gecko-dev/js/public/HeapAPI.h
Jon Coppeard 174c5689cc Bug 1652447 - Remove IsAboutToBeFinalizedDuringSweep and replaces uses with IsAboutToBeFinalized r=sfink
I added an overload of IsInsideNursery for TenuredCell that always returns false so that IsAboutToBeFinalizedInternal should optimise out the nursery check for things that are never allocated in the nursery.

Differential Revision: https://phabricator.services.mozilla.com/D83308
2020-07-13 15:05:03 +00:00

733 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_HeapAPI_h
#define js_HeapAPI_h
#include <limits.h>
#include <type_traits>
#include "jspubtd.h"
#include "js/GCAnnotations.h"
#include "js/TraceKind.h"
#include "js/Utility.h"
#ifndef JS_BITS_PER_WORD
# error \
"JS_BITS_PER_WORD must be defined. Did you forget to include js-config.h?"
#endif
struct JSExternalStringCallbacks;
/* These values are private to the JS engine. */
namespace js {
JS_FRIEND_API bool CurrentThreadCanAccessZone(JS::Zone* zone);
namespace gc {
struct Cell;
class TenuredCell;
const size_t ArenaShift = 12;
const size_t ArenaSize = size_t(1) << ArenaShift;
const size_t ArenaMask = ArenaSize - 1;
#ifdef JS_GC_SMALL_CHUNK_SIZE
const size_t ChunkShift = 18;
#else
const size_t ChunkShift = 20;
#endif
const size_t ChunkSize = size_t(1) << ChunkShift;
const size_t ChunkMask = ChunkSize - 1;
const size_t CellAlignShift = 3;
const size_t CellAlignBytes = size_t(1) << CellAlignShift;
const size_t CellAlignMask = CellAlignBytes - 1;
const size_t CellBytesPerMarkBit = CellAlignBytes;
/*
* We sometimes use an index to refer to a cell in an arena. The index for a
* cell is found by dividing by the cell alignment so not all indicies refer to
* valid cells.
*/
const size_t ArenaCellIndexBytes = CellAlignBytes;
const size_t MaxArenaCellIndex = ArenaSize / CellAlignBytes;
/* These are magic constants derived from actual offsets in gc/Heap.h. */
#ifdef JS_GC_SMALL_CHUNK_SIZE
const size_t ChunkMarkBitmapOffset = 258104;
const size_t ChunkMarkBitmapBits = 31744;
#else
const size_t ChunkMarkBitmapOffset = 1032352;
const size_t ChunkMarkBitmapBits = 129024;
#endif
const size_t ChunkRuntimeOffset = ChunkSize - sizeof(void*);
const size_t ChunkTrailerSize = 2 * sizeof(uintptr_t) + sizeof(uint64_t);
const size_t ChunkLocationOffset = ChunkSize - ChunkTrailerSize;
const size_t ChunkStoreBufferOffset =
ChunkSize - ChunkTrailerSize + sizeof(uint64_t);
const size_t ArenaZoneOffset = sizeof(size_t);
const size_t ArenaHeaderSize =
sizeof(size_t) + 2 * sizeof(uintptr_t) + sizeof(size_t) + sizeof(uintptr_t);
// The first word of a GC thing has certain requirements from the GC and is used
// to store flags in the low bits.
const size_t CellFlagBitsReservedForGC = 3;
// The first word can be used to store JSClass pointers for some thing kinds, so
// these must be suitably aligned.
const size_t JSClassAlignBytes = size_t(1) << CellFlagBitsReservedForGC;
/*
* Live objects are marked black or gray. Everything reachable from a JS root is
* marked black. Objects marked gray are eligible for cycle collection.
*
* BlackBit: GrayOrBlackBit: Color:
* 0 0 white
* 0 1 gray
* 1 0 black
* 1 1 black
*/
enum class ColorBit : uint32_t { BlackBit = 0, GrayOrBlackBit = 1 };
/*
* The "location" field in the Chunk trailer is a enum indicating various roles
* of the chunk.
