX(bottomWidth, PR_MAX(radii[C_BR], radii[C_BL]));
}
// Make sure that the computed corner size doesn't ever go beyond
// half of the full border width/height
oDims[C_TL] = gfxSize(PR_MIN(halfWidth, leftWidth * CORNER_FACTOR),
PR_MIN(halfHeight, topWidth * CORNER_FACTOR));
oDims[C_TR] = gfxSize(PR_MIN(halfWidth, rightWidth * CORNER_FACTOR),
PR_MIN(halfHeight, topWidth * CORNER_FACTOR));
oDims[C_BL] = gfxSize(PR_MIN(halfWidth, leftWidth * CORNER_FACTOR),
PR_MIN(halfHeight, bottomWidth * CORNER_FACTOR));
oDims[C_BR] = gfxSize(PR_MIN(halfWidth, rightWidth * CORNER_FACTOR),
PR_MIN(halfHeight, bottomWidth * CORNER_FACTOR));
}
/* Set up a path for rendering just the corners of the path. Executed
* by computing the corner dimensions, and then drawing rectangles for
* each corner.
*
* Because this function is used mainly for dashed rendering, the
* sides that don't have a dotted/dashed styles are also included.
*/
static void
DoCornerClipSubPath(gfxContext *ctx,
const gfxRect& oRect,
const gfxRect& iRect,
const gfxFloat *radii,
PRIntn dashedSides = 0xff)
{
gfxSize dims[4];
GetBorderCornerDimensions(oRect, iRect, radii, dims);
gfxRect tl(oRect.pos.x,
oRect.pos.y,
dims[C_TL].width,
dims[C_TL].height);
gfxRect tr(oRect.pos.x + oRect.size.width - dims[C_TR].width,
oRect.pos.y,
dims[C_TR].width,
dims[C_TR].height);
gfxRect br(oRect.pos.x + oRect.size.width - dims[C_BR].width,
oRect.pos.y + oRect.size.height - dims[C_BR].height,
dims[C_BR].width,
dims[C_BR].height);
gfxRect bl(oRect.pos.x,
oRect.pos.y + oRect.size.height - dims[C_BL].height,
dims[C_BL].width,
dims[C_BL].height);
ctx->Rectangle(tl);
ctx->Rectangle(tr);
ctx->Rectangle(br);
ctx->Rectangle(bl);
// Now if any of the sides are not dashed, include that full side.
if (!(dashedSides & SIDE_BIT_TOP)) {
ctx->Rectangle(gfxRect(tl.pos.x,
tl.pos.y,
oRect.size.width,
dims[C_TL].height));
}
if (!(dashedSides & SIDE_BIT_RIGHT)) {
ctx->Rectangle(gfxRect(tr.pos.x,
tr.pos.y,
dims[C_TR].width,
oRect.size.height));
}
if (!(dashedSides & SIDE_BIT_BOTTOM)) {
ctx->Rectangle(gfxRect(oRect.pos.x,
br.pos.y,
oRect.size.width,
dims[C_BR].height));
}
if (!(dashedSides & SIDE_BIT_LEFT)) {
ctx->Rectangle(gfxRect(oRect.pos.x,
oRect.pos.y,
dims[C_BL].width,
oRect.size.height));
}
}
// Draw a path for a rounded rectangle with the corners rounded by the
// given radii, with the path going clockwise.
static void
DoRoundedRectCWSubPath(gfxContext *ctx,
const gfxRect& sRect,
const gfxFloat *radii)
{
ctx->Translate(sRect.pos);
ctx->MoveTo(gfxPoint(sRect.size.width - radii[C_TR], 0.0));
SX(ctx);
if (radii[C_TR]) {
ctx->Arc(gfxPoint(sRect.size.width - radii[C_TR], radii[C_TR]),
radii[C_TR],
3.0 * NS_PI / 2.0,
0.0);
SX(ctx);
}
ctx->LineTo(gfxPoint(sRect.size.width, sRect.size.height - radii[C_BR]));
SX(ctx);
if (radii[C_BR]) {
ctx->Arc(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height - radii[C_BR]),
radii[C_BR],
0.0,
NS_PI / 2.0);
SX(ctx);
}
ctx->LineTo(gfxPoint(radii[C_BL], sRect.size.height));
SX(ctx);
if (radii[C_BL]) {
ctx->Arc(gfxPoint(radii[C_BL], sRect.size.height - radii[C_BL]),
radii[C_BL],
NS_PI / 2.0,
NS_PI);
SX(ctx);
}
ctx->LineTo(gfxPoint(0.0, radii[C_TL]));
SX(ctx);
if (radii[C_TL]) {
ctx->Arc(gfxPoint(radii[C_TL], radii[C_TL]),
radii[C_TL],
NS_PI,
3.0 * NS_PI / 2.0);
SX(ctx);
}
ctx->ClosePath();
ctx->Translate(-sRect.pos);
}
// Draw a path for a rounded rectangle with the corners rounded by the
// given radii, with the path going counterclockwise.
static void
DoRoundedRectCCWSubPath(gfxContext *ctx,
const gfxRect& sRect,
const gfxFloat *radii)
{
ctx->Translate(sRect.pos);
ctx->MoveTo(gfxPoint(radii[C_TL], 0.0));
if (radii[C_TL]) {
ctx->NegativeArc(gfxPoint(radii[C_TL], radii[C_TL]),
radii[C_TL],
3.0 * NS_PI / 2.0,
NS_PI);
SX(ctx);
}
ctx->LineTo(gfxPoint(0.0, sRect.size.height - radii[C_BL]));
if (radii[C_BL]) {
ctx->NegativeArc(gfxPoint(radii[C_BL], sRect.size.height - radii[C_BL]),
radii[C_BL],
NS_PI,
NS_PI / 2.0);
SX(ctx);
}
ctx->LineTo(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height));
if (radii[C_BR]) {
ctx->NegativeArc(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height - radii[C_BR]),
radii[C_BR],
NS_PI / 2.0,
0.0);
SX(ctx);
}
ctx->LineTo(gfxPoint(sRect.size.width, radii[C_TR]));
if (radii[C_TR]) {
ctx->NegativeArc(gfxPoint(sRect.size.width - radii[C_TR], radii[C_TR]),
radii[C_TR],
0.0,
3.0 * NS_PI / 2.0);
SX(ctx);
}
ctx->ClosePath();
ctx->Translate(-sRect.pos);
}
// Calculate the inner radii from the outer and the border sizes.
static void
CalculateInnerRadii(const gfxFloat *radii,
const gfxFloat *borderSizes,
gfxFloat *innerRadii)
{
innerRadii[C_TL] = PR_MAX(0.0, radii[C_TL] - PR_MAX(borderSizes[NS_SIDE_TOP], borderSizes[NS_SIDE_LEFT]));
innerRadii[C_TR] = PR_MAX(0.0, radii[C_TR] - PR_MAX(borderSizes[NS_SIDE_TOP], borderSizes[NS_SIDE_RIGHT]));
innerRadii[C_BR] = PR_MAX(0.0, radii[C_BR] - PR_MAX(borderSizes[NS_SIDE_BOTTOM], borderSizes[NS_SIDE_RIGHT]));
innerRadii[C_BL] = PR_MAX(0.0, radii[C_BL] - PR_MAX(borderSizes[NS_SIDE_BOTTOM], borderSizes[NS_SIDE_LEFT]));
}
// Draw the entire border path. Intended to be filled with the
// (default) WINDING rule.
static void
DoAllSidesBorderPath(gfxContext *ctx,
const gfxRect &oRect,
const gfxRect &iRect,
const gfxFloat *radii,
const gfxFloat *borderSizes)
{
gfxFloat innerRadii[4];
CalculateInnerRadii(radii, borderSizes, innerRadii);
ctx->NewPath();
// do the outer border
DoRoundedRectCWSubPath(ctx, oRect, radii);
// then do the inner border
DoRoundedRectCCWSubPath(ctx, iRect, innerRadii);
}
// Draw the top left piece of the border path. Intended to be filled
// with the (default) WINDING rule.
static void
DoTopLeftSidesBorderPath(gfxContext *ctx,
const gfxRect &oRect,
const gfxRect &iRect,
const gfxFloat *radii,
const gfxFloat *borderSizes)
{
gfxFloat innerRadii[4];
CalculateInnerRadii(radii, borderSizes, innerRadii);
ctx->NewPath();
// start drawing counterclockwise on the outside,
// in the first left-side straightway
ctx->MoveTo(oRect.BottomLeft() + gfxPoint(0.0, - radii[C_BL]));
if (radii[C_BL]) {
ctx->NegativeArc(oRect.BottomLeft() + gfxPoint(radii[C_BL], - radii[C_BL]),
radii[C_BL],
NS_PI,
NS_PI * 3.0 / 4.0);
}
// flip here; start drawing clockwise; line between arc endpoints will
// be filled in by cairo
if (innerRadii[C_BL]) {
ctx->Arc(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], - innerRadii[C_BL]),
innerRadii[C_BL],
NS_PI * 3.0 / 4.0,
NS_PI);
} else {
ctx->LineTo(iRect.BottomLeft());
}
ctx->LineTo(iRect.TopLeft() + gfxPoint(0.0, innerRadii[C_TL]));
if (innerRadii[C_TL]) {
ctx->Arc(iRect.TopLeft() + gfxPoint(innerRadii[C_TL], innerRadii[C_TL]),
innerRadii[C_TL],
NS_PI,
NS_PI * 3.0 / 2.0);
}
ctx->LineTo(iRect.TopRight() + gfxPoint(- innerRadii[C_TR], 0.0));
if (innerRadii[C_TR]) {
ctx->Arc(iRect.TopRight() + gfxPoint( - innerRadii[C_TR], innerRadii[C_TR]),
innerRadii[C_TR],
NS_PI * 6.0 / 4.0,
NS_PI * 7.0 / 4.0);
}
// now go back
if (radii[C_TR]) {
ctx->NegativeArc(oRect.TopRight() + gfxPoint(- radii[C_TR], radii[C_TR]),
radii[C_TR],
NS_PI * 7.0 / 4.0,
NS_PI * 6.0 / 4.0);
} else {
ctx->LineTo(oRect.TopRight());
}
ctx->LineTo(oRect.TopLeft() + gfxPoint(radii[C_TL], 0.0));
if (radii[C_TL]) {
ctx->NegativeArc(oRect.TopLeft() + gfxPoint(radii[C_TL], radii[C_TL]),
radii[C_TL],
NS_PI * 3.0 / 2.0,
NS_PI);
}
ctx->ClosePath();
}
// Draw the bottom right piece of the border path. Intended to be
// filled with the (default) WINDING rule.
static void
DoBottomRightSidesBorderPath(gfxContext *ctx,
const gfxRect &oRect,
const gfxRect &iRect,
const gfxFloat *radii,
const gfxFloat *borderSizes)
{
gfxFloat innerRadii[4];
CalculateInnerRadii(radii, borderSizes, innerRadii);
ctx->NewPath();
// start drawing counterclockwise on the outside,
// in the first right-side straightway
ctx->MoveTo(oRect.TopRight() + gfxPoint(0.0, radii[C_TR]));
if (radii[C_TR]) {
ctx->NegativeArc(oRect.TopRight() + gfxPoint(- radii[C_TR], radii[C_TR]),
radii[C_TR],
0.0,
NS_PI * 7.0 / 4.0);
}
// flip
if (innerRadii[C_TR]) {
ctx->Arc(iRect.TopRight() + gfxPoint(- innerRadii[C_TR], innerRadii[C_TR]),
innerRadii[C_TR],
NS_PI * 7.0 / 4.0,
0.0);
} else {
ctx->LineTo(iRect.TopRight());
}
ctx->LineTo(iRect.BottomRight() + gfxPoint(0.0, - innerRadii[C_BR]));
if (innerRadii[C_BR]) {
ctx->Arc(iRect.BottomRight() + gfxPoint(- innerRadii[C_BR], - innerRadii[C_BR]),
innerRadii[C_BR],
0.0,
NS_PI / 2.0);
}
ctx->LineTo(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], 0.0));
if (innerRadii[C_BL]) {
ctx->Arc(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], - innerRadii[C_BL]),
innerRadii[C_BL],
NS_PI / 2.0,
NS_PI * 3.0 / 4.0);
}
// and flip
if (radii[C_BL]) {
ctx->NegativeArc(oRect.BottomLeft() + gfxPoint(radii[C_BL], - radii[C_BL]),
radii[C_BL],
NS_PI * 3.0 / 4.0,
NS_PI / 2.0);
} else {
ctx->LineTo(oRect.BottomLeft());
}
ctx->LineTo(oRect.BottomRight() + gfxPoint(- radii[C_BR], 0.0));
if (radii[C_BR]) {
ctx->NegativeArc(oRect.BottomRight() + gfxPoint(- radii[C_BR], - radii[C_BR]),
radii[C_BR],
NS_PI / 2.0,
0.0);
}
ctx->ClosePath();
}
// Given a set of sides to fill and a color, do so in the fastest way.
//
// Stroke tends to be faster for smaller borders because it doesn't go
// through the tessellator, which has initialization overhead. If
// we're rendering all sides, we can use stroke at any thickness; we
// also do TL/BR pairs at 1px thickness using stroke.
//
// If we can't stroke, then if it's a TL/BR pair, we use the specific
// TL/BR paths. Otherwise, we do the full path and fill.
