gecko-dev/xpcom/ds/nsAtomTable.cpp
Nicholas Nethercote 647b520991 Bug 1201135 - Rename pldhash.{h,cpp} to PLDHashTable.{h,cpp}. r=mccr8.
--HG--
rename : xpcom/glue/pldhash.cpp => xpcom/glue/PLDHashTable.cpp
rename : xpcom/glue/pldhash.h => xpcom/glue/PLDHashTable.h
extra : rebase_source : 06b9d30db96ed78500fd44d9c0b51609103508a3
2015-09-15 20:49:53 -07:00

717 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/unused.h"
#include "nsAtomTable.h"
#include "nsStaticAtom.h"
#include "nsString.h"
#include "nsCRT.h"
#include "PLDHashTable.h"
#include "prenv.h"
#include "nsThreadUtils.h"
#include "nsDataHashtable.h"
#include "nsHashKeys.h"
#include "nsAutoPtr.h"
#include "nsUnicharUtils.h"
using namespace mozilla;
#if defined(__clang__)
# pragma GCC diagnostic ignored "-Wdelete-non-virtual-dtor"
#elif MOZ_IS_GCC
# if MOZ_GCC_VERSION_AT_LEAST(4, 7, 0)
# pragma GCC diagnostic ignored "-Wdelete-non-virtual-dtor"
# endif
#endif
/**
* The shared hash table for atom lookups.
*
* XXX This should be manipulated in a threadsafe way or we should make
* sure it's only manipulated from the main thread. Probably the latter
* is better, since the former would hurt performance.
*/
static PLDHashTable* gAtomTable;
class StaticAtomEntry : public PLDHashEntryHdr
{
public:
typedef const nsAString& KeyType;
typedef const nsAString* KeyTypePointer;
explicit StaticAtomEntry(KeyTypePointer aKey) {}
StaticAtomEntry(const StaticAtomEntry& aOther) : mAtom(aOther.mAtom) {}
~StaticAtomEntry() {}
bool KeyEquals(KeyTypePointer aKey) const
{
return mAtom->Equals(*aKey);
}
static KeyTypePointer KeyToPointer(KeyType aKey) { return &aKey; }
static PLDHashNumber HashKey(KeyTypePointer aKey)
{
return HashString(*aKey);
}
enum { ALLOW_MEMMOVE = true };
// mAtom only points to objects of type PermanentAtomImpl, which are not
// really refcounted. But since these entries live in a global hashtable,
// this reference is essentially owning.
nsIAtom* MOZ_OWNING_REF mAtom;
};
/**
* A hashtable of static atoms that existed at app startup. This hashtable
* helps nsHtml5AtomTable.
*/
typedef nsTHashtable<StaticAtomEntry> StaticAtomTable;
static StaticAtomTable* gStaticAtomTable = nullptr;
/**
* Whether it is still OK to add atoms to gStaticAtomTable.
*/
static bool gStaticAtomTableSealed = false;
//----------------------------------------------------------------------
/**
* Note that AtomImpl objects are sometimes converted into PermanentAtomImpl
* objects using placement new and just overwriting the vtable pointer.
*/
class AtomImpl : public nsIAtom
{
public:
AtomImpl(const nsAString& aString, uint32_t aHash);
// This is currently only used during startup when creating a permanent atom
// from NS_RegisterStaticAtoms
AtomImpl(nsStringBuffer* aData, uint32_t aLength, uint32_t aHash);
protected:
// This is only intended to be used when a normal atom is turned into a
// permanent one.
AtomImpl()
{
// We can't really assert that mString is a valid nsStringBuffer string,
// so do the best we can do and check for some consistencies.
NS_ASSERTION((mLength + 1) * sizeof(char16_t) <=
nsStringBuffer::FromData(mString)->StorageSize() &&
mString[mLength] == 0,
"Not initialized atom");
}
// We don't need a virtual destructor here because PermanentAtomImpl
// deletions aren't handled through Release().
~AtomImpl();
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIATOM
enum { REFCNT_PERMANENT_SENTINEL = UINT32_MAX };
virtual bool IsPermanent();
// We can't use the virtual function in the base class destructor.
bool IsPermanentInDestructor()
{
return mRefCnt == REFCNT_PERMANENT_SENTINEL;
}
// for |#ifdef NS_BUILD_REFCNT_LOGGING| access to reference count
nsrefcnt GetRefCount() { return mRefCnt; }
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf);
};
/**
* A non-refcounted implementation of nsIAtom.