*/
enum class ChunkLocation : uint32_t {
Invalid = 0,
Nursery = 1,
TenuredHeap = 2
};
#ifdef JS_DEBUG
/* When downcasting, ensure we are actually the right type. */
extern JS_FRIEND_API void AssertGCThingHasType(js::gc::Cell* cell,
JS::TraceKind kind);
#else
inline void AssertGCThingHasType(js::gc::Cell* cell, JS::TraceKind kind) {}
#endif
MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::Cell* cell);
} /* namespace gc */
} /* namespace js */
namespace JS {
enum class HeapState {
Idle, // doing nothing with the GC heap
Tracing, // tracing the GC heap without collecting, e.g.
// IterateCompartments()
MajorCollecting, // doing a GC of the major heap
MinorCollecting, // doing a GC of the minor heap (nursery)
CycleCollecting // in the "Unlink" phase of cycle collection
};
JS_PUBLIC_API HeapState RuntimeHeapState();
static inline bool RuntimeHeapIsBusy() {
return RuntimeHeapState() != HeapState::Idle;
}
static inline bool RuntimeHeapIsTracing() {
return RuntimeHeapState() == HeapState::Tracing;
}
static inline bool RuntimeHeapIsMajorCollecting() {
return RuntimeHeapState() == HeapState::MajorCollecting;
}
static inline bool RuntimeHeapIsMinorCollecting() {
return RuntimeHeapState() == HeapState::MinorCollecting;
}
static inline bool RuntimeHeapIsCollecting(HeapState state) {
return state == HeapState::MajorCollecting ||
state == HeapState::MinorCollecting;
}
static inline bool RuntimeHeapIsCollecting() {
return RuntimeHeapIsCollecting(RuntimeHeapState());
}
static inline bool RuntimeHeapIsCycleCollecting() {
return RuntimeHeapState() == HeapState::CycleCollecting;
}
/*
* This list enumerates the different types of conceptual stacks we have in
* SpiderMonkey. In reality, they all share the C stack, but we allow different
* stack limits depending on the type of code running.
*/
enum StackKind {
StackForSystemCode, // C++, such as the GC, running on behalf of the VM.
StackForTrustedScript, // Script running with trusted principals.
StackForUntrustedScript, // Script running with untrusted principals.
StackKindCount
};
/*
* Default maximum size for the generational nursery in bytes. This is the
* initial value. In the browser this configured by the
* javascript.options.mem.nursery.max_kb pref.
*/
const uint32_t DefaultNurseryMaxBytes = 16 * js::gc::ChunkSize;
/* Default maximum heap size in bytes to pass to JS_NewContext(). */
const uint32_t DefaultHeapMaxBytes = 32 * 1024 * 1024;
namespace shadow {
struct Zone {
enum GCState : uint8_t {
NoGC,
MarkBlackOnly,
MarkBlackAndGray,
Sweep,
Finished,
Compact
};
protected:
JSRuntime* const runtime_;
JSTracer* const barrierTracer_; // A pointer to the JSRuntime's |gcMarker|.
uint32_t needsIncrementalBarrier_;
GCState gcState_;
Zone(JSRuntime* runtime, JSTracer* barrierTracerArg)
: runtime_(runtime),
barrierTracer_(barrierTracerArg),
needsIncrementalBarrier_(0),
gcState_(NoGC) {}
public:
bool needsIncrementalBarrier() const { return needsIncrementalBarrier_; }
JSTracer* barrierTracer() {
MOZ_ASSERT(needsIncrementalBarrier_);
MOZ_ASSERT(js::CurrentThreadCanAccessRuntime(runtime_));
return barrierTracer_;
}
JSRuntime* runtimeFromMainThread() const {
MOZ_ASSERT(js::CurrentThreadCanAccessRuntime(runtime_));
return runtime_;
}
// Note: Unrestricted access to the zone's runtime from an arbitrary
// thread can easily lead to races. Use this method very carefully.