//
// Calling code is expected to only set up a clip as necessary; no
// clip is needed if we can render the entire border in 1 or 2 passes.
static void
FillFastBorderPath(gfxContext *ctx,
const gfxRect &oRect,
const gfxRect &iRect,
const gfxFloat *radii,
const gfxFloat *borderSizes,
PRIntn sides,
const gfxRGBA& color)
{
ctx->SetColor(color);
if (CheckFourFloatsEqual(radii, 0.0) &&
CheckFourFloatsEqual(borderSizes, borderSizes[0]))
{
if (sides == SIDE_BITS_ALL) {
ctx->NewPath();
gfxRect r(oRect);
r.Inset(borderSizes[0] / 2.0);
ctx->Rectangle(r);
ctx->SetLineWidth(borderSizes[0]);
ctx->Stroke();
return;
}
if (sides == (SIDE_BIT_TOP | SIDE_BIT_LEFT) &&
borderSizes[0] == 1.0 &&
color.a == 1.0)
{
ctx->SetLineWidth(1.0);
ctx->NewPath();
ctx->MoveTo(oRect.BottomLeft() + gfxSize(0.5, 0.0));
ctx->LineTo(oRect.TopLeft() + gfxSize(0.5, 0.5));
ctx->LineTo(oRect.TopRight() + gfxSize(0.0, 0.5));
ctx->Stroke();
return;
}
if (sides == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT) &&
borderSizes[0] == 1.0 &&
color.a == 1.0)
{
ctx->SetLineWidth(1.0);
ctx->NewPath();
ctx->MoveTo(oRect.BottomLeft() + gfxSize(0.0, -0.5));
ctx->LineTo(oRect.BottomRight() + gfxSize(-0.5, -0.5));
ctx->LineTo(oRect.TopRight() + gfxSize(-0.5, 0.0));
ctx->Stroke();
return;
}
}
// we weren't able to render using stroke; do paths and fill.
if (sides == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) {
DoTopLeftSidesBorderPath(ctx, oRect, iRect, radii, borderSizes);
} else if (sides == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) {
DoBottomRightSidesBorderPath(ctx, oRect, iRect, radii, borderSizes);
} else {
DoAllSidesBorderPath(ctx, oRect, iRect, radii, borderSizes);
}
ctx->Fill();
}
// Create a clip path for the wedge that this side of
// the border should take up. This is only called
// when we're drawing separate border sides, so we know
// that ADD compositing is taking place.
//
// This code needs to make sure that the individual pieces
// don't ever (mathematically) overlap; the pixel overlap
// is taken care of by the ADD compositing.
//
// The side border type and the adjacent border types are
// examined and one of the different types of clipping (listed
// below) is selected.
typedef enum {
// clip to the trapezoid formed by the corners of the
// inner and outer rectangles for the given side
SIDE_CLIP_TRAPEZOID,
// clip to the trapezoid formed by the outer rectangle
// corners and the center of the region, making sure
// that diagonal lines all go directly from the outside
// corner to the inside corner, but that they then continue on
// to the middle.
//
// This is needed for correctly clipping rounded borders,
// which might extend past the SIDE_CLIP_TRAPEZOID trap.
SIDE_CLIP_TRAPEZOID_FULL,
// clip to the rectangle formed by the given side; a specific
// overlap algorithm is used; see the function for details.
// this is currently used for dashing.
SIDE_CLIP_RECTANGLE
} SideClipType;
static void
DoSideClipSubPath(gfxContext *ctx,
const gfxRect& iRect,
const gfxRect& oRect,
PRUint8 whichSide,
const PRUint8 *borderStyles,
const gfxFloat *borderRadii)
{
// the clip proceeds clockwise from the top left corner;
// so "start" in each case is the start of the region from that side.
//
// the final path will be formed like:
// s0 ------- e0
// | /
// s1 ----- e1
//
// that is, the second point will always be on the inside
gfxPoint start[2];
gfxPoint end[2];
PRUint8 style = borderStyles[whichSide];
PRUint8 startAdjacentStyle = borderStyles[((whichSide - 1) + 4) % 4];
PRUint8 endAdjacentStyle = borderStyles[(whichSide + 1) % 4];
PRBool isDashed =
(style == NS_STYLE_BORDER_STYLE_DASHED || style == NS_STYLE_BORDER_STYLE_DOTTED);
PRBool startIsDashed =
(startAdjacentStyle == NS_STYLE_BORDER_STYLE_DASHED || startAdjacentStyle == NS_STYLE_BORDER_STYLE_DOTTED);
PRBool endIsDashed =
(endAdjacentStyle == NS_STYLE_BORDER_STYLE_DASHED || endAdjacentStyle == NS_STYLE_BORDER_STYLE_DOTTED);
PRBool startHasRadius = PR_FALSE;
PRBool endHasRadius = PR_FALSE;
SideClipType startType = SIDE_CLIP_TRAPEZOID;
SideClipType endType = SIDE_CLIP_TRAPEZOID;
if (borderRadii) {
startHasRadius = borderRadii[whichSide] != 0.0;
endHasRadius = borderRadii[(whichSide+1) % 4] != 0.0;
}
if (startHasRadius) {
startType = SIDE_CLIP_TRAPEZOID_FULL;
} else if (startIsDashed && isDashed) {
startType = SIDE_CLIP_RECTANGLE;
}
if (endHasRadius) {
endType = SIDE_CLIP_TRAPEZOID_FULL;
} else if (endIsDashed && isDashed) {
endType = SIDE_CLIP_RECTANGLE;
}
if (startType == SIDE_CLIP_TRAPEZOID ||
startType == SIDE_CLIP_TRAPEZOID_FULL)
{
switch (whichSide) {
case NS_SIDE_TOP:
start[0] = oRect.TopLeft();
start[1] = iRect.TopLeft();
break;
case NS_SIDE_RIGHT:
start[0] = oRect.TopRight();
start[1] = iRect.TopRight();
break;
case NS_SIDE_BOTTOM:
start[0] = oRect.BottomRight();
start[1] = iRect.BottomRight();
break;
case NS_SIDE_LEFT:
start[0] = oRect.BottomLeft();
start[1] = iRect.BottomLeft();
break;
}
if (startType == SIDE_CLIP_TRAPEZOID_FULL) {
gfxFloat mx = iRect.pos.x + iRect.size.width / 2.0;
gfxFloat my = iRect.pos.y + iRect.size.height / 2.0;
gfxPoint ps, pc;
ps = start[1] - start[0];
if (ps.x == 0.0 && ps.y == 0.0) {
// do nothing; pc == start[1]
} else if (ps.x == 0.0) {
start[1] = start[0] + gfxSize(ps.y, ps.y);
} else if (ps.y == 0.0) {
start[1] = start[0] + gfxSize(ps.x, ps.x);
} else {
gfxFloat k = PR_MIN((mx - start[0].x) / ps.x,
(my - start[0].y) / ps.y);
start[1] = start[0] + ps * k;
}
}
} else if (startType == SIDE_CLIP_RECTANGLE) {
switch (whichSide) {
case NS_SIDE_TOP:
start[0] = oRect.TopLeft();
start[1] = gfxPoint(start[0].x, iRect.TopLeft().y);
break;
case NS_SIDE_RIGHT:
start[0] = oRect.TopRight();
start[1] = gfxPoint(iRect.TopRight().x, start[0].y);
break;
case NS_SIDE_BOTTOM:
start[0] = oRect.BottomRight();
start[1] = gfxPoint(start[0].x, iRect.BottomRight().y);
break;
case NS_SIDE_LEFT:
start[0] = oRect.BottomLeft();
start[1] = gfxPoint(iRect.BottomLeft().x, start[0].y);
break;
}
}
if (endType == SIDE_CLIP_TRAPEZOID ||
endType == SIDE_CLIP_TRAPEZOID_FULL)
{
switch (whichSide) {
case NS_SIDE_TOP:
end[0] = oRect.TopRight();
end[1] = iRect.TopRight();
break;
case NS_SIDE_RIGHT:
end[0] = oRect.BottomRight();
end[1] = iRect.BottomRight();
break;
case NS_SIDE_BOTTOM:
end[0] = oRect.BottomLeft();
end[1] = iRect.BottomLeft();
break;
case NS_SIDE_LEFT:
end[0] = oRect.TopLeft();
end[1] = iRect.TopLeft();
break;
}
if (endType == SIDE_CLIP_TRAPEZOID_FULL) {
gfxFloat mx = iRect.pos.x + iRect.size.width / 2.0;
gfxFloat my = iRect.pos.y + iRect.size.height / 2.0;
gfxPoint ps, pc;
ps = end[1] - end[0];
if (ps.x == 0.0 && ps.y == 0.0) {
// do nothing; pc == end[1]
} else if (ps.x == 0.0) {
end[1] = end[0] + gfxSize(ps.y, ps.y);
} else if (ps.y == 0.0) {
end[1] = end[0] + gfxSize(ps.x, ps.x);
} else {
gfxFloat k = PR_MIN((mx - end[0].x) / ps.x,
(my - end[0].y) / ps.y);
end[1] = end[0] + ps * k;
}
}
} else if (endType == SIDE_CLIP_RECTANGLE) {
switch (whichSide) {
case NS_SIDE_TOP:
end[0] = gfxPoint(iRect.TopRight().x, oRect.TopRight().y);
end[1] = iRect.TopRight();
break;
case NS_SIDE_RIGHT:
end[0] = gfxPoint(oRect.BottomRight().x, iRect.BottomRight().y);
end[1] = iRect.BottomRight();
break;
case NS_SIDE_BOTTOM:
end[0] = gfxPoint(iRect.BottomLeft().x, oRect.BottomLeft().y);
end[1] = iRect.BottomLeft();
break;
case NS_SIDE_LEFT:
end[0] = gfxPoint(oRect.TopLeft().x, iRect.TopLeft().y);
end[1] = iRect.TopLeft();
break;
}
}
ctx->MoveTo(start[0]);
ctx->LineTo(end[0]);
ctx->LineTo(end[1]);
ctx->LineTo(start[1]);
ctx->ClosePath();
}
typedef enum {
BorderColorStyleNone,
BorderColorStyleSolid,
BorderColorStyleLight,
BorderColorStyleDark
} BorderColorStyle;
static void
MakeBorderColor(gfxRGBA& color, const gfxRGBA& backgroundColor, BorderColorStyle bpat)
{
nscolor colors[2];
switch (bpat) {
case BorderColorStyleNone:
color.r = 0.0;
color.g = 0.0;
color.b = 0.0;
color.a = 0.0;
break;
case BorderColorStyleSolid:
break;
case BorderColorStyleLight:
NS_GetSpecial3DColors(colors, backgroundColor.Packed(), color.Packed());
color.r = NS_GET_R(colors[1]) / 255.0;
color.g = NS_GET_G(colors[1]) / 255.0;
color.b = NS_GET_B(colors[1]) / 255.0;
color.a = 1.0;
break;
case BorderColorStyleDark:
NS_GetSpecial3DColors(colors, backgroundColor.Packed(), color.Packed());
color.r = NS_GET_R(colors[0]) / 255.0;
color.g = NS_GET_G(colors[0]) / 255.0;
color.b = NS_GET_B(colors[0]) / 255.0;
color.a = 1.0;
break;
}
}
// Given a line index (an index starting from the outside of the
// border going inwards) and an array of line styles, calculate the
// color that that stripe of the border should be rendered in.
static void
ComputeColorForLine(PRUint32 lineIndex,
const BorderColorStyle* borderColorStyle,
PRUint32 borderColorStyleCount,
const nsBorderColors* borderColors,
PRUint32 borderColorCount,
nscolor borderColor,
nscolor backgroundColor,
gfxRGBA& outColor)
{
NS_ASSERTION(lineIndex < borderColorStyleCount, "Invalid lineIndex given");
if (borderColors) {
if (lineIndex >= borderColorCount) {
//outColor = gfxRGBA(borderColor);
//return;
// use the last color
lineIndex = borderColorCount - 1;
}
while (lineIndex--)
borderColors = borderColors->mNext;
if (borderColors->mTransparent)
outColor.r = outColor.g = outColor.b = outColor.a = 0.0;
else
outColor = gfxRGBA(borderColors->mColor);
return;
}
outColor = gfxRGBA(borderColor);
MakeBorderColor(outColor, gfxRGBA(backgroundColor), borderColorStyle[lineIndex]);
}
/**
** This function assumes that it can twiddle with the gfx state, and
** expects to be called between a Save/Restore pair.
**/
static void
DrawBorderSides(gfxContext *ctx, // The content to render to
const gfxFloat *borderWidths, // The widths of the border sides; top-right-bottom-left
PRIntn sides, // The specific sides we're actually rendering (bits)
PRUint8 borderRenderStyle, // The style the border is to be rendered in
const gfxRect& oRect, // The outside rectangle that encompasses the entire border
const gfxRect& iRect, // The inner rectangle of the border
nscolor borderRenderColor, // The base color the border is to be rendered in
const nsBorderColors *compositeColors, // Composite colors, nsnull if none
nscolor bgColor, // The background color; used for computing the actual color for some styles
nscoord twipsPerPixel, // The current twips-per-pixel ratio
const gfxFloat *borderRadii) // The border radii; TL, TR, BR, BL -- nsnull if none
{
gfxFloat radii[4];
gfxFloat *radiiPtr = nsnull;
PRUint32 borderColorStyleCount = 0;
BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3];
BorderColorStyle *borderColorStyle = nsnull;
PRUint32 compositeColorCount = 0;
if (borderRadii) {
// make a copy, because we munge this during this function
for (int i = 0; i < 4; i++)
radii[i] = borderRadii[i];
radiiPtr = &radii[0];
}
// if we're not doing compositeColors, we can calculate the borderColorStyle based
// on the specified style. The borderColorStyle array goes from the outer to the inner
// style.
if (!compositeColors) {
// if the border width is 1, we need to change the borderRenderStyle a bit to make sure
// that we get the right colors -- e.g. 'ridge' with a 1px border needs to look like
// solid, not like 'outset'.
if (CheckFourFloatsEqual(borderWidths, 1.0)) {
if (borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE ||
borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE)
borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID;
}
switch (borderRenderStyle) {
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_DASHED:
case NS_STYLE_BORDER_STYLE_DOTTED:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleTopLeft[1] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleBottomRight[1] = BorderColorStyleDark;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_RIDGE:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleTopLeft[1] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleBottomRight[1] = BorderColorStyleLight;
borderColorStyleCount = 2;
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
borderColorStyleTopLeft[1] = BorderColorStyleNone;
borderColorStyleTopLeft[2] = BorderColorStyleSolid;
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
borderColorStyleBottomRight[1] = BorderColorStyleNone;
borderColorStyleBottomRight[2] = BorderColorStyleSolid;
borderColorStyleCount = 3;
break;
case NS_STYLE_BORDER_STYLE_INSET:
borderColorStyleTopLeft[0] = BorderColorStyleDark;
borderColorStyleBottomRight[0] = BorderColorStyleLight;
borderColorStyleCount = 1;
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
borderColorStyleTopLeft[0] = BorderColorStyleLight;
borderColorStyleBottomRight[0] = BorderColorStyleDark;
borderColorStyleCount = 1;
break;
default:
NS_NOTREACHED("Unhandled border style!!");
break;
}
// The caller should never give us anything with a mix
// of TL/BR if the border style would require a
// TL/BR split.
if (sides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT))
borderColorStyle = borderColorStyleBottomRight;
else
borderColorStyle = borderColorStyleTopLeft;
} else {
// composite colors; we need to calculate borderColorStyle differently --
// all borders are rendered as "solid", but we might need an arbitrary number
// of them.