*/
class PermanentAtomImpl final : public AtomImpl
{
public:
PermanentAtomImpl(const nsAString& aString, PLDHashNumber aKeyHash)
: AtomImpl(aString, aKeyHash)
{
}
PermanentAtomImpl(nsStringBuffer* aData, uint32_t aLength,
PLDHashNumber aKeyHash)
: AtomImpl(aData, aLength, aKeyHash)
{
}
PermanentAtomImpl() {}
~PermanentAtomImpl();
virtual bool IsPermanent();
// SizeOfIncludingThis() isn't needed -- the one inherited from AtomImpl is
// good enough, because PermanentAtomImpl doesn't add any new data members.
void* operator new(size_t aSize, AtomImpl* aAtom) CPP_THROW_NEW;
void* operator new(size_t aSize) CPP_THROW_NEW
{
return ::operator new(aSize);
}
private:
NS_IMETHOD_(MozExternalRefCountType) AddRef();
NS_IMETHOD_(MozExternalRefCountType) Release();
};
//----------------------------------------------------------------------
struct AtomTableEntry : public PLDHashEntryHdr
{
// These references are either to non-permanent atoms, in which case they are
// non-owning, or they are to permanent atoms that are not really refcounted.
// The exact lifetime rules are documented in AtomTableClearEntry.
AtomImpl* MOZ_NON_OWNING_REF mAtom;
};
struct AtomTableKey
{
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength, uint32_t aHash)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
, mHash(aHash)
{
MOZ_ASSERT(mHash == HashString(mUTF16String, mLength));
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t aHash)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
, mHash(aHash)
{
mozilla::DebugOnly<bool> err;
MOZ_ASSERT(aHash == HashUTF8AsUTF16(mUTF8String, mLength, &err));
}
AtomTableKey(const char16_t* aUTF16String, uint32_t aLength,
uint32_t* aHashOut)
: mUTF16String(aUTF16String)
, mUTF8String(nullptr)
, mLength(aLength)
{
mHash = HashString(mUTF16String, mLength);
*aHashOut = mHash;
}
AtomTableKey(const char* aUTF8String, uint32_t aLength, uint32_t* aHashOut)
: mUTF16String(nullptr)
, mUTF8String(aUTF8String)
, mLength(aLength)
{
bool err;
mHash = HashUTF8AsUTF16(mUTF8String, mLength, &err);
if (err) {
mUTF8String = nullptr;
mLength = 0;
mHash = 0;
}
*aHashOut = mHash;
}
const char16_t* mUTF16String;
const char* mUTF8String;
uint32_t mLength;
uint32_t mHash;
};
static PLDHashNumber
AtomTableGetHash(PLDHashTable* aTable, const void* aKey)
{
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
return k->mHash;
}
static bool
AtomTableMatchKey(PLDHashTable* aTable, const PLDHashEntryHdr* aEntry,
const void* aKey)
{
const AtomTableEntry* he = static_cast<const AtomTableEntry*>(aEntry);
const AtomTableKey* k = static_cast<const AtomTableKey*>(aKey);
if (k->mUTF8String) {
return
CompareUTF8toUTF16(nsDependentCSubstring(k->mUTF8String,
k->mUTF8String + k->mLength),
nsDependentAtomString(he->mAtom)) == 0;
}
uint32_t length = he->mAtom->GetLength();
if (length != k->mLength) {
return false;
}
return memcmp(he->mAtom->GetUTF16String(),
k->mUTF16String, length * sizeof(char16_t)) == 0;
}
static void
AtomTableClearEntry(PLDHashTable* aTable, PLDHashEntryHdr* aEntry)
{
// Normal |AtomImpl| atoms are deleted when their refcount hits 0, and
// they then remove themselves from the table. In other words, they
// are owned by the callers who own references to them.
// |PermanentAtomImpl| permanent atoms ignore their refcount and are
// deleted when they are removed from the table at table destruction.
// In other words, they are owned by the atom table.