JSRuntime* runtimeFromAnyThread() const { return runtime_; }
GCState gcState() const { return gcState_; }
bool wasGCStarted() const { return gcState_ != NoGC; }
bool isGCMarkingBlackOnly() const { return gcState_ == MarkBlackOnly; }
bool isGCMarkingBlackAndGray() const { return gcState_ == MarkBlackAndGray; }
bool isGCSweeping() const { return gcState_ == Sweep; }
bool isGCFinished() const { return gcState_ == Finished; }
bool isGCCompacting() const { return gcState_ == Compact; }
bool isGCMarking() const {
return isGCMarkingBlackOnly() || isGCMarkingBlackAndGray();
}
bool isGCSweepingOrCompacting() const {
return gcState_ == Sweep || gcState_ == Compact;
}
static MOZ_ALWAYS_INLINE JS::shadow::Zone* from(JS::Zone* zone) {
return reinterpret_cast<JS::shadow::Zone*>(zone);
}
};
struct String {
static const uint32_t ATOM_BIT = js::Bit(3);
static const uint32_t LINEAR_BIT = js::Bit(4);
static const uint32_t INLINE_CHARS_BIT = js::Bit(6);
static const uint32_t LATIN1_CHARS_BIT = js::Bit(9);
static const uint32_t EXTERNAL_FLAGS = LINEAR_BIT | js::Bit(8);
static const uint32_t TYPE_FLAGS_MASK = js::BitMask(9) - js::BitMask(3);
static const uint32_t PERMANENT_ATOM_MASK = ATOM_BIT | js::Bit(8);
uintptr_t flags_;
#if JS_BITS_PER_WORD == 32
uint32_t length_;
#endif
union {
const JS::Latin1Char* nonInlineCharsLatin1;
const char16_t* nonInlineCharsTwoByte;
JS::Latin1Char inlineStorageLatin1[1];
char16_t inlineStorageTwoByte[1];
};
const JSExternalStringCallbacks* externalCallbacks;
inline uint32_t flags() const { return uint32_t(flags_); }
inline uint32_t length() const {
#if JS_BITS_PER_WORD == 32
return length_;
#else
return uint32_t(flags_ >> 32);
#endif
}
static bool isPermanentAtom(const js::gc::Cell* cell) {
uint32_t flags = reinterpret_cast<const String*>(cell)->flags();
return (flags & PERMANENT_ATOM_MASK) == PERMANENT_ATOM_MASK;
}
};
struct Symbol {
void* _1;
uint32_t code_;
static const uint32_t WellKnownAPILimit = 0x80000000;
static bool isWellKnownSymbol(const js::gc::Cell* cell) {
return reinterpret_cast<const Symbol*>(cell)->code_ < WellKnownAPILimit;
}
};
} /* namespace shadow */
/**
* A GC pointer, tagged with the trace kind.
*
* In general, a GC pointer should be stored with an exact type. This class
* is for use when that is not possible because a single pointer must point
* to several kinds of GC thing.
*/
class JS_FRIEND_API GCCellPtr {
public:
GCCellPtr() : GCCellPtr(nullptr) {}
// Construction from a void* and trace kind.
GCCellPtr(void* gcthing, JS::TraceKind traceKind)
: ptr(checkedCast(gcthing, traceKind)) {}
// Automatically construct a null GCCellPtr from nullptr.
MOZ_IMPLICIT GCCellPtr(decltype(nullptr))
: ptr(checkedCast(nullptr, JS::TraceKind::Null)) {}
// Construction from an explicit type.
template <typename T>
explicit GCCellPtr(T* p)
: ptr(checkedCast(p, JS::MapTypeToTraceKind<T>::kind)) {}
explicit GCCellPtr(JSFunction* p)
: ptr(checkedCast(p, JS::TraceKind::Object)) {}
explicit GCCellPtr(JSScript* p)
: ptr(checkedCast(p, JS::TraceKind::Script)) {}
explicit GCCellPtr(const Value& v);
JS::TraceKind kind() const {
JS::TraceKind traceKind = JS::TraceKind(ptr & OutOfLineTraceKindMask);
if (uintptr_t(traceKind) != OutOfLineTraceKindMask) {
return traceKind;
}
return outOfLineKind();
}
// Allow GCCellPtr to be used in a boolean context.
explicit operator bool() const {
MOZ_ASSERT(bool(asCell()) == (kind() != JS::TraceKind::Null));
return asCell();
}
// Simplify checks to the kind.
template <typename T, typename = std::enable_if_t<JS::IsBaseTraceType_v<T>>>
bool is() const {
return kind() == JS::MapTypeToTraceKind<T>::kind;
}
// Conversions to more specific types must match the kind. Access to
// further refined types is not allowed directly from a GCCellPtr.
template <typename T, typename = std::enable_if_t<JS::IsBaseTraceType_v<T>>>
T& as() const {
MOZ_ASSERT(kind() == JS::MapTypeToTraceKind<T>::kind);
// We can't use static_cast here, because the fact that JSObject
// inherits from js::gc::Cell is not part of the public API.
return *reinterpret_cast<T*>(asCell());
}
// Return a pointer to the cell this |GCCellPtr| refers to, or |nullptr|.