PRUint32 maxBorderWidth = 0;
for (int i = 0; i < 4; i++)
maxBorderWidth = PR_MAX(maxBorderWidth, PRUint32(borderWidths[i]));
borderColorStyle = new BorderColorStyle[maxBorderWidth];
borderColorStyleCount = maxBorderWidth;
const nsBorderColors *tmp = compositeColors;
do {
compositeColorCount++;
tmp = tmp->mNext;
} while (tmp);
for (unsigned int i = 0; i < borderColorStyleCount; i++) {
borderColorStyle[i] = BorderColorStyleSolid;
}
}
SF("borderWidths: %f %f %f %f ", borderWidths[0], borderWidths[1], borderWidths[2], borderWidths[3]), SN(), SF(" borderColorStyleCount: %d\n", borderColorStyleCount);
if (radiiPtr) {
SF(" radii: %f %f %f %f\n", radiiPtr[0], radiiPtr[1], radiiPtr[2], radiiPtr[3]);
}
// -moz-border-colors is a hack; if we have it for a border, then
// it's always drawn solid, and each color is given 1px. The last
// color is used for the remainder of the border's size.
//
// Otherwise, we distribute the border across the available space.
if (compositeColorCount == 0) {
if (borderColorStyleCount == 1) {
gfxRGBA color;
ComputeColorForLine(0,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
SF("borderColorStyle: %d color: %f %f %f %f\n", borderColorStyle[0], color.r, color.g, color.b, color.a);
FillFastBorderPath(ctx, oRect, iRect, radiiPtr, borderWidths, sides, color);
} else if (borderColorStyleCount == 2) {
// with 2 color styles, any extra pixel goes to the outside
gfxFloat outerBorderWidths[4], innerBorderWidths[4];
for (int i = 0; i < 4; i++) {
outerBorderWidths[i] = PRInt32(borderWidths[i]) / 2 + PRInt32(borderWidths[i]) % 2;
innerBorderWidths[i] = PRInt32(borderWidths[i]) / 2;
}
gfxRGBA color;
gfxRect soRect, siRect;
// draw outer rect
if (borderColorStyle[1] != BorderColorStyleNone) {
ComputeColorForLine(0,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
soRect = oRect;
siRect = iRect;
siRect.Outset(innerBorderWidths);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, outerBorderWidths, sides, color);
}
if (radiiPtr)
CalculateInnerRadii(radiiPtr, outerBorderWidths, radiiPtr);
// draw inner rect
if (borderColorStyle[0] != BorderColorStyleNone) {
ComputeColorForLine(1,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
soRect = oRect;
siRect = iRect;
soRect.Inset(outerBorderWidths);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, innerBorderWidths, sides, color);
}
} else if (borderColorStyleCount == 3) {
// with 3 color styles, any extra pixel (or lack of extra pixel)
// goes to the middle
gfxFloat outerBorderWidths[4], middleBorderWidths[4], innerBorderWidths[4];
for (int i = 0; i < 4; i++) {
if (borderWidths[i] == 1.0) {
outerBorderWidths[i] = 1.0;
middleBorderWidths[i] = innerBorderWidths[i] = 0.0;
} else {
PRInt32 rest = PRInt32(borderWidths[i]) % 3;
outerBorderWidths[i] = innerBorderWidths[i] = middleBorderWidths[i] = (PRInt32(borderWidths[i]) - rest) / 3;
if (rest == 1) {
middleBorderWidths[i] += 1.0;
} else if (rest == 2) {
outerBorderWidths[i] += 1.0;
innerBorderWidths[i] += 1.0;
}
}
}
gfxRGBA color;
gfxRect soRect, siRect;
// draw outer rect
if (borderColorStyle[2] != BorderColorStyleNone) {
ComputeColorForLine(0,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
soRect = oRect;
siRect = iRect;
siRect.Outset(innerBorderWidths);
siRect.Outset(middleBorderWidths);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, outerBorderWidths, sides, color);
}
if (radiiPtr)
CalculateInnerRadii(radiiPtr, outerBorderWidths, radiiPtr);
// draw middle rect
if (borderColorStyle[1] != BorderColorStyleNone) {
ComputeColorForLine(1,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
soRect = oRect;
siRect = iRect;
soRect.Inset(outerBorderWidths);
siRect.Outset(innerBorderWidths);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, middleBorderWidths, sides, color);
}
if (radiiPtr)
CalculateInnerRadii(radiiPtr, middleBorderWidths, radiiPtr);
// draw inner rect
if (borderColorStyle[0] != BorderColorStyleNone) {
ComputeColorForLine(2,
borderColorStyle, borderColorStyleCount,
nsnull, 0,
borderRenderColor, bgColor, color);
soRect = oRect;
siRect = iRect;
soRect.Inset(outerBorderWidths);
soRect.Inset(middleBorderWidths);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, innerBorderWidths, sides, color);
}
} else {
// The only way to get to here is by having a
// borderColorStyleCount < 1 or > 3; this should never happen,
// since -moz-border-colors doesn't get handled here.
NS_ERROR("Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?");
}
} else {
// the generic composite colors path; each border is 1px in size
gfxRect soRect = oRect;
gfxRect siRect;
gfxFloat maxBorderWidth = 0;
for (int i = 0; i < 4; i++)
maxBorderWidth = PR_MAX(maxBorderWidth, borderWidths[i]);
// distribute the border sizes evenly as we draw lines; we end up
// drawing borders that are potentially less than 1px in width
// if some of the sides are bigger than the others, but we have
// consistent colors all the way around.
gfxFloat fakeBorderSizes[4];
for (int i = 0; i < 4; i++)
fakeBorderSizes[i] = borderWidths[i] / maxBorderWidth;
for (PRUint32 i = 0; i < PRUint32(maxBorderWidth); i++) {
gfxRGBA lineColor;
siRect = soRect;
siRect.Inset(fakeBorderSizes);
ComputeColorForLine(i,
borderColorStyle, borderColorStyleCount,
compositeColors, compositeColorCount,
borderRenderColor, bgColor, lineColor);
FillFastBorderPath(ctx, soRect, siRect, radiiPtr, fakeBorderSizes, sides, lineColor);
soRect.Inset(fakeBorderSizes);
if (radiiPtr)
CalculateInnerRadii(radiiPtr, fakeBorderSizes, radiiPtr);
}
}
if (compositeColors) {
delete [] borderColorStyle;
}
ctx->SetFillRule(gfxContext::FILL_RULE_WINDING);
#if 0
ctx->SetOperator(gfxContext::OPERATOR_OVER);
// debug; draw a line on the outside and inside edge
// of the border.
ctx->SetLineWidth(1.0);
ctx->SetDash(nsnull, 0, 0.0);
ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0));
ctx->NewPath();
ctx->Rectangle(oRect);
ctx->Stroke();
ctx->NewPath();
ctx->Rectangle(iRect);
ctx->Stroke();
#endif
}
/*
* Compute the float-pixel radii that should be used for drawing
* this border/outline, given the various input bits.
*
* If a side is skipped via skipSides, its corners are forced to 0,
* otherwise the resulting radius is the smaller of the specified
* radius and half of each adjacent side's length.
*/
static void
ComputePixelRadii(const nscoord *aTwipsRadii,
const nsRect& outerRect,
const nsMargin& borderMargin,
PRIntn skipSides,
nscoord twipsPerPixel,
gfxFloat *oBorderRadii)
{
nscoord twipsRadii[4] = { aTwipsRadii[0], aTwipsRadii[1], aTwipsRadii[2], aTwipsRadii[3] };
nsMargin border(borderMargin);
if (skipSides & SIDE_BIT_TOP) {
border.top = 0;
twipsRadii[C_TL] = 0;
twipsRadii[C_TR] = 0;
}
if (skipSides & SIDE_BIT_RIGHT) {
border.right = 0;
twipsRadii[C_TR] = 0;
twipsRadii[C_BR] = 0;
}
if (skipSides & SIDE_BIT_BOTTOM) {
border.bottom = 0;
twipsRadii[C_BR] = 0;
twipsRadii[C_BL] = 0;
}
if (skipSides & SIDE_BIT_LEFT) {
border.left = 0;
twipsRadii[C_BL] = 0;
twipsRadii[C_TL] = 0;
}
nsRect innerRect(outerRect);
innerRect.Deflate(border);
// make sure the corner radii don't get too big
nsMargin maxRadiusSize(innerRect.width/2 + border.left,
innerRect.height/2 + border.top,
innerRect.width/2 + border.right,
innerRect.height/2 + border.bottom);
oBorderRadii[C_TL] = gfxFloat(PR_MIN(twipsRadii[C_TL], PR_MIN(maxRadiusSize.top, maxRadiusSize.left))) / twipsPerPixel;
oBorderRadii[C_TR] = gfxFloat(PR_MIN(twipsRadii[C_TR], PR_MIN(maxRadiusSize.top, maxRadiusSize.right))) / twipsPerPixel;
oBorderRadii[C_BL] = gfxFloat(PR_MIN(twipsRadii[C_BL], PR_MIN(maxRadiusSize.bottom, maxRadiusSize.left))) / twipsPerPixel;
oBorderRadii[C_BR] = gfxFloat(PR_MIN(twipsRadii[C_BR], PR_MIN(maxRadiusSize.bottom, maxRadiusSize.right))) / twipsPerPixel;
}
static void
DrawDashedSide(gfxContext *ctx,
PRUint8 side,
const gfxRect& iRect,
const gfxRect& oRect,
PRUint8 style,
gfxFloat borderWidth,
nscolor borderColor,
gfxSize *cornerDimensions)
{
gfxFloat dashWidth;
gfxFloat dash[2];
if (borderWidth == 0.0)
return;
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashWidth = gfxFloat(borderWidth * DOT_LENGTH * DASH_LENGTH);
dash[0] = dashWidth;
dash[1] = dashWidth;
ctx->SetLineCap(gfxContext::LINE_CAP_BUTT);
} else if (style == NS_STYLE_BORDER_STYLE_DOTTED) {
dashWidth = gfxFloat(borderWidth * DOT_LENGTH);
if (borderWidth > 2.0) {
dash[0] = 0.0;
dash[1] = dashWidth * 2.0;
ctx->SetLineCap(gfxContext::LINE_CAP_ROUND);
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
} else {
SF("DrawDashedSide: style: %d!!\n", style);
NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice");
return;
}
SF("dash: %f %f\n", dash[0], dash[1]);
ctx->SetDash(dash, 2, 0.0);
// Get the line drawn
gfxPoint start, end;
gfxFloat length;
if (side == NS_SIDE_TOP) {
start = gfxPoint(oRect.pos.x + cornerDimensions[C_TL].width,
(oRect.pos.y + iRect.pos.y) / 2.0);
end = gfxPoint(oRect.pos.x + oRect.size.width - cornerDimensions[C_TR].width,
(oRect.pos.y + iRect.pos.y) / 2.0);
length = end.x - start.x;
} else if (side == NS_SIDE_RIGHT) {
start = gfxPoint(oRect.pos.x + oRect.size.width - borderWidth / 2.0,
oRect.pos.y + cornerDimensions[C_TR].height);
end = gfxPoint(oRect.pos.x + oRect.size.width - borderWidth / 2.0,
oRect.pos.y + oRect.size.height - cornerDimensions[C_BR].height);
length = end.y - start.y;
} else if (side == NS_SIDE_BOTTOM) {
start = gfxPoint(oRect.pos.x + oRect.size.width - cornerDimensions[C_BR].width,
oRect.pos.y + oRect.size.height - borderWidth / 2.0);
end = gfxPoint(oRect.pos.x + cornerDimensions[C_BL].width,
oRect.pos.y + oRect.size.height - borderWidth / 2.0);
length = start.x - end.x;
} else if (side == NS_SIDE_LEFT) {
start = gfxPoint(oRect.pos.x + borderWidth / 2.0,
oRect.pos.y + oRect.size.height - cornerDimensions[C_BL].height);
end = gfxPoint(oRect.pos.x + borderWidth / 2.0,
oRect.pos.y + cornerDimensions[C_TR].height);
length = start.y - end.y;
}
ctx->NewPath();
ctx->MoveTo(start);
ctx->LineTo(end);
ctx->SetLineWidth(borderWidth);
ctx->SetColor(gfxRGBA(borderColor));
//ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0));
ctx->Stroke();
}
static void
DrawBorders(gfxContext *ctx,
gfxRect& oRect,
gfxRect& iRect,
PRUint8 *borderStyles,
gfxFloat *borderWidths,
gfxFloat *borderRadii,
nscolor *borderColors,
nsBorderColors **compositeColors,
PRIntn skipSides,
nscolor backgroundColor,
nscoord twipsPerPixel,
nsRect *aGap = nsnull)
{
// Examine the border style to figure out if we can draw it in one
// go or not.
PRUint8 numRenderPasses = NumBorderPasses (borderStyles, borderColors, compositeColors);
if (numRenderPasses == 0) {
// all the colors are transparent; nothing to do.
return;
}
// round oRect and iRect; they're already an integer
// number of pixels apart and should stay that way after
// rounding.
oRect.Round();
iRect.Round();
S(" oRect: "), S(oRect), SN();
S(" iRect: "), S(iRect), SN();
SF(" borderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", borderColors[0], borderColors[1], borderColors[2], borderColors[3]);
// if conditioning the outside rect failed, then bail -- the outside
// rect is supposed to enclose the entire border
oRect.Condition();
if (oRect.IsEmpty())
return;
iRect.Condition();
// do we have any sides that are dotted/dashed?