AtomImpl* atom = static_cast<AtomTableEntry*>(aEntry)->mAtom;
if (atom->IsPermanent()) {
// Note that the cast here is important since AtomImpls doesn't have a
// virtual dtor.
delete static_cast<PermanentAtomImpl*>(atom);
}
}
static void
AtomTableInitEntry(PLDHashEntryHdr* aEntry, const void* aKey)
{
static_cast<AtomTableEntry*>(aEntry)->mAtom = nullptr;
}
static const PLDHashTableOps AtomTableOps = {
AtomTableGetHash,
AtomTableMatchKey,
PLDHashTable::MoveEntryStub,
AtomTableClearEntry,
AtomTableInitEntry
};
static inline
void
PromoteToPermanent(AtomImpl* aAtom)
{
#ifdef NS_BUILD_REFCNT_LOGGING
{
nsrefcnt refcount = aAtom->GetRefCount();
do {
NS_LOG_RELEASE(aAtom, --refcount, "AtomImpl");
} while (refcount);
}
#endif
aAtom = new (aAtom) PermanentAtomImpl();
}
void
NS_PurgeAtomTable()
{
delete gStaticAtomTable;
gStaticAtomTable = nullptr;
if (gAtomTable) {
#ifdef DEBUG
const char* dumpAtomLeaks = PR_GetEnv("MOZ_DUMP_ATOM_LEAKS");
if (dumpAtomLeaks && *dumpAtomLeaks) {
uint32_t leaked = 0;
printf("*** %d atoms still exist (including permanent):\n",
gAtomTable->EntryCount());
for (auto iter = gAtomTable->Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<AtomTableEntry*>(iter.Get());
AtomImpl* atom = entry->mAtom;
if (!atom->IsPermanent()) {
leaked++;
nsAutoCString str;
atom->ToUTF8String(str);
fputs(str.get(), stdout);
fputs("\n", stdout);
}
}
printf("*** %u non-permanent atoms leaked\n", leaked);
}
#endif
delete gAtomTable;
gAtomTable = nullptr;
}
}
AtomImpl::AtomImpl(const nsAString& aString, uint32_t aHash)
{
mLength = aString.Length();
nsRefPtr<nsStringBuffer> buf = nsStringBuffer::FromString(aString);
if (buf) {
mString = static_cast<char16_t*>(buf->Data());
} else {
buf = nsStringBuffer::Alloc((mLength + 1) * sizeof(char16_t));
mString = static_cast<char16_t*>(buf->Data());
CopyUnicodeTo(aString, 0, mString, mLength);
mString[mLength] = char16_t(0);
}
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
NS_ASSERTION(mString[mLength] == char16_t(0), "null terminated");
NS_ASSERTION(buf && buf->StorageSize() >= (mLength + 1) * sizeof(char16_t),
"enough storage");
NS_ASSERTION(Equals(aString), "correct data");
// Take ownership of buffer
mozilla::unused << buf.forget();
}
AtomImpl::AtomImpl(nsStringBuffer* aStringBuffer, uint32_t aLength,
uint32_t aHash)
{
mLength = aLength;
mString = static_cast<char16_t*>(aStringBuffer->Data());
// Technically we could currently avoid doing this addref by instead making
// the static atom buffers have an initial refcount of 2.
aStringBuffer->AddRef();
mHash = aHash;
MOZ_ASSERT(mHash == HashString(mString, mLength));
NS_ASSERTION(mString[mLength] == char16_t(0), "null terminated");
NS_ASSERTION(aStringBuffer &&
aStringBuffer->StorageSize() == (mLength + 1) * sizeof(char16_t),
"correct storage");
}
AtomImpl::~AtomImpl()
{
MOZ_ASSERT(gAtomTable, "uninitialized atom hashtable");
// Permanent atoms are removed from the hashtable at shutdown, and we
// don't want to remove them twice. See comment above in
// |AtomTableClearEntry|.
if (!IsPermanentInDestructor()) {
AtomTableKey key(mString, mLength, mHash);
gAtomTable->Remove(&key);
if (gAtomTable->EntryCount() == 0) {
delete gAtomTable;
gAtomTable = nullptr;
}
}
nsStringBuffer::FromData(mString)->Release();
}
NS_IMPL_ISUPPORTS(AtomImpl, nsIAtom)
PermanentAtomImpl::~PermanentAtomImpl()
{
// So we can tell if we were permanent while running the base class dtor.