// (It would be more symmetrical with |to| for this to return a |Cell&|, but
// the result can be |nullptr|, and null references are undefined behavior.)
js::gc::Cell* asCell() const {
return reinterpret_cast<js::gc::Cell*>(ptr & ~OutOfLineTraceKindMask);
}
// The CC's trace logger needs an identity that is XPIDL serializable.
uint64_t unsafeAsInteger() const {
return static_cast<uint64_t>(unsafeAsUIntPtr());
}
// Inline mark bitmap access requires direct pointer arithmetic.
uintptr_t unsafeAsUIntPtr() const {
MOZ_ASSERT(asCell());
MOZ_ASSERT(!js::gc::IsInsideNursery(asCell()));
return reinterpret_cast<uintptr_t>(asCell());
}
MOZ_ALWAYS_INLINE bool mayBeOwnedByOtherRuntime() const {
if (!is<JSString>() && !is<JS::Symbol>()) {
return false;
}
if (is<JSString>()) {
return JS::shadow::String::isPermanentAtom(asCell());
}
MOZ_ASSERT(is<JS::Symbol>());
return JS::shadow::Symbol::isWellKnownSymbol(asCell());
}
private:
static uintptr_t checkedCast(void* p, JS::TraceKind traceKind) {
js::gc::Cell* cell = static_cast<js::gc::Cell*>(p);
MOZ_ASSERT((uintptr_t(p) & OutOfLineTraceKindMask) == 0);
AssertGCThingHasType(cell, traceKind);
// Note: the OutOfLineTraceKindMask bits are set on all out-of-line kinds
// so that we can mask instead of branching.
MOZ_ASSERT_IF(uintptr_t(traceKind) >= OutOfLineTraceKindMask,
(uintptr_t(traceKind) & OutOfLineTraceKindMask) ==
OutOfLineTraceKindMask);
return uintptr_t(p) | (uintptr_t(traceKind) & OutOfLineTraceKindMask);
}
JS::TraceKind outOfLineKind() const;
uintptr_t ptr;
} JS_HAZ_GC_POINTER;
// Unwraps the given GCCellPtr, calls the functor |f| with a template argument
// of the actual type of the pointer, and returns the result.
template <typename F>
auto MapGCThingTyped(GCCellPtr thing, F&& f) {
switch (thing.kind()) {
#define JS_EXPAND_DEF(name, type, _, _1) \
case JS::TraceKind::name: \
return f(&thing.as<type>());
JS_FOR_EACH_TRACEKIND(JS_EXPAND_DEF);
#undef JS_EXPAND_DEF
default:
MOZ_CRASH("Invalid trace kind in MapGCThingTyped for GCCellPtr.");
}
}
// Unwraps the given GCCellPtr and calls the functor |f| with a template
// argument of the actual type of the pointer. Doesn't return anything.
template <typename F>
void ApplyGCThingTyped(GCCellPtr thing, F&& f) {
// This function doesn't do anything but is supplied for symmetry with other
// MapGCThingTyped/ApplyGCThingTyped implementations that have to wrap the
// functor to return a dummy value that is ignored.
MapGCThingTyped(thing, f);
}
} /* namespace JS */
// These are defined in the toplevel namespace instead of within JS so that
// they won't shadow other operator== overloads (see bug 1456512.)
inline bool operator==(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
return ptr1.asCell() == ptr2.asCell();
}
inline bool operator!=(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
return !(ptr1 == ptr2);
}
namespace js {
namespace gc {
namespace detail {
static MOZ_ALWAYS_INLINE uintptr_t* GetGCThingMarkBitmap(const uintptr_t addr) {
// Note: the JIT pre-barrier trampolines inline this code. Update that
// code too when making changes here!