PRIntn dashedSides = 0;
for (int i = 0; i < 4; i++) {
PRUint8 style = borderStyles[i];
if (style == NS_STYLE_BORDER_STYLE_DASHED ||
style == NS_STYLE_BORDER_STYLE_DOTTED)
{
dashedSides |= (1 << i);
}
// just bail out entirely if RULES_MARKER
// got through (see bug 379419).
if (style & NS_STYLE_BORDER_STYLE_RULES_MARKER)
return;
}
SF(" dashedSides: 0x%02x\n", dashedSides);
// Clamp the CTM to be pixel-aligned; we do this only
// for translation-only matrices now, but we could do it
// if the matrix has just a scale as well. We should not
// do it if there's a rotation.
gfxMatrix mat = ctx->CurrentMatrix();
if (!mat.HasNonTranslation()) {
mat.x0 = floor(mat.x0 + 0.5);
mat.y0 = floor(mat.y0 + 0.5);
ctx->SetMatrix(mat);
}
// if we're going to do separate sides, we need to do it as
// a temporary surface group
PRBool canAvoidGroup = PR_TRUE;
if (numRenderPasses > 1) {
// clip to oRect to define the size of the temporary surface
ctx->NewPath();
ctx->Rectangle(oRect);
if (aGap) {
gfxRect gapRect(RectToGfxRect(*aGap, twipsPerPixel));
// draw the rectangle backwards, so that we get it
// clipped out via the winding rule
ctx->MoveTo(gapRect.pos);
ctx->LineTo(gapRect.pos + gfxSize(0.0, gapRect.size.height));
ctx->LineTo(gapRect.pos + gapRect.size);
ctx->LineTo(gapRect.pos + gfxSize(gapRect.size.width, 0.0));
ctx->ClosePath();
}
ctx->Clip();
// OPTIMIZATION
// Starting a compositing group is more work than necessary;
// can avoid doing it if:
// a) all the colors involved have to be solid (NS_GET_A(c) == 0xff)
// b) no border radius is involved (the curves have antialiasing)
// c) no dashed/dotted borders are involved
// d) no DOUBLE style is involved (the middle part of DOUBLE needs
// to have the the background color show through; [we could
// handle this by just clearing out the parts that will be drawn])
if (dashedSides != 0) {
canAvoidGroup = PR_FALSE;
} else {
for (int i = 0; i < 4; i++) {
if (borderRadii[i] != 0.0) {
canAvoidGroup = PR_FALSE;
break;
}
PRUint8 style = borderStyles[i];
if (style == NS_STYLE_BORDER_STYLE_DASHED ||
style == NS_STYLE_BORDER_STYLE_DOTTED ||
style == NS_STYLE_BORDER_STYLE_DOUBLE)
{
canAvoidGroup = PR_FALSE;
break;
}
if (compositeColors[i]) {
nsBorderColors* colors = compositeColors[i];
do {
if (NS_GET_A(colors->mColor) != 0xff) {
canAvoidGroup = PR_FALSE;
break;
}
colors = colors->mNext;
} while (colors);
} else {
if (NS_GET_A(borderColors[i]) != 0xff) {
canAvoidGroup = PR_FALSE;
break;
}
}
}
}
if (canAvoidGroup) {
// clear the area underneath where the border's to be
// rendered, so we can avoid using a compositing group
// but still have the ADD operator work correctly
// OPTIMIZATION
// avoid doing a group or using OPERATOR_ADD for the common
// case of a TL/BR border style in 1px size.
if (numRenderPasses == 2 &&
CheckFourFloatsEqual(borderWidths, 1.0) &&
NS_GET_A(borderColors[0]) == 0xff)
{
// OVER is faster than SOURCE in a lot of cases, and they'll
// behave the same since the color has no transparency.
// We don't need to clear anything out in this case, either.
ctx->SetOperator(gfxContext::OPERATOR_OVER);
} else {
// clear out the area so that we can use ADD without drawing
ctx->SetOperator(gfxContext::OPERATOR_CLEAR);
FillFastBorderPath(ctx, oRect, iRect, borderRadii, borderWidths, SIDE_BITS_ALL, gfxRGBA(0.0,0.0,0.0,0.0));
ctx->SetOperator(gfxContext::OPERATOR_ADD);
}
} else {
// start a compositing group
ctx->PushGroup(gfxASurface::CONTENT_COLOR_ALPHA);
ctx->SetOperator(gfxContext::OPERATOR_ADD);
}
SF("canAvoidGroup: %d\n", canAvoidGroup);
} else if (aGap) {
gfxRect gapRect(RectToGfxRect(*aGap, twipsPerPixel));
// draw the rectangle backwards, so that we get it
// clipped out via the winding rule
ctx->MoveTo(gapRect.pos);
ctx->LineTo(gapRect.pos + gfxSize(0.0, gapRect.size.height));
ctx->LineTo(gapRect.pos + gapRect.size);
ctx->LineTo(gapRect.pos + gfxSize(gapRect.size.width, 0.0));
ctx->ClosePath();
ctx->Clip();
}
// if we have dashed sides, clip to the corners so that we can draw the
// dashed bits later.
if (dashedSides) {
ctx->Save();
ctx->NewPath();
DoCornerClipSubPath(ctx, oRect, iRect, borderRadii, dashedSides);
#if 0
ctx->SetColor(gfxRGBA(1.0, 0.0, 1.0, 1.0));
ctx->SetLineWidth(2.);
ctx->Stroke();
#endif
ctx->Clip();
}
// Render with either 1, 2, or 4 passes, depending on how
// many are needed to get the job done.
for (int i = 0; i < numRenderPasses; i++) {
PRIntn sideBits;
PRUint8 side;
if (numRenderPasses == 4) {
side = gBorderSideOrder[i];
sideBits = 1 << side;
// skip this side if it's, well, skipped
if (skipSides & (1 << side))
continue;
ctx->Save();
ctx->NewPath();
DoSideClipSubPath(ctx, iRect, oRect, side, borderStyles, borderRadii);
ctx->Clip();
} else if (numRenderPasses == 2) {
if (i == 0) {
side = NS_SIDE_TOP;
sideBits = SIDE_BIT_TOP | SIDE_BIT_LEFT;
} else {
side = NS_SIDE_BOTTOM;
sideBits = SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT;
}
} else {
side = NS_SIDE_TOP;
sideBits = SIDE_BITS_ALL;
}
const PRUint8 style = borderStyles[side];
if (style != NS_STYLE_BORDER_STYLE_NONE &&
style != NS_STYLE_BORDER_STYLE_HIDDEN) {
// Draw the whole border. If we're not drawing multiple passes,
// then sides are identical and no clip was set -- this will draw
// the entire border. Otherwise, this will still draw the entire
// border in the style of this side, but it will be clipped by the
// above code. We do this to get the joins looking correct.
DrawBorderSides(ctx,
borderWidths,
sideBits,
style,
oRect, iRect,
borderColors[side],
compositeColors[side],
backgroundColor,
twipsPerPixel,
borderRadii);
SN("----------------");
}
if (numRenderPasses > 2)
ctx->Restore();
}
// now fill in any dotted/dashed borders
if (dashedSides != 0) {
// get rid of the corner clip we set earlier
ctx->Restore();
gfxSize dims[4];
GetBorderCornerDimensions(oRect, iRect, borderRadii, dims);
for (int i = 0; i < 4; i++) {
PRUint8 side = gBorderSideOrder[i];
if (NS_GET_A(borderColors[side]) != 0x00 && dashedSides & (1 << side)) {
// side is dotted/dashed.
DrawDashedSide (ctx, side,
iRect, oRect,
borderStyles[side],
borderWidths[side],
borderColors[side],
dims);
}
}
}
if (!canAvoidGroup) {
ctx->PopGroupToSource();
ctx->Paint();
}
}
void
nsCSSRendering::PaintBorder(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aBorderStyle,
nsStyleContext* aStyleContext,
PRIntn aSkipSides,
nsRect* aGap,
nscoord aHardBorderSize,
PRBool aShouldIgnoreRounded)
{
nsMargin border;
nsStyleCoord bordStyleRadius[4];
PRInt32 twipsRadii[4];
float percent;
nsCompatibility compatMode = aPresContext->CompatibilityMode();
SN("++ PaintBorder");
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the border. DO not get the data from aForFrame, since the passed in style context
// may be different! Always use |aStyleContext|!
const nsStyleDisplay* displayData = aStyleContext->GetStyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame, displayData->mAppearance))
return; // Let the theme handle it.
}
// Get our style context's color struct.
const nsStyleColor* ourColor = aStyleContext->GetStyleColor();
// in NavQuirks mode we want to use the parent's context as a starting point
// for determining the background color
const nsStyleBackground* bgColor = nsCSSRendering::FindNonTransparentBackground
(aStyleContext, compatMode == eCompatibility_NavQuirks ? PR_TRUE : PR_FALSE);
if (aHardBorderSize > 0) {
border.SizeTo(aHardBorderSize, aHardBorderSize, aHardBorderSize, aHardBorderSize);
} else {
border = aBorderStyle.GetBorder();
}
if ((0 == border.left) && (0 == border.right) &&
(0 == border.top) && (0 == border.bottom)) {
// Empty border area
return;
}
// get the radius for our border
aBorderStyle.mBorderRadius.GetTop(bordStyleRadius[0]); //topleft
aBorderStyle.mBorderRadius.GetRight(bordStyleRadius[1]); //topright
aBorderStyle.mBorderRadius.GetBottom(bordStyleRadius[2]); //bottomright
aBorderStyle.mBorderRadius.GetLeft(bordStyleRadius[3]); //bottomleft
// convert percentage values
for(int i = 0; i < 4; i++) {
twipsRadii[i] = 0;
switch (bordStyleRadius[i].GetUnit()) {
case eStyleUnit_Percent:
percent = bordStyleRadius[i].GetPercentValue();
twipsRadii[i] = (nscoord)(percent * aForFrame->GetSize().width);
break;
case eStyleUnit_Coord:
twipsRadii[i] = bordStyleRadius[i].GetCoordValue();
break;
default:
break;
}
}
// Turn off rendering for all of the zero sized sides
if (aSkipSides & SIDE_BIT_TOP) border.top = 0;
if (aSkipSides & SIDE_BIT_RIGHT) border.right = 0;
if (aSkipSides & SIDE_BIT_BOTTOM) border.bottom = 0;
if (aSkipSides & SIDE_BIT_LEFT) border.left = 0;
// get the inside and outside parts of the border
nsRect outerRect(aBorderArea), innerRect(aBorderArea);
innerRect.Deflate(border);
SF(" innerRect: %d %d %d %d\n", innerRect.x, innerRect.y, innerRect.width, innerRect.height);
SF(" outerRect: %d %d %d %d\n", outerRect.x, outerRect.y, outerRect.width, outerRect.height);
// if the border size is more than the appropriate dimension of the area,
// then... do what?
// XXX what is this? according to bug 62245, this check might not be
// needed any more
if (border.left + border.right > aBorderArea.width) {
innerRect.x = outerRect.x;
innerRect.width = outerRect.width;
}
if (border.top + border.bottom > aBorderArea.height) {
innerRect.y = outerRect.y;
innerRect.height = outerRect.height;
}
// If the dirty rect is completely inside the border area (e.g., only the
// content is being painted), then we can skip out now
// XXX this isn't exactly true for rounded borders, where the inner curves may
// encroach into the content area. A safer calculation would be to
// shorten innerRect by the radius one each side before performing this test.
if (innerRect.Contains(aDirtyRect)) {
return;
}
// we can assume that we're already clipped to aDirtyRect -- I think? (!?)
// Get our conversion values
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
// convert outer and inner rects
gfxRect oRect(RectToGfxRect(outerRect, twipsPerPixel));
gfxRect iRect(RectToGfxRect(innerRect, twipsPerPixel));
// convert the border widths
gfxFloat borderWidths[4] = { border.top / twipsPerPixel,
border.right / twipsPerPixel,
border.bottom / twipsPerPixel,
border.left / twipsPerPixel };
// convert the radii
gfxFloat borderRadii[4];
ComputePixelRadii(twipsRadii, outerRect, border, aSkipSides, twipsPerPixel, borderRadii);
PRUint8 borderStyles[4];
nscolor borderColors[4];
nsBorderColors *compositeColors[4];
// pull out styles, colors, composite colors
for (int i = 0; i < 4; i++) {
PRBool transparent, foreground;
borderStyles[i] = aBorderStyle.GetBorderStyle(i);
aBorderStyle.GetBorderColor(i, borderColors[i], transparent, foreground);
aBorderStyle.GetCompositeColors(i, &compositeColors[i]);
if (transparent)
borderColors[i] = 0x0;
else if (foreground)
borderColors[i] = ourColor->mColor;
}
SF(" borderStyles: %d %d %d %d\n", borderStyles[0], borderStyles[1], borderStyles[2], borderStyles[3]);
// start drawing
nsRefPtr<gfxContext> ctx = aRenderingContext.ThebesContext();
ctx->Save();
#if 0
// this will draw a transparent red backround underneath the area between iRect and oRect
ctx->Save();
ctx->Rectangle(iRect);
ctx->Clip();
ctx->NewPath();
ctx->Rectangle(oRect);
ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 0.5));
ctx->Fill();
ctx->Restore();
#endif
SF ("borderRadii: %f %f %f %f\n", borderRadii[0], borderRadii[1], borderRadii[2], borderRadii[3]);
DrawBorders(ctx,
oRect,
iRect,
borderStyles,
borderWidths,
borderRadii,
borderColors,
compositeColors,
aSkipSides,
bgColor->mBackgroundColor,
twipsPerPixel,
aGap);
ctx->Restore();
SN();
}
void
nsCSSRendering::PaintOutline(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aBorderStyle,
const nsStyleOutline& aOutlineStyle,
nsStyleContext* aStyleContext,
nsRect* aGap)
{
nsStyleCoord bordStyleRadius[4];
PRInt32 twipsRadii[4];
// Get our style context's color struct.