mRefCnt = REFCNT_PERMANENT_SENTINEL;
}
NS_IMETHODIMP_(MozExternalRefCountType)
PermanentAtomImpl::AddRef()
{
MOZ_ASSERT(NS_IsMainThread(), "wrong thread");
return 2;
}
NS_IMETHODIMP_(MozExternalRefCountType)
PermanentAtomImpl::Release()
{
MOZ_ASSERT(NS_IsMainThread(), "wrong thread");
return 1;
}
/* virtual */ bool
AtomImpl::IsPermanent()
{
return false;
}
/* virtual */ bool
PermanentAtomImpl::IsPermanent()
{
return true;
}
void*
PermanentAtomImpl::operator new(size_t aSize, AtomImpl* aAtom) CPP_THROW_NEW
{
MOZ_ASSERT(!aAtom->IsPermanent(),
"converting atom that's already permanent");
// Just let the constructor overwrite the vtable pointer.
return aAtom;
}
NS_IMETHODIMP
AtomImpl::ScriptableToString(nsAString& aBuf)
{
nsStringBuffer::FromData(mString)->ToString(mLength, aBuf);
return NS_OK;
}
NS_IMETHODIMP
AtomImpl::ToUTF8String(nsACString& aBuf)
{
CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf);
return NS_OK;
}
NS_IMETHODIMP_(bool)
AtomImpl::EqualsUTF8(const nsACString& aString)
{
return CompareUTF8toUTF16(aString,
nsDependentString(mString, mLength)) == 0;
}
NS_IMETHODIMP
AtomImpl::ScriptableEquals(const nsAString& aString, bool* aResult)
{
*aResult = aString.Equals(nsDependentString(mString, mLength));
return NS_OK;
}
NS_IMETHODIMP_(bool)
AtomImpl::IsStaticAtom()
{
return IsPermanent();
}
size_t
AtomImpl::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
size_t n = aMallocSizeOf(this);
// Don't measure static atoms. Nb: here "static" means "permanent", and while
// it's not guaranteed that permanent atoms are actually stored in static
// data, it is very likely. And we don't want to call |aMallocSizeOf| on
// static data, so we err on the side of caution.
if (!IsStaticAtom()) {
n += nsStringBuffer::FromData(mString)->SizeOfIncludingThisIfUnshared(
aMallocSizeOf);
}
return n;
}
//----------------------------------------------------------------------
void
NS_SizeOfAtomTablesIncludingThis(MallocSizeOf aMallocSizeOf,
size_t* aMain, size_t* aStatic)
{
*aMain = 0;
if (gAtomTable) {
*aMain += gAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf);
for (auto iter = gAtomTable->Iter(); !iter.Done(); iter.Next()) {
auto entry = static_cast<AtomTableEntry*>(iter.Get());
*aMain += entry->mAtom->SizeOfIncludingThis(aMallocSizeOf);
}
}
// The atoms in the this table are almost certainly stored in static data, so
// we don't need to measure entries separately.
*aStatic = gStaticAtomTable
? gStaticAtomTable->ShallowSizeOfIncludingThis(aMallocSizeOf)
: 0;
}
#define ATOM_HASHTABLE_INITIAL_LENGTH 2048
static inline void
EnsureTableExists()
{
if (!gAtomTable) {
gAtomTable = new PLDHashTable(&AtomTableOps, sizeof(AtomTableEntry),
ATOM_HASHTABLE_INITIAL_LENGTH);
}
}
static inline AtomTableEntry*
GetAtomHashEntry(const char* aString, uint32_t aLength, uint32_t* aHashOut)
{
MOZ_ASSERT(NS_IsMainThread(), "wrong thread");
EnsureTableExists();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
static inline AtomTableEntry*
GetAtomHashEntry(const char16_t* aString, uint32_t aLength, uint32_t* aHashOut)
{
MOZ_ASSERT(NS_IsMainThread(), "wrong thread");
EnsureTableExists();
AtomTableKey key(aString, aLength, aHashOut);
// This is an infallible add.