MOZ_ASSERT(addr);
const uintptr_t bmap_addr = (addr & ~ChunkMask) | ChunkMarkBitmapOffset;
return reinterpret_cast<uintptr_t*>(bmap_addr);
}
static MOZ_ALWAYS_INLINE void GetGCThingMarkWordAndMask(const uintptr_t addr,
ColorBit colorBit,
uintptr_t** wordp,
uintptr_t* maskp) {
// Note: the JIT pre-barrier trampolines inline this code. Update that
// code too when making changes here!
MOZ_ASSERT(addr);
const size_t bit = (addr & js::gc::ChunkMask) / js::gc::CellBytesPerMarkBit +
static_cast<uint32_t>(colorBit);
MOZ_ASSERT(bit < js::gc::ChunkMarkBitmapBits);
uintptr_t* bitmap = GetGCThingMarkBitmap(addr);
const uintptr_t nbits = sizeof(*bitmap) * CHAR_BIT;
*maskp = uintptr_t(1) << (bit % nbits);
*wordp = &bitmap[bit / nbits];
}
static MOZ_ALWAYS_INLINE JS::Zone* GetTenuredGCThingZone(const uintptr_t addr) {
MOZ_ASSERT(addr);
const uintptr_t zone_addr = (addr & ~ArenaMask) | ArenaZoneOffset;
return *reinterpret_cast<JS::Zone**>(zone_addr);
}
static MOZ_ALWAYS_INLINE bool TenuredCellIsMarkedGray(const Cell* cell) {
// Return true if GrayOrBlackBit is set and BlackBit is not set.
MOZ_ASSERT(cell);
MOZ_ASSERT(!js::gc::IsInsideNursery(cell));
uintptr_t *grayWord, grayMask;
js::gc::detail::GetGCThingMarkWordAndMask(
uintptr_t(cell), js::gc::ColorBit::GrayOrBlackBit, &grayWord, &grayMask);
if (!(*grayWord & grayMask)) {
return false;
}
uintptr_t *blackWord, blackMask;
js::gc::detail::GetGCThingMarkWordAndMask(
uintptr_t(cell), js::gc::ColorBit::BlackBit, &blackWord, &blackMask);
return !(*blackWord & blackMask);
}
static MOZ_ALWAYS_INLINE bool CellIsMarkedGray(const Cell* cell) {
MOZ_ASSERT(cell);
if (js::gc::IsInsideNursery(cell)) {
return false;
}
return TenuredCellIsMarkedGray(cell);
}
extern JS_PUBLIC_API bool CellIsMarkedGrayIfKnown(const Cell* cell);
#ifdef DEBUG
extern JS_PUBLIC_API void AssertCellIsNotGray(const Cell* cell);
extern JS_PUBLIC_API bool ObjectIsMarkedBlack(const JSObject* obj);
#endif
MOZ_ALWAYS_INLINE ChunkLocation GetCellLocation(const void* cell) {
uintptr_t addr = uintptr_t(cell);
addr &= ~js::gc::ChunkMask;
addr |= js::gc::ChunkLocationOffset;
return *reinterpret_cast<ChunkLocation*>(addr);
}
MOZ_ALWAYS_INLINE bool NurseryCellHasStoreBuffer(const void* cell) {
uintptr_t addr = uintptr_t(cell);
addr &= ~js::gc::ChunkMask;
addr |= js::gc::ChunkStoreBufferOffset;
return *reinterpret_cast<void**>(addr) != nullptr;
}
} /* namespace detail */
MOZ_ALWAYS_INLINE bool IsInsideNursery(const Cell* cell) {
if (!cell) {
return false;
}
auto location = detail::GetCellLocation(cell);
MOZ_ASSERT(location == ChunkLocation::Nursery ||
location == ChunkLocation::TenuredHeap);
return location == ChunkLocation::Nursery;
}
MOZ_ALWAYS_INLINE bool IsInsideNursery(const TenuredCell* cell) {
MOZ_ASSERT_IF(cell,
detail::GetCellLocation(cell) == ChunkLocation::TenuredHeap);
return false;
}
// Allow use before the compiler knows the derivation of JSObject, JSString, and
// JS::BigInt.