const nsStyleColor* ourColor = aStyleContext->GetStyleColor();
nscoord width, offset;
float percent;
aOutlineStyle.GetOutlineWidth(width);
if (width == 0) {
// Empty outline
return;
}
const nsStyleBackground* bgColor = nsCSSRendering::FindNonTransparentBackground
(aStyleContext, PR_FALSE);
// get the radius for our outline
aOutlineStyle.mOutlineRadius.GetTop(bordStyleRadius[0]); //topleft
aOutlineStyle.mOutlineRadius.GetRight(bordStyleRadius[1]); //topright
aOutlineStyle.mOutlineRadius.GetBottom(bordStyleRadius[2]); //bottomright
aOutlineStyle.mOutlineRadius.GetLeft(bordStyleRadius[3]); //bottomleft
// convert percentage values
for (int i = 0; i < 4; i++) {
twipsRadii[i] = 0;
switch (bordStyleRadius[i].GetUnit()) {
case eStyleUnit_Percent:
percent = bordStyleRadius[i].GetPercentValue();
twipsRadii[i] = (nscoord)(percent * aBorderArea.width);
break;
case eStyleUnit_Coord:
twipsRadii[i] = bordStyleRadius[i].GetCoordValue();
break;
default:
break;
}
}
nsRect overflowArea = aForFrame->GetOverflowRect();
// get the offset for our outline
aOutlineStyle.GetOutlineOffset(offset);
nsRect outerRect(overflowArea + aBorderArea.TopLeft());
nsRect innerRect(outerRect);
if (width + offset >= 0) {
// the overflow area is exactly the outside edge of the outline
innerRect.Deflate(width, width);
} else {
// the overflow area is exactly the rectangle containing the frame and its
// children; we can compute the outline directly
innerRect.Deflate(-offset, -offset);
if (innerRect.width < 0 || innerRect.height < 0) {
return; // Protect against negative outline sizes
}
outerRect = innerRect;
outerRect.Inflate(width, width);
}
// If the dirty rect is completely inside the border area (e.g., only the
// content is being painted), then we can skip out now
// XXX this isn't exactly true for rounded borders, where the inside curves may
// encroach into the content area. A safer calculation would be to
// shorten insideRect by the radius one each side before performing this test.
if (innerRect.Contains(aDirtyRect)) {
return;
}
// Get our conversion values
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
// get the inner and outer rectangles
gfxRect oRect(RectToGfxRect(outerRect, twipsPerPixel));
gfxRect iRect(RectToGfxRect(innerRect, twipsPerPixel));
// convert the radii
nsMargin outlineMargin(width, width, width, width);
gfxFloat outlineRadii[4];
ComputePixelRadii(twipsRadii, outerRect, outlineMargin, 0, twipsPerPixel, outlineRadii);
PRUint8 outlineStyle = aOutlineStyle.GetOutlineStyle();
PRUint8 outlineStyles[4] = { outlineStyle,
outlineStyle,
outlineStyle,
outlineStyle };
nscolor outlineColor;
// PR_FALSE means use the initial color; PR_TRUE means a color was
// set.
if (!aOutlineStyle.GetOutlineColor(outlineColor))
outlineColor = ourColor->mColor;
nscolor outlineColors[4] = { outlineColor,
outlineColor,
outlineColor,
outlineColor };
nsBorderColors *outlineCompositeColors[4] = { nsnull };
// convert the border widths
gfxFloat outlineWidths[4] = { width / twipsPerPixel,
width / twipsPerPixel,
width / twipsPerPixel,
width / twipsPerPixel };
// start drawing
nsRefPtr<gfxContext> ctx = aRenderingContext.ThebesContext();
ctx->Save();
DrawBorders(ctx,
oRect,
iRect,
outlineStyles,
outlineWidths,
outlineRadii,
outlineColors,
outlineCompositeColors,
0,
bgColor->mBackgroundColor,
twipsPerPixel,
aGap);
ctx->Restore();
SN();
}
// Thebes Border Rendering Code End
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// Returns the anchor point to use for the background image. The
// anchor point is the (x, y) location where the first tile should
// be placed
//
// For repeated tiling, the anchor values are normalized wrt to the upper-left
// edge of the bounds, and are always in the range:
// -(aTileWidth - 1) <= anchor.x <= 0
// -(aTileHeight - 1) <= anchor.y <= 0
//
// i.e., they are either 0 or a negative number whose absolute value is
// less than the tile size in that dimension
//
// aOriginBounds is the box to which the tiling position should be relative
// aClipBounds is the box in which the tiling will actually be done
// They should correspond to 'background-origin' and 'background-clip',
// except when painting on the canvas, in which case the origin bounds
// should be the bounds of the root element's frame and the clip bounds
// should be the bounds of the canvas frame.
static void
ComputeBackgroundAnchorPoint(const nsStyleBackground& aColor,
const nsRect& aOriginBounds,
const nsRect& aClipBounds,
nscoord aTileWidth, nscoord aTileHeight,
nsPoint& aResult)
{
nscoord x;
if (NS_STYLE_BG_X_POSITION_LENGTH & aColor.mBackgroundFlags) {
x = aColor.mBackgroundXPosition.mCoord;
}
else if (NS_STYLE_BG_X_POSITION_PERCENT & aColor.mBackgroundFlags) {
PRFloat64 percent = PRFloat64(aColor.mBackgroundXPosition.mFloat);
nscoord tilePos = nscoord(percent * PRFloat64(aTileWidth));
nscoord boxPos = nscoord(percent * PRFloat64(aOriginBounds.width));
x = boxPos - tilePos;
}
else {
x = 0;
}
x += aOriginBounds.x - aClipBounds.x;
if (NS_STYLE_BG_REPEAT_X & aColor.mBackgroundRepeat) {
// When we are tiling in the x direction the loop will run from
// the left edge of the box to the right edge of the box. We need
// to adjust the starting coordinate to lie within the band being
// rendered.
if (x < 0) {
x = -x;
if (x < 0) {
// Some joker gave us max-negative-integer.
x = 0;
}
x %= aTileWidth;
x = -x;
}
else if (x != 0) {
x %= aTileWidth;
if (x > 0) {
x = x - aTileWidth;
}
}
NS_POSTCONDITION((x >= -(aTileWidth - 1)) && (x <= 0), "bad computed anchor value");
}
aResult.x = x;
nscoord y;
if (NS_STYLE_BG_Y_POSITION_LENGTH & aColor.mBackgroundFlags) {
y = aColor.mBackgroundYPosition.mCoord;
}
else if (NS_STYLE_BG_Y_POSITION_PERCENT & aColor.mBackgroundFlags){
PRFloat64 percent = PRFloat64(aColor.mBackgroundYPosition.mFloat);
nscoord tilePos = nscoord(percent * PRFloat64(aTileHeight));
nscoord boxPos = nscoord(percent * PRFloat64(aOriginBounds.height));
y = boxPos - tilePos;
}
else {
y = 0;
}
y += aOriginBounds.y - aClipBounds.y;
if (NS_STYLE_BG_REPEAT_Y & aColor.mBackgroundRepeat) {
// When we are tiling in the y direction the loop will run from
// the top edge of the box to the bottom edge of the box. We need
// to adjust the starting coordinate to lie within the band being
// rendered.
if (y < 0) {
y = -y;
if (y < 0) {
// Some joker gave us max-negative-integer.
y = 0;
}
y %= aTileHeight;
y = -y;
}
else if (y != 0) {
y %= aTileHeight;
if (y > 0) {
y = y - aTileHeight;
}
}
NS_POSTCONDITION((y >= -(aTileHeight - 1)) && (y <= 0), "bad computed anchor value");
}
aResult.y = y;
}
const nsStyleBackground*
nsCSSRendering::FindNonTransparentBackground(nsStyleContext* aContext,
PRBool aStartAtParent /*= PR_FALSE*/)
{
NS_ASSERTION(aContext, "Cannot find NonTransparentBackground in a null context" );
const nsStyleBackground* result = nsnull;
nsStyleContext* context = nsnull;
if (aStartAtParent) {
context = aContext->GetParent();
}
if (!context) {
context = aContext;
}
while (context) {
result = context->GetStyleBackground();
if (0 == (result->mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT))
break;
context = context->GetParent();
}
return result;
}
/**
* |FindBackground| finds the correct style data to use to paint the
* background. It is responsible for handling the following two
* statements in section 14.2 of CSS2:
*
* The background of the box generated by the root element covers the
* entire canvas.
*
* For HTML documents, however, we recommend that authors specify the
* background for the BODY element rather than the HTML element. User
* agents should observe the following precedence rules to fill in the
* background: if the value of the 'background' property for the HTML
* element is different from 'transparent' then use it, else use the
* value of the 'background' property for the BODY element. If the
* resulting value is 'transparent', the rendering is undefined.
*
* Thus, in our implementation, it is responsible for ensuring that:
* + we paint the correct background on the |nsCanvasFrame|,
* |nsRootBoxFrame|, or |nsPageFrame|,
* + we don't paint the background on the root element, and
* + we don't paint the background on the BODY element in *some* cases,
* and for SGML-based HTML documents only.
*
* |FindBackground| returns true if a background should be painted, and
* the resulting style context to use for the background information
* will be filled in to |aBackground|. It fills in a boolean indicating
* whether the frame is the canvas frame to allow PaintBackground to
* ensure that it always paints something non-transparent for the
* canvas.
*/
// Returns nsnull if aFrame is not a canvas frame.
// Otherwise, it returns the frame we should look for the background on.
// This is normally aFrame but if aFrame is the viewport, we need to
// look for the background starting at the scroll root (which shares
// style context with the document root) or the document root itself.
// We need to treat the viewport as canvas because, even though
// it does not actually paint a background, we need to get the right
// background style so we correctly detect transparent documents.
inline nsIFrame*
IsCanvasFrame(nsIFrame *aFrame)
{
nsIAtom* frameType = aFrame->GetType();
if (frameType == nsGkAtoms::canvasFrame ||
frameType == nsGkAtoms::rootFrame ||
frameType == nsGkAtoms::pageFrame ||
frameType == nsGkAtoms::pageContentFrame) {
return aFrame;
} else if (frameType == nsGkAtoms::viewportFrame) {
nsIFrame* firstChild = aFrame->GetFirstChild(nsnull);
if (firstChild) {
return firstChild;
}
}
return nsnull;
}
inline PRBool
FindCanvasBackground(nsIFrame* aForFrame,
const nsStyleBackground** aBackground)
{
// XXXldb What if the root element is positioned, etc.? (We don't
// allow that yet, do we?)
nsIFrame *firstChild = aForFrame->GetFirstChild(nsnull);
if (firstChild) {
const nsStyleBackground* result = firstChild->GetStyleBackground();
nsIFrame* topFrame = aForFrame;
if (firstChild->GetType() == nsGkAtoms::pageContentFrame) {
topFrame = firstChild->GetFirstChild(nsnull);
NS_ASSERTION(topFrame,
"nsPageContentFrame is missing a normal flow child");
if (!topFrame) {
return PR_FALSE;
}
NS_ASSERTION(topFrame->GetContent(),
"nsPageContentFrame child without content");
result = topFrame->GetStyleBackground();
}
// Check if we need to do propagation from BODY rather than HTML.
if (result->IsTransparent()) {
nsIContent* content = topFrame->GetContent();
if (content) {
// Use |GetOwnerDoc| so it works during destruction.
nsIDocument* document = content->GetOwnerDoc();
nsCOMPtr<nsIDOMHTMLDocument> htmlDoc = do_QueryInterface(document);
if (htmlDoc) {
if (!document->IsCaseSensitive()) { // HTML, not XHTML
nsCOMPtr<nsIDOMHTMLElement> body;
htmlDoc->GetBody(getter_AddRefs(body));
nsCOMPtr<nsIContent> bodyContent = do_QueryInterface(body);
// We need to null check the body node (bug 118829) since
// there are cases, thanks to the fix for bug 5569, where we
// will reflow a document with no body. In particular, if a
// SCRIPT element in the head blocks the parser and then has a
// SCRIPT that does "document.location.href = 'foo'", then
// nsParser::Terminate will call |DidBuildModel| methods
// through to the content sink, which will call |StartLayout|
// and thus |InitialReflow| on the pres shell. See bug 119351
// for the ugly details.
if (bodyContent) {
nsIFrame *bodyFrame = aForFrame->PresContext()->GetPresShell()->
GetPrimaryFrameFor(bodyContent);
if (bodyFrame)
result = bodyFrame->GetStyleBackground();
}
}
}
}
}
*aBackground = result;
} else {
// This should always give transparent, so we'll fill it in with the
// default color if needed. This seems to happen a bit while a page is
// being loaded.
*aBackground = aForFrame->GetStyleBackground();
}
return PR_TRUE;
}
inline PRBool
FindElementBackground(nsIFrame* aForFrame,
const nsStyleBackground** aBackground)
{
nsIFrame *parentFrame = aForFrame->GetParent();
// XXXldb We shouldn't have to null-check |parentFrame| here.
if (parentFrame && IsCanvasFrame(parentFrame) == parentFrame) {
// Check that we're really the root (rather than in another child list).
nsIFrame *childFrame = parentFrame->GetFirstChild(nsnull);
if (childFrame == aForFrame)
return PR_FALSE; // Background was already drawn for the canvas.