return static_cast<AtomTableEntry*>(gAtomTable->Add(&key));
}
class CheckStaticAtomSizes
{
CheckStaticAtomSizes()
{
static_assert((sizeof(nsFakeStringBuffer<1>().mRefCnt) ==
sizeof(nsStringBuffer().mRefCount)) &&
(sizeof(nsFakeStringBuffer<1>().mSize) ==
sizeof(nsStringBuffer().mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mRefCnt) ==
offsetof(nsStringBuffer, mRefCount)) &&
(offsetof(nsFakeStringBuffer<1>, mSize) ==
offsetof(nsStringBuffer, mStorageSize)) &&
(offsetof(nsFakeStringBuffer<1>, mStringData) ==
sizeof(nsStringBuffer)),
"mocked-up strings' representations should be compatible");
}
};
nsresult
RegisterStaticAtoms(const nsStaticAtom* aAtoms, uint32_t aAtomCount)
{
if (!gStaticAtomTable && !gStaticAtomTableSealed) {
gStaticAtomTable = new StaticAtomTable();
}
for (uint32_t i = 0; i < aAtomCount; ++i) {
NS_ASSERTION(nsCRT::IsAscii((char16_t*)aAtoms[i].mStringBuffer->Data()),
"Static atoms must be ASCII!");
uint32_t stringLen =
aAtoms[i].mStringBuffer->StorageSize() / sizeof(char16_t) - 1;
uint32_t hash;
AtomTableEntry* he =
GetAtomHashEntry((char16_t*)aAtoms[i].mStringBuffer->Data(),
stringLen, &hash);
AtomImpl* atom = he->mAtom;
if (atom) {
if (!atom->IsPermanent()) {
// We wanted to create a static atom but there is already a non-static
// atom there. So convert it to a non-refcounting permanent atom.
PromoteToPermanent(atom);
}
} else {
atom = new PermanentAtomImpl(aAtoms[i].mStringBuffer, stringLen, hash);
he->mAtom = atom;
}
*aAtoms[i].mAtom = atom;
if (!gStaticAtomTableSealed) {
StaticAtomEntry* entry =
gStaticAtomTable->PutEntry(nsDependentAtomString(atom));
entry->mAtom = atom;
}
}
return NS_OK;
}
already_AddRefed<nsIAtom>
NS_NewAtom(const char* aUTF8String)
{
return NS_NewAtom(nsDependentCString(aUTF8String));
}
already_AddRefed<nsIAtom>
NS_NewAtom(const nsACString& aUTF8String)
{
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF8String.Data(),
aUTF8String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
// This results in an extra addref/release of the nsStringBuffer.
// Unfortunately there doesn't seem to be any APIs to avoid that.
// Actually, now there is, sort of: ForgetSharedBuffer.
nsString str;
CopyUTF8toUTF16(aUTF8String, str);
nsRefPtr<AtomImpl> atom = new AtomImpl(str, hash);
he->mAtom = atom;
return atom.forget();
}
already_AddRefed<nsIAtom>
NS_NewAtom(const char16_t* aUTF16String)
{
return NS_NewAtom(nsDependentString(aUTF16String));
}
already_AddRefed<nsIAtom>
NS_NewAtom(const nsAString& aUTF16String)
{
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF16String.Data(),
aUTF16String.Length(),
&hash);
if (he->mAtom) {
nsCOMPtr<nsIAtom> atom = he->mAtom;
return atom.forget();
}
nsRefPtr<AtomImpl> atom = new AtomImpl(aUTF16String, hash);
he->mAtom = atom;
return atom.forget();
}
nsIAtom*
NS_NewPermanentAtom(const nsAString& aUTF16String)
{
uint32_t hash;
AtomTableEntry* he = GetAtomHashEntry(aUTF16String.Data(),
aUTF16String.Length(),
&hash);
AtomImpl* atom = he->mAtom;
if (atom) {
if (!atom->IsPermanent()) {
PromoteToPermanent(atom);
}
} else {
atom = new PermanentAtomImpl(aUTF16String, hash);
he->mAtom = atom;
}
// No need to addref since permanent atoms aren't refcounted anyway
return atom;
}
nsrefcnt
NS_GetNumberOfAtoms(void)
{
MOZ_ASSERT(gAtomTable);
return gAtomTable->EntryCount();
}
nsIAtom*
NS_GetStaticAtom(const nsAString& aUTF16String)
{
NS_PRECONDITION(gStaticAtomTable, "Static atom table not created yet.");
NS_PRECONDITION(gStaticAtomTableSealed, "Static atom table not sealed yet.");
StaticAtomEntry* entry = gStaticAtomTable->GetEntry(aUTF16String);
return entry ? entry->mAtom : nullptr;
}
void
NS_SealStaticAtomTable()
{
gStaticAtomTableSealed = true;
}