}
*aBackground = aForFrame->GetStyleBackground();
// Return true unless the frame is for a BODY element whose background
// was propagated to the viewport.
if (aForFrame->GetStyleContext()->GetPseudoType())
return PR_TRUE; // A pseudo-element frame.
nsIContent* content = aForFrame->GetContent();
if (!content || !content->IsNodeOfType(nsINode::eHTML))
return PR_TRUE; // not frame for an HTML element
if (!parentFrame)
return PR_TRUE; // no parent to look at
if (content->Tag() != nsGkAtoms::body)
return PR_TRUE; // not frame for <BODY> element
// We should only look at the <html> background if we're in an HTML document
nsIDocument* document = content->GetOwnerDoc();
nsCOMPtr<nsIDOMHTMLDocument> htmlDoc = do_QueryInterface(document);
if (!htmlDoc)
return PR_TRUE;
if (document->IsCaseSensitive()) // XHTML, not HTML
return PR_TRUE;
nsCOMPtr<nsIDOMHTMLElement> body;
htmlDoc->GetBody(getter_AddRefs(body));
nsCOMPtr<nsIContent> bodyContent = do_QueryInterface(body);
if (bodyContent != content)
return PR_TRUE; // this wasn't the background that was propagated
const nsStyleBackground* htmlBG = parentFrame->GetStyleBackground();
return !htmlBG->IsTransparent();
}
PRBool
nsCSSRendering::FindBackground(nsPresContext* aPresContext,
nsIFrame* aForFrame,
const nsStyleBackground** aBackground,
PRBool* aIsCanvas)
{
nsIFrame* canvasFrame = IsCanvasFrame(aForFrame);
*aIsCanvas = canvasFrame != nsnull;
return canvasFrame
? FindCanvasBackground(canvasFrame, aBackground)
: FindElementBackground(aForFrame, aBackground);
}
void
nsCSSRendering::DidPaint()
{
gInlineBGData->Reset();
}
void
nsCSSRendering::PaintBackground(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aBorder,
const nsStylePadding& aPadding,
PRBool aUsePrintSettings,
nsRect* aBGClipRect)
{
NS_PRECONDITION(aForFrame,
"Frame is expected to be provided to PaintBackground");
PRBool isCanvas;
const nsStyleBackground *color;
if (!FindBackground(aPresContext, aForFrame, &color, &isCanvas)) {
// we don't want to bail out of moz-appearance is set on a root
// node. If it has a parent content node, bail because it's not
// a root, other wise keep going in order to let the theme stuff
// draw the background. The canvas really should be drawing the
// bg, but there's no way to hook that up via css.
if (!aForFrame->GetStyleDisplay()->mAppearance) {
return;
}
nsIContent* content = aForFrame->GetContent();
if (!content || content->GetParent()) {
return;
}
color = aForFrame->GetStyleBackground();
}
if (!isCanvas) {
PaintBackgroundWithSC(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, *color, aBorder,
aPadding, aUsePrintSettings, aBGClipRect);
return;
}
nsStyleBackground canvasColor(*color);
nsIViewManager* vm = aPresContext->GetViewManager();
if (canvasColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT) {
nsIView* rootView;
vm->GetRootView(rootView);
if (!rootView->GetParent()) {
PRBool widgetIsTransparent = PR_FALSE;
if (rootView->HasWidget()) {
rootView->GetWidget()->GetHasTransparentBackground(widgetIsTransparent);
}
if (!widgetIsTransparent) {
// Ensure that we always paint a color for the root (in case there's
// no background at all or a partly transparent image).
canvasColor.mBackgroundFlags &= ~NS_STYLE_BG_COLOR_TRANSPARENT;
canvasColor.mBackgroundColor = aPresContext->DefaultBackgroundColor();
}
}
}
vm->SetDefaultBackgroundColor(canvasColor.mBackgroundColor);
PaintBackgroundWithSC(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, canvasColor,
aBorder, aPadding, aUsePrintSettings, aBGClipRect);
}
inline nscoord IntDivFloor(nscoord aDividend, nscoord aDivisor)
{
NS_PRECONDITION(aDivisor > 0,
"this function only works for positive divisors");
// ANSI C, ISO 9899:1999 section 6.5.5 defines integer division as
// truncation of the result towards zero. Earlier C standards, as
// well as the C++ standards (1998 and 2003) do not, but we depend
// on it elsewhere.
return (aDividend < 0 ? (aDividend - aDivisor + 1) : aDividend) / aDivisor;
}
inline nscoord IntDivCeil(nscoord aDividend, nscoord aDivisor)
{
NS_PRECONDITION(aDivisor > 0,
"this function only works for positive divisors");
// ANSI C, ISO 9899:1999 section 6.5.5 defines integer division as
// truncation of the result towards zero. Earlier C standards, as
// well as the C++ standards (1998 and 2003) do not, but we depend
// on it elsewhere.
return (aDividend > 0 ? (aDividend + aDivisor - 1) : aDividend) / aDivisor;
}
/**
* Return the largest 'v' such that v = aTileOffset + N*aTileSize, for some
* integer N, and v <= aDirtyStart.
*/
static nscoord
FindTileStart(nscoord aDirtyStart, nscoord aTileOffset, nscoord aTileSize)
{
// Find largest integer N such that aTileOffset + N*aTileSize <= aDirtyStart
return aTileOffset +
IntDivFloor(aDirtyStart - aTileOffset, aTileSize) * aTileSize;
}
/**
* Return the smallest 'v' such that v = aTileOffset + N*aTileSize, for some
* integer N, and v >= aDirtyEnd.
*/
static nscoord
FindTileEnd(nscoord aDirtyEnd, nscoord aTileOffset, nscoord aTileSize)
{
// Find smallest integer N such that aTileOffset + N*aTileSize >= aDirtyEnd
return aTileOffset +
IntDivCeil(aDirtyEnd - aTileOffset, aTileSize) * aTileSize;
}
void
nsCSSRendering::PaintBackgroundWithSC(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBackground& aColor,
const nsStyleBorder& aBorder,
const nsStylePadding& aPadding,
PRBool aUsePrintSettings,
nsRect* aBGClipRect)
{
NS_PRECONDITION(aForFrame,
"Frame is expected to be provided to PaintBackground");
PRBool canDrawBackgroundImage = PR_TRUE;
PRBool canDrawBackgroundColor = PR_TRUE;
if (aUsePrintSettings) {
canDrawBackgroundImage = aPresContext->GetBackgroundImageDraw();
canDrawBackgroundColor = aPresContext->GetBackgroundColorDraw();
}
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the background and bail out.
const nsStyleDisplay* displayData = aForFrame->GetStyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame, displayData->mAppearance)) {
nsPoint offset = aBorderArea.TopLeft();
nsIRenderingContext::AutoPushTranslation
translate(&aRenderingContext, offset.x, offset.y);
nsRect dirty;
nsRect border = aBorderArea - offset;
dirty.IntersectRect(aDirtyRect - offset, border);
theme->DrawWidgetBackground(&aRenderingContext, aForFrame,
displayData->mAppearance, border, dirty);
return;
}
}
nsRect bgClipArea;
if (aBGClipRect) {
bgClipArea = *aBGClipRect;
}
else {
// The background is rendered over the 'background-clip' area.
bgClipArea = aBorderArea;
if (aColor.mBackgroundClip != NS_STYLE_BG_CLIP_BORDER) {
NS_ASSERTION(aColor.mBackgroundClip == NS_STYLE_BG_CLIP_PADDING,
"unknown background-clip value");
nsMargin border = aForFrame->GetUsedBorder();
aForFrame->ApplySkipSides(border);
bgClipArea.Deflate(border);
}
}
// The actual dirty rect is the intersection of the 'background-clip'
// area and the dirty rect we were given
nsRect dirtyRect;
if (!dirtyRect.IntersectRect(bgClipArea, aDirtyRect)) {
// Nothing to paint
return;
}
// if there is no background image or background images are turned off, try a color.
if (!aColor.mBackgroundImage || !canDrawBackgroundImage) {
PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea,
aColor, aBorder, aPadding, canDrawBackgroundColor);
return;
}
// We have a background image
// Lookup the image
imgIRequest *req = aPresContext->LoadImage(aColor.mBackgroundImage,
aForFrame);
PRUint32 status = imgIRequest::STATUS_ERROR;
if (req)
req->GetImageStatus(&status);
if (!req || !(status & imgIRequest::STATUS_FRAME_COMPLETE) || !(status & imgIRequest::STATUS_SIZE_AVAILABLE)) {
PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea,
aColor, aBorder, aPadding, canDrawBackgroundColor);
return;
}
nsCOMPtr<imgIContainer> image;
req->GetImage(getter_AddRefs(image));
nsSize imageSize;
image->GetWidth(&imageSize.width);
image->GetHeight(&imageSize.height);
imageSize.width = nsPresContext::CSSPixelsToAppUnits(imageSize.width);
imageSize.height = nsPresContext::CSSPixelsToAppUnits(imageSize.height);
req = nsnull;
nsRect bgOriginArea;
nsIAtom* frameType = aForFrame->GetType();
if (frameType == nsGkAtoms::inlineFrame ||
frameType == nsGkAtoms::positionedInlineFrame) {
switch (aColor.mBackgroundInlinePolicy) {
case NS_STYLE_BG_INLINE_POLICY_EACH_BOX:
bgOriginArea = aBorderArea;
break;
case NS_STYLE_BG_INLINE_POLICY_BOUNDING_BOX:
bgOriginArea = gInlineBGData->GetBoundingRect(aForFrame) +
aBorderArea.TopLeft();
break;
default:
NS_ERROR("Unknown background-inline-policy value! "
"Please, teach me what to do.");
case NS_STYLE_BG_INLINE_POLICY_CONTINUOUS:
bgOriginArea = gInlineBGData->GetContinuousRect(aForFrame) +
aBorderArea.TopLeft();
break;
}
}
else {
bgOriginArea = aBorderArea;
}
// Background images are tiled over the 'background-clip' area
// but the origin of the tiling is based on the 'background-origin' area
if (aColor.mBackgroundOrigin != NS_STYLE_BG_ORIGIN_BORDER) {
nsMargin border = aForFrame->GetUsedBorder();
aForFrame->ApplySkipSides(border);
bgOriginArea.Deflate(border);
if (aColor.mBackgroundOrigin != NS_STYLE_BG_ORIGIN_PADDING) {
nsMargin padding = aForFrame->GetUsedPadding();
aForFrame->ApplySkipSides(padding);
bgOriginArea.Deflate(padding);
NS_ASSERTION(aColor.mBackgroundOrigin == NS_STYLE_BG_ORIGIN_CONTENT,
"unknown background-origin value");
}
}
// Based on the repeat setting, compute how many tiles we should
// lay down for each axis. The value computed is the maximum based
// on the dirty rect before accounting for the background-position.
nscoord tileWidth = imageSize.width;
nscoord tileHeight = imageSize.height;
PRBool needBackgroundColor = !(aColor.mBackgroundFlags &
NS_STYLE_BG_COLOR_TRANSPARENT);
PRIntn repeat = aColor.mBackgroundRepeat;
nscoord xDistance, yDistance;
switch (repeat) {
case NS_STYLE_BG_REPEAT_X:
xDistance = dirtyRect.width;
yDistance = tileHeight;
break;
case NS_STYLE_BG_REPEAT_Y:
xDistance = tileWidth;
yDistance = dirtyRect.height;
break;
case NS_STYLE_BG_REPEAT_XY:
xDistance = dirtyRect.width;
yDistance = dirtyRect.height;
if (needBackgroundColor) {
// If the image is completely opaque, we do not need to paint the
// background color
nsCOMPtr<gfxIImageFrame> gfxImgFrame;
image->GetCurrentFrame(getter_AddRefs(gfxImgFrame));
if (gfxImgFrame) {
gfxImgFrame->GetNeedsBackground(&needBackgroundColor);
/* check for tiling of a image where frame smaller than container */
nsSize iSize;
image->GetWidth(&iSize.width);
image->GetHeight(&iSize.height);
nsRect iframeRect;
gfxImgFrame->GetRect(iframeRect);
if (iSize.width != iframeRect.width ||
iSize.height != iframeRect.height) {
needBackgroundColor = PR_TRUE;
}
}
}
break;
case NS_STYLE_BG_REPEAT_OFF:
default:
NS_ASSERTION(repeat == NS_STYLE_BG_REPEAT_OFF, "unknown background-repeat value");
xDistance = tileWidth;
yDistance = tileHeight;
break;
}
// The background color is rendered over the 'background-clip' area
if (needBackgroundColor) {
PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea,
aColor, aBorder, aPadding, canDrawBackgroundColor);
}
if ((tileWidth == 0) || (tileHeight == 0) || dirtyRect.IsEmpty()) {
// Nothing left to paint
return;
}
// Compute the anchor point.
//
// When tiling, the anchor coordinate values will be negative offsets
// from the background-origin area.
// relative to the origin of aForFrame
nsPoint anchor;
if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) {
// If it's a fixed background attachment, then the image is placed
// relative to the viewport, which is the area of the root frame
// in a screen context or the page content frame in a print context.
// Remember that we've drawn position-varying content in this prescontext
aPresContext->SetRenderedPositionVaryingContent();
nsIFrame* topFrame =
aPresContext->PresShell()->FrameManager()->GetRootFrame();
NS_ASSERTION(topFrame, "no root frame");
if (aPresContext->IsPaginated()) {
nsIFrame* pageContentFrame =
nsLayoutUtils::GetClosestFrameOfType(aForFrame, nsGkAtoms::pageContentFrame);
if (pageContentFrame) {
topFrame = pageContentFrame;
}
// else this is an embedded shell and its root frame is what we want
}
// Get the anchor point, relative to the viewport.
nsRect viewportArea = topFrame->GetRect();
ComputeBackgroundAnchorPoint(aColor, viewportArea, viewportArea, tileWidth, tileHeight, anchor);
// Convert the anchor point from viewport coordinates to aForFrame
// coordinates.
anchor -= aForFrame->GetOffsetTo(topFrame);
} else {
if (frameType == nsGkAtoms::canvasFrame) {
// If the frame is the canvas, the image is placed relative to
// the root element's (first) frame (see bug 46446)
nsRect firstRootElementFrameArea;
nsIFrame* firstRootElementFrame = aForFrame->GetFirstChild(nsnull);
NS_ASSERTION(firstRootElementFrame, "A canvas with a background "
"image had no child frame, which is impossible according to CSS. "
"Make sure there isn't a background image specified on the "
"|:viewport| pseudo-element in |html.css|.");
// temporary null check -- see bug 97226
if (firstRootElementFrame) {
firstRootElementFrameArea = firstRootElementFrame->GetRect();
// Take the border out of the frame's rect
const nsStyleBorder* borderStyle = firstRootElementFrame->GetStyleBorder();
firstRootElementFrameArea.Deflate(borderStyle->GetBorder());
// Get the anchor point
ComputeBackgroundAnchorPoint(aColor, firstRootElementFrameArea +
aBorderArea.TopLeft(), bgClipArea, tileWidth, tileHeight, anchor);
} else {
ComputeBackgroundAnchorPoint(aColor, bgOriginArea, bgClipArea, tileWidth, tileHeight, anchor);
}
} else {
// Otherwise, it is the normal case, and the background is
// simply placed relative to the frame's background-clip area
ComputeBackgroundAnchorPoint(aColor, bgOriginArea, bgClipArea, tileWidth, tileHeight, anchor);
}
// For scrolling attachment, the anchor is within the 'background-clip'
anchor.x += bgClipArea.x - aBorderArea.x;
anchor.y += bgClipArea.y - aBorderArea.y;
}
nsRefPtr<gfxContext> ctx = aRenderingContext.ThebesContext();
ctx->Save();
nscoord appUnitsPerPixel = aPresContext->DevPixelsToAppUnits(1);
ctx->NewPath();
ctx->Rectangle(RectToGfxRect(dirtyRect, appUnitsPerPixel), PR_TRUE);
ctx->Clip();
nsStyleCoord bordStyleRadius[4];
nscoord borderRadii[4];
// get the radius for our border
aBorder.mBorderRadius.GetTop(bordStyleRadius[NS_SIDE_TOP]); // topleft
aBorder.mBorderRadius.GetRight(bordStyleRadius[NS_SIDE_RIGHT]); // topright
aBorder.mBorderRadius.GetBottom(bordStyleRadius[NS_SIDE_BOTTOM]); // bottomright
aBorder.mBorderRadius.GetLeft(bordStyleRadius[NS_SIDE_LEFT]); // bottomleft
PRBool haveRadius = PR_FALSE;
PRUint8 side = 0;
for (; side < 4; ++side) {
borderRadii[side] = 0;
switch (bordStyleRadius[side].GetUnit()) {
case eStyleUnit_Percent:
borderRadii[side] = nscoord(bordStyleRadius[side].GetPercentValue() *
aForFrame->GetSize().width);
break;
case eStyleUnit_Coord:
borderRadii[side] = bordStyleRadius[side].GetCoordValue();
break;
default:
break;
}
if (borderRadii[side] != 0)
haveRadius = PR_TRUE;
}
if (haveRadius) {
gfxFloat radii[4];
ComputePixelRadii(borderRadii, bgClipArea, aBorder.GetBorder(),
aForFrame ? aForFrame->GetSkipSides() : 0,
appUnitsPerPixel, radii);
gfxRect oRect(RectToGfxRect(bgClipArea, appUnitsPerPixel));
oRect.Round();
oRect.Condition();
ctx->NewPath();
DoRoundedRectCWSubPath(ctx, oRect, radii);
ctx->Clip();
}
// Compute the x and y starting points and limits for tiling
/* An Overview Of The Following Logic
A........ . . . . . . . . . . . . . .
: +---:-------.-------.-------.---- /|\
: | : . . . | nh
:.......: . . . x . . . . . . . . . . \|/
. | . . . .
. | . . ########### .
. . . . . . . . . .#. . . . .#. . . .
. | . . ########### . /|\
. | . . . . | h
. . | . . . . . . . . . . . . . z . . \|/
. | . . . .
|<-----nw------>| |<--w-->|
---- = the background clip area edge. The painting is done within
to this area. If the background is positioned relative to the
viewport ('fixed') then this is the viewport edge.
.... = the primary tile.
. . = the other tiles.
#### = the dirtyRect. This is the minimum region we want to cover.
A = The anchor point. This is the point at which the tile should
start. Always negative or zero.
x = x0 and y0 in the code. The point at which tiling must start
so that the fewest tiles are laid out while completely
covering the dirtyRect area.
z = x1 and y1 in the code. The point at which tiling must end so
that the fewest tiles are laid out while completely covering
the dirtyRect area.
w = the width of the tile (tileWidth).
h = the height of the tile (tileHeight).
n = the number of whole tiles that fit between 'A' and 'x'.
(the vertical n and the horizontal n are different)
Therefore,
x0 = bgClipArea.x + anchor.x + n * tileWidth;
...where n is an integer greater or equal to 0 fitting:
n * tileWidth <=
dirtyRect.x - (bgClipArea.x + anchor.x) <=
(n+1) * tileWidth
...i.e.,
n <= (dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth < n + 1
...which, treating the division as an integer divide rounding down, gives:
n = (dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth
Substituting into the original expression for x0:
x0 = bgClipArea.x + anchor.x +
((dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth) *
tileWidth;
From this x1 is determined,
x1 = x0 + m * tileWidth;
...where m is an integer greater than 0 fitting:
(m - 1) * tileWidth <
dirtyRect.x + dirtyRect.width - x0 <=
m * tileWidth
...i.e.,
m - 1 < (dirtyRect.x + dirtyRect.width - x0) / tileWidth <= m
...which, treating the division as an integer divide, and making it
round up, gives:
m = (dirtyRect.x + dirtyRect.width - x0 + tileWidth - 1) / tileWidth
Substituting into the original expression for x1:
x1 = x0 + ((dirtyRect.x + dirtyRect.width - x0 + tileWidth - 1) /
tileWidth) * tileWidth
The vertical case is analogous. If the background is fixed, then
bgClipArea.x and bgClipArea.y are set to zero when finding the parent
viewport, above.
*/
// relative to aBorderArea.TopLeft()
nsRect tileRect(anchor, nsSize(tileWidth, tileHeight));
if (repeat & NS_STYLE_BG_REPEAT_X) {
// When tiling in the x direction, adjust the starting position of the
// tile to account for dirtyRect.x. When tiling in x, the anchor.x value
// will be a negative value used to adjust the starting coordinate.
nscoord x0 = FindTileStart(dirtyRect.x - aBorderArea.x, anchor.x, tileWidth);
nscoord x1 = FindTileEnd(dirtyRect.XMost() - aBorderArea.x, anchor.x, tileWidth);
tileRect.x = x0;
tileRect.width = x1 - x0;
}
if (repeat & NS_STYLE_BG_REPEAT_Y) {
// When tiling in the y direction, adjust the starting position of the
// tile to account for dirtyRect.y. When tiling in y, the anchor.y value
// will be a negative value used to adjust the starting coordinate.
nscoord y0 = FindTileStart(dirtyRect.y - aBorderArea.y, anchor.y, tileHeight);
nscoord y1 = FindTileEnd(dirtyRect.YMost() - aBorderArea.y, anchor.y, tileHeight);
tileRect.y = y0;
tileRect.height = y1 - y0;
}
// Take the intersection again to paint only the required area.
nsRect absTileRect = tileRect + aBorderArea.TopLeft();
nsRect drawRect;
if (drawRect.IntersectRect(absTileRect, dirtyRect)) {
// Note that due to the way FindTileStart works we're guaranteed
// that drawRect overlaps the top-left-most tile when repeating.
NS_ASSERTION(drawRect.x >= absTileRect.x && drawRect.y >= absTileRect.y,
"Bogus intersection");
NS_ASSERTION(drawRect.x < absTileRect.x + tileWidth,
"Bogus x coord for draw rect");
NS_ASSERTION(drawRect.y < absTileRect.y + tileHeight,
"Bogus y coord for draw rect");
// Figure out whether we can get away with not tiling at all.
nsRect sourceRect = drawRect - absTileRect.TopLeft();
if (sourceRect.XMost() <= tileWidth && sourceRect.YMost() <= tileHeight) {
// The entire drawRect is contained inside a single tile; just
// draw the corresponding part of the image once.
nsLayoutUtils::DrawImage(&aRenderingContext, image, absTileRect, drawRect);
} else {
aRenderingContext.DrawTile(image, absTileRect.x, absTileRect.y, &drawRect);
}
}
ctx->Restore();
}
void
nsCSSRendering::PaintBackgroundColor(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBgClipArea,
const nsStyleBackground& aColor,
const nsStyleBorder& aBorder,
const nsStylePadding& aPadding,
PRBool aCanPaintNonWhite)
{
// If we're only allowed to paint white, then don't bail out on transparent
// color if we're not completely transparent. See the corresponding check
// for whether we're allowed to paint background images in
// PaintBackgroundWithSC before the first call to PaintBackgroundColor.
if ((aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT) &&
(aCanPaintNonWhite || aColor.IsTransparent())) {
// nothing to paint
return;
}
nsStyleCoord bordStyleRadius[4];
nscoord borderRadii[4];
nsRect bgClipArea(aBgClipArea);
// get the radius for our border
aBorder.mBorderRadius.GetTop(bordStyleRadius[NS_SIDE_TOP]); // topleft
aBorder.mBorderRadius.GetRight(bordStyleRadius[NS_SIDE_RIGHT]); // topright
aBorder.mBorderRadius.GetBottom(bordStyleRadius[NS_SIDE_BOTTOM]); // bottomright
aBorder.mBorderRadius.GetLeft(bordStyleRadius[NS_SIDE_LEFT]); // bottomleft
PRUint8 side = 0;
for (; side < 4; ++side) {
borderRadii[side] = 0;
switch (bordStyleRadius[side].GetUnit()) {
case eStyleUnit_Percent:
borderRadii[side] = nscoord(bordStyleRadius[side].GetPercentValue() *
aForFrame->GetSize().width);
break;
case eStyleUnit_Coord:
borderRadii[side] = bordStyleRadius[side].GetCoordValue();
break;
default:
break;
}
}
// Rounded version of the border
// XXXdwh Composite borders (with multiple colors per side) use their own border radius
// algorithm now, since the current one doesn't work right for small radii.
if (!aBorder.mBorderColors) {
for (side = 0; side < 4; ++side) {
if (borderRadii[side] > 0) {
PaintRoundedBackground(aPresContext, aRenderingContext, aForFrame,
bgClipArea, aColor, aBorder, borderRadii,
aCanPaintNonWhite);
return;
}
}
}
else if (aColor.mBackgroundClip == NS_STYLE_BG_CLIP_BORDER) {
// XXX users of -moz-border-*-colors expect a transparent border-color
// to show the parent's background-color instead of its background-color.
// This seems wrong, but we handle that here by explictly clipping the
// background to the padding area.
nsMargin border = aForFrame->GetUsedBorder();
aForFrame->ApplySkipSides(border);
bgClipArea.Deflate(border);
}
nscolor color;
if (!aCanPaintNonWhite) {
color = NS_RGB(255, 255, 255);
} else {
color = aColor.mBackgroundColor;
}
aRenderingContext.SetColor(color);
aRenderingContext.FillRect(bgClipArea);
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 3/26/99 dwc
*/
void
nsCSSRendering::PaintRoundedBackground(nsPresContext* aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBgClipArea,
const nsStyleBackground& aColor,
const nsStyleBorder& aBorder,
nscoord aTheRadius[4],
PRBool aCanPaintNonWhite)
{
nsRefPtr<gfxContext> ctx = aRenderingContext.ThebesContext();
// needed for our border thickness
nscoord appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
nscolor color = aColor.mBackgroundColor;
if (!aCanPaintNonWhite) {
color = NS_RGB(255, 255, 255);
}
aRenderingContext.SetColor(color);
// Adjust for background-clip, if necessary
if (aColor.mBackgroundClip != NS_STYLE_BG_CLIP_BORDER) {
NS_ASSERTION(aColor.mBackgroundClip == NS_STYLE_BG_CLIP_PADDING, "unknown background-clip value");
// Get the radius to the outer edge of the padding.
// -moz-border-radius is the radius to the outer edge of the border.
NS_FOR_CSS_SIDES(side) {
aTheRadius[side] -= aBorder.GetBorderWidth(side);
aTheRadius[side] = PR_MAX(aTheRadius[side], 0);
}
}
// the bgClipArea is the outside
gfxRect oRect(RectToGfxRect(aBgClipArea, appUnitsPerPixel));
oRect.Round();
oRect.Condition();
if (oRect.IsEmpty())
return;
// convert the radii
gfxFloat radii[4];
nsMargin border = aBorder.GetBorder();
ComputePixelRadii(aTheRadius, aBgClipArea, border,
aForFrame ? aForFrame->GetSkipSides() : 0,
appUnitsPerPixel, radii);
// Add 1.0 to any border radii; if we don't, the border and background
// curves will combine to have fringing at the rounded corners. Since
// alpha is used for coverage, we have problems because the border and
// background should have identical coverage, and the border should
// overlay the background exactly. The way to avoid this is by using
// a supersampling scheme, but we don't have the mechanism in place to do
// this. So, this will do for now.
for (int i = 0; i < 4; i++) {
if (radii[i] > 0.0)
radii[i] += 1.0;
}
ctx->NewPath();
DoRoundedRectCWSubPath(ctx, oRect, radii);
ctx->SetColor(gfxRGBA(color));
ctx->Fill();
}
void FillOrInvertRect(nsIRenderingContext& aRC, nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight, PRBool aInvert)
{
#ifdef GFX_HAS_INVERT
if (aInvert) {
aRC.InvertRect(aX, aY, aWidth, aHeight);
} else {
#endif
aRC.FillRect(aX, aY, aWidth, aHeight);
#ifdef GFX_HAS_INVERT
}
#endif
}
void FillOrInvertRect(nsIRenderingContext& aRC, const nsRect& aRect, PRBool aInvert)
{
#ifdef GFX_HAS_INVERT
if (aInvert) {
aRC.InvertRect(aRect);
} else {
#endif
aRC.FillRect(aRect);
#ifdef GFX_HAS_INVERT
}
#endif
}
// Begin table border-collapsing section
// These functions were written to not disrupt the normal ones and yet satisfy some additional requirements
// At some point, all functions should be unified to include the additional functionality that these provide
static nscoord
RoundIntToPixel(nscoord aValue,
nscoord aTwipsPerPixel,
PRBool aRoundDown = PR_FALSE)
{
if (aTwipsPerPixel <= 0)
// We must be rendering to a device that has a resolution greater than Twips!
// In that case, aValue is as accurate as it's going to get.
return aValue;
nscoord halfPixel = NSToCoordRound(aTwipsPerPixel / 2.0f);
nscoord extra = aValue % aTwipsPerPixel;
nscoord finalValue = (!aRoundDown && (extra >= halfPixel)) ? aValue + (aTwipsPerPixel - extra) : aValue - extra;
return finalValue;
}
static nscoord
RoundFloatToPixel(float aValue,
nscoord aTwipsPerPixel,
PRBool aRoundDown = PR_FALSE)
{
return RoundIntToPixel(NSToCoordRound(aValue), aTwipsPerPixel, aRoundDown);
}
static void
SetPoly(const nsRect& aRect,
nsPoint* poly)
{
poly[0].x = aRect.x;
poly[0].y = aRect.y;
poly[1].x = aRect.x + aRect.width;
poly[1].y = aRect.y;
poly[2].x = aRect.x + aRect.width;
poly[2].y = aRect.y + aRect.height;
poly[3].x = aRect.x;
poly[3].y = aRect.y + aRect.height;
poly[4].x = aRect.x;
poly[4].y = aRect.y;
}
static void
DrawSolidBorderSegment(nsIRenderingContext& aContext,
nsRect aRect,
nscoord aTwipsPerPixel,
PRUint8 aStartBevelSide = 0,
nscoord aStartBevelOffset = 0,
PRUint8 aEndBevelSide = 0,
nscoord aEndBevelOffset = 0)
{
if ((aRect.width == aTwipsPerPixel) || (aRect.height == aTwipsPerPixel) ||
((0 == aStartBevelOffset) && (0 == aEndBevelOffset))) {
// simple line or rectangle
if ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide)) {
if (1 == aRect.height)
aContext.DrawLine(aRect.x, aRect.y, aRect.x, aRect.y + aRect.height);
else
aContext.FillRect(aRect);
}
else {
if (1 == aRect.width)
aContext.DrawLine(aRect.x, aRect.y, aRect.x + aRect.width, aRect.y);
else
aContext.FillRect(aRect);
}
}
else {
// polygon with beveling
nsPoint poly[5];
SetPoly(aRect, poly);
switch(aStartBevelSide) {
case NS_SIDE_TOP:
poly[0].x += aStartBevelOffset;
poly[4].x = poly[0].x;
break;
case NS_SIDE_BOTTOM:
poly[3].x += aStartBevelOffset;
break;
case NS_SIDE_RIGHT:
poly[1].y += aStartBevelOffset;
break;
case NS_SIDE_LEFT:
poly[0].y += aStartBevelOffset;
poly[4].y = poly[0].y;
}
switch(aEndBevelSide) {
case NS_SIDE_TOP:
poly[1].x -= aEndBevelOffset;
break;
case NS_SIDE_BOTTOM:
poly[2].x -= aEndBevelOffset;
break;
case NS_SIDE_RIGHT:
poly[2].y -= aEndBevelOffset;
break;
case NS_SIDE_LEFT:
poly[3].y -= aEndBevelOffset;
}
aContext.FillPolygon(poly, 5);
}
}
static void
GetDashInfo(nscoord aBorderLength,
nscoord aDashLength,
nscoord aTwipsPerPixel,
PRInt32& aNumDashSpaces,
nscoord& aStartDashLength,
nscoord& aEndDashLength)
{
aNumDashSpaces = 0;
if (aStartDashLength + aDashLength + aEndDashLength >= aBorderLength) {
aStartDashLength = aBorderLength;
aEndDashLength = 0;
}
else {
aNumDashSpaces = aBorderLength / (2 * aDashLength); // round down
nscoord extra = aBorderLength - aStartDashLength - aEndDashLength - (((2 * aNumDashSpaces) - 1) * aDashLength);
if (extra > 0) {
nscoord half = RoundIntToPixel(extra / 2, aTwipsPerPixel);
aStartDashLength += half;
aEndDashLength += (extra - half);
}
}
}
void
nsCSSRendering::DrawTableBorderSegment(nsIRenderingContext& aContext,
PRUint8 aBorderStyle,
nscolor aBorderColor,
const nsStyleBackground* aBGColor,
const nsRect& aBorder,
PRInt32 aAppUnitsPerCSSPixel,
PRUint8 aStartBevelSide,
nscoord aStartBevelOffset,
PRUint8 aEndBevelSide,
nscoord aEndBevelOffset)
{
aContext.SetColor (aBorderColor);
PRBool horizontal = ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide));
nscoord twipsPerPixel = NSIntPixelsToAppUnits(1, aAppUnitsPerCSSPixel);
PRUint8 ridgeGroove = NS_STYLE_BORDER_STYLE_RIDGE;
if ((twipsPerPixel >= aBorder.width) || (twipsPerPixel >= aBorder.height) ||
(NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) || (NS_STYLE_BORDER_STYLE_DOTTED == aBorderStyle)) {
// no beveling for 1 pixel border, dash or dot
aStartBevelOffset = 0;
aEndBevelOffset = 0;
}
#ifdef MOZ_CAIRO_GFX
gfxContext *ctx = aContext.ThebesContext();
gfxContext::AntialiasMode oldMode = ctx->CurrentAntialiasMode();
ctx->SetAntialiasMode(gfxContext::MODE_ALIASED);
#endif
switch (aBorderStyle) {
case NS_STYLE_BORDER_STYLE_NONE:
case NS_STYLE_BORDER_STYLE_HIDDEN:
//NS_ASSERTION(PR_FALSE, "style of none or hidden");
break;
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
{
nscoord dashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) ? DASH_LENGTH : DOT_LENGTH;
// make the dash length proportional to the border thickness
dashLength *= (horizontal) ? aBorder.height : aBorder.width;
// make the min dash length for the ends 1/2 the dash length
nscoord minDashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle)
? RoundFloatToPixel(((float)dashLength) / 2.0f, twipsPerPixel) : dashLength;
minDashLength = PR_MAX(minDashLength, twipsPerPixel);
nscoord numDashSpaces = 0;
nscoord startDashLength = minDashLength;
nscoord endDashLength = minDashLength;
if (horizontal) {
GetDashInfo(aBorder.width, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, startDashLength, aBorder.height);
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
for (PRInt32 spaceX = 0; spaceX < numDashSpaces; spaceX++) {
rect.x += rect.width + dashLength;
rect.width = (spaceX == (numDashSpaces - 1)) ? endDashLength : dashLength;
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
}
}
else {
GetDashInfo(aBorder.height, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, aBorder.width, startDashLength);
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
for (PRInt32 spaceY = 0; spaceY < numDashSpaces; spaceY++) {
rect.y += rect.height + dashLength;
rect.height = (spaceY == (numDashSpaces - 1)) ? endDashLength : dashLength;
DrawSolidBorderSegment(aContext, rect, twipsPerPixel);
}
}
}
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
ridgeGroove = NS_STYLE_BORDER_STYLE_GROOVE; // and fall through to ridge
case NS_STYLE_BORDER_STYLE_RIDGE:
if ((horizontal && (twipsPerPixel >= aBorder.height)) ||
(!horizontal && (twipsPerPixel >= aBorder.width))) {
// a one pixel border
DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide, aStartBevelOffset,
aEndBevelSide, aEndBevelOffset);
}
else {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aStartBevelOffset, twipsPerPixel, PR_TRUE) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aEndBevelOffset, twipsPerPixel, PR_TRUE) : 0;
PRUint8 ridgeGrooveSide = (horizontal) ? NS_SIDE_TOP : NS_SIDE_LEFT;
aContext.SetColor (
MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor));
nsRect rect(aBorder);
nscoord half;
if (horizontal) { // top, bottom
half = RoundFloatToPixel(0.5f * (float)aBorder.height, twipsPerPixel);
rect.height = half;
if (NS_SIDE_TOP == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (NS_SIDE_TOP == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else { // left, right
half = RoundFloatToPixel(0.5f * (float)aBorder.width, twipsPerPixel);
rect.width = half;
if (NS_SIDE_LEFT == aStartBevelSide) {
rect.y += startBevel;
rect.height -= startBevel;
}
if (NS_SIDE_LEFT == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
rect = aBorder;
ridgeGrooveSide = (NS_SIDE_TOP == ridgeGrooveSide) ? NS_SIDE_BOTTOM : NS_SIDE_RIGHT;
aContext.SetColor (
MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor));
if (horizontal) {
rect.y = rect.y + half;
rect.height = aBorder.height - half;
if (NS_SIDE_BOTTOM == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (NS_SIDE_BOTTOM == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else {
rect.x = rect.x + half;
rect.width = aBorder.width - half;
if (NS_SIDE_RIGHT == aStartBevelSide) {
rect.y += aStartBevelOffset - startBevel;
rect.height -= startBevel;
}
if (NS_SIDE_RIGHT == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
}
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
if ((aBorder.width > 2) && (aBorder.height > 2)) {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aStartBevelOffset, twipsPerPixel) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aEndBevelOffset, twipsPerPixel) : 0;
if (horizontal) { // top, bottom
nscoord thirdHeight = RoundFloatToPixel(0.333333f * (float)aBorder.height, twipsPerPixel);
// draw the top line or rect
nsRect topRect(aBorder.x, aBorder.y, aBorder.width, thirdHeight);
if (NS_SIDE_TOP == aStartBevelSide) {
topRect.x += aStartBevelOffset - startBevel;
topRect.width -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_TOP == aEndBevelSide) {
topRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, topRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
// draw the botom line or rect
nscoord heightOffset = aBorder.height - thirdHeight;
nsRect bottomRect(aBorder.x, aBorder.y + heightOffset, aBorder.width, aBorder.height - heightOffset);
if (NS_SIDE_BOTTOM == aStartBevelSide) {
bottomRect.x += aStartBevelOffset - startBevel;
bottomRect.width -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_BOTTOM == aEndBevelSide) {
bottomRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, bottomRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
else { // left, right
nscoord thirdWidth = RoundFloatToPixel(0.333333f * (float)aBorder.width, twipsPerPixel);
nsRect leftRect(aBorder.x, aBorder.y, thirdWidth, aBorder.height);
if (NS_SIDE_LEFT == aStartBevelSide) {
leftRect.y += aStartBevelOffset - startBevel;
leftRect.height -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_LEFT == aEndBevelSide) {
leftRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, leftRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
nscoord widthOffset = aBorder.width - thirdWidth;
nsRect rightRect(aBorder.x + widthOffset, aBorder.y, aBorder.width - widthOffset, aBorder.height);
if (NS_SIDE_RIGHT == aStartBevelSide) {
rightRect.y += aStartBevelOffset - startBevel;
rightRect.height -= aStartBevelOffset - startBevel;
}
if (NS_SIDE_RIGHT == aEndBevelSide) {
rightRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aContext, rightRect, twipsPerPixel, aStartBevelSide,
startBevel, aEndBevelSide, endBevel);
}
break;
}
// else fall through to solid
case NS_STYLE_BORDER_STYLE_SOLID:
DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide,
aStartBevelOffset, aEndBevelSide, aEndBevelOffset);
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_INSET:
NS_ASSERTION(PR_FALSE, "inset, outset should have been converted to groove, ridge");
break;
case NS_STYLE_BORDER_STYLE_AUTO:
NS_ASSERTION(PR_FALSE, "Unexpected 'auto' table border");
break;
}
#ifdef MOZ_CAIRO_GFX
ctx->SetAntialiasMode(oldMode);
#endif
}
// End table border-collapsing section
void
nsCSSRendering::PaintDecorationLine(gfxContext* aGfxContext,
const nscolor aColor,
const gfxPoint& aPt,
const gfxSize& aLineSize,
const gfxFloat aAscent,
const gfxFloat aOffset,
const gfxFloat aPreferredHeight,
const PRUint8 aDecoration,
const PRUint8 aStyle,
const PRBool aIsRTL)
{
if (aLineSize.width <= 0 || aLineSize.height <= 0 ||
aStyle == NS_STYLE_BORDER_STYLE_NONE)
return;
if (aDecoration != NS_STYLE_TEXT_DECORATION_UNDERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_OVERLINE &&
aDecoration != NS_STYLE_TEXT_DECORATION_LINE_THROUGH)
{
NS_ERROR("Invalid decoration value!");
return;
}
PRBool contextIsSaved = PR_FALSE;
gfxFloat totalHeight = aLineSize.height;
gfxFloat oldLineWidth;
nsRefPtr<gfxPattern> oldPattern;
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_SOLID:
oldLineWidth = aGfxContext->CurrentLineWidth();
oldPattern = aGfxContext->GetPattern();
break;
case NS_STYLE_BORDER_STYLE_DASHED: {
aGfxContext->Save();
contextIsSaved = PR_TRUE;
gfxFloat dashWidth = aLineSize.height * DOT_LENGTH * DASH_LENGTH;
gfxFloat dash[2] = { dashWidth, dashWidth };
aGfxContext->SetLineCap(gfxContext::LINE_CAP_BUTT);
aGfxContext->SetDash(dash, 2, 0.0);
break;
}
case NS_STYLE_BORDER_STYLE_DOTTED: {
aGfxContext->Save();
contextIsSaved = PR_TRUE;
gfxFloat dashWidth = aLineSize.height * DOT_LENGTH;
gfxFloat dash[2];
if (aLineSize.height > 2.0) {
dash[0] = 0.0;
dash[1] = dashWidth * 2.0;
aGfxContext->SetLineCap(gfxContext::LINE_CAP_ROUND);
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
aGfxContext->SetDash(dash, 2, 0.0);
break;
}
case NS_STYLE_BORDER_STYLE_DOUBLE:
totalHeight *= 3.0;
break;
default:
NS_ERROR("Invalid style value!");
return;
}
gfxFloat offset = aOffset;
switch (aDecoration) {
case NS_STYLE_TEXT_DECORATION_UNDERLINE:
break;
case NS_STYLE_TEXT_DECORATION_OVERLINE:
// The offset includes the preferred size, we should remove it
offset += aPreferredHeight;
// the bottom of the decoration line should be aligned to the top of the
// text.
offset -= totalHeight;
break;
case NS_STYLE_TEXT_DECORATION_LINE_THROUGH: {
// The offset includes the preferred size, we should remove it
offset += aPreferredHeight;
// the middle of the decoration line should be aligned to the middle of
// the original strike out offset.
offset -= PR_MAX(aPreferredHeight, (totalHeight / 2.0));
break;
}
default:
NS_NOTREACHED("Invalid decoration value!");
return;
}
// round to device pixels for suppressing the AA.
gfxFloat x = NS_round(aPt.x);
gfxFloat y = NS_round(aPt.y + aAscent) - NS_round(offset);
gfxFloat width = NS_round(aLineSize.width);
gfxFloat height = NS_round(aLineSize.height);
// The y position should be set to the middle of the line.
y += height / 2;
aGfxContext->SetColor(gfxRGBA(aColor));
aGfxContext->SetLineWidth(height);
switch (aStyle) {
case NS_STYLE_BORDER_STYLE_SOLID:
aGfxContext->NewPath();
aGfxContext->MoveTo(gfxPoint(x, y));
aGfxContext->LineTo(gfxPoint(x + width, y));
aGfxContext->Stroke();
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
aGfxContext->NewPath();
aGfxContext->MoveTo(gfxPoint(x, y));
aGfxContext->LineTo(gfxPoint(x + width, y));
aGfxContext->MoveTo(gfxPoint(x, y + height * 2.0));
aGfxContext->LineTo(gfxPoint(x + width, y + height * 2.0));
aGfxContext->Stroke();
break;
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
aGfxContext->NewPath();
if (aIsRTL) {
aGfxContext->MoveTo(gfxPoint(x + width, y));
aGfxContext->LineTo(gfxPoint(x, y));
} else {
aGfxContext->MoveTo(gfxPoint(x, y));
aGfxContext->LineTo(gfxPoint(x + width, y));
}
aGfxContext->Stroke();
break;
default:
NS_ERROR("Invalid style value!");
break;
}
if (contextIsSaved) {
aGfxContext->Restore();
} else {
aGfxContext->SetPattern(oldPattern);
aGfxContext->SetLineWidth(oldLineWidth);
}
}