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSObject* obj) {
return IsInsideNursery(reinterpret_cast<const Cell*>(obj));
}
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSString* str) {
return IsInsideNursery(reinterpret_cast<const Cell*>(str));
}
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JS::BigInt* bi) {
return IsInsideNursery(reinterpret_cast<const Cell*>(bi));
}
MOZ_ALWAYS_INLINE bool IsCellPointerValid(const void* cell) {
auto addr = uintptr_t(cell);
if (addr < ChunkSize || addr % CellAlignBytes != 0) {
return false;
}
auto location = detail::GetCellLocation(cell);
if (location == ChunkLocation::TenuredHeap) {
return !!detail::GetTenuredGCThingZone(addr);
}
if (location == ChunkLocation::Nursery) {
return detail::NurseryCellHasStoreBuffer(cell);
}
return false;
}
MOZ_ALWAYS_INLINE bool IsCellPointerValidOrNull(const void* cell) {
if (!cell) {
return true;
}
return IsCellPointerValid(cell);
}
} /* namespace gc */
} /* namespace js */
namespace JS {
static MOZ_ALWAYS_INLINE Zone* GetTenuredGCThingZone(GCCellPtr thing) {
MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell()));
return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr());
}
extern JS_PUBLIC_API Zone* GetNurseryCellZone(js::gc::Cell* cell);
static MOZ_ALWAYS_INLINE Zone* GetGCThingZone(GCCellPtr thing) {
if (!js::gc::IsInsideNursery(thing.asCell())) {
return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr());
}
return GetNurseryCellZone(thing.asCell());
}
static MOZ_ALWAYS_INLINE Zone* GetStringZone(JSString* str) {
if (!js::gc::IsInsideNursery(str)) {
return js::gc::detail::GetTenuredGCThingZone(
reinterpret_cast<uintptr_t>(str));
}
return GetNurseryCellZone(reinterpret_cast<js::gc::Cell*>(str));
}
extern JS_PUBLIC_API Zone* GetObjectZone(JSObject* obj);
static MOZ_ALWAYS_INLINE bool GCThingIsMarkedGray(GCCellPtr thing) {
if (thing.mayBeOwnedByOtherRuntime()) {
return false;
}
return js::gc::detail::CellIsMarkedGrayIfKnown(thing.asCell());
}
extern JS_PUBLIC_API JS::TraceKind GCThingTraceKind(void* thing);
extern JS_PUBLIC_API void EnableNurseryStrings(JSContext* cx);
extern JS_PUBLIC_API void DisableNurseryStrings(JSContext* cx);
extern JS_PUBLIC_API void EnableNurseryBigInts(JSContext* cx);
extern JS_PUBLIC_API void DisableNurseryBigInts(JSContext* cx);
/*
* Returns true when writes to GC thing pointers (and reads from weak pointers)
* must call an incremental barrier. This is generally only true when running
* mutator code in-between GC slices. At other times, the barrier may be elided
* for performance.
*/
extern JS_PUBLIC_API bool IsIncrementalBarrierNeeded(JSContext* cx);
/*
* Notify the GC that a reference to a JSObject is about to be overwritten.
* This method must be called if IsIncrementalBarrierNeeded.
*/
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(JSObject* obj);
/*
* Notify the GC that a reference to a tenured GC cell is about to be
* overwritten. This method must be called if IsIncrementalBarrierNeeded.
*/
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(GCCellPtr thing);
/**
* Unsets the gray bit for anything reachable from |thing|. |kind| should not be
* JS::TraceKind::Shape. |thing| should be non-null. The return value indicates
* if anything was unmarked.
*/
extern JS_FRIEND_API bool UnmarkGrayGCThingRecursively(GCCellPtr thing);
} // namespace JS
namespace js {
namespace gc {
extern JS_PUBLIC_API void PerformIncrementalReadBarrier(JS::GCCellPtr thing);
static MOZ_ALWAYS_INLINE bool IsIncrementalBarrierNeededOnTenuredGCThing(
const JS::GCCellPtr thing) {
MOZ_ASSERT(thing);
MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell()));
// TODO: I'd like to assert !RuntimeHeapIsBusy() here but this gets
// called while we are tracing the heap, e.g. during memory reporting
// (see bug 1313318).
MOZ_ASSERT(!JS::RuntimeHeapIsCollecting());
JS::Zone* zone = JS::GetTenuredGCThingZone(thing);
return JS::shadow::Zone::from(zone)->needsIncrementalBarrier();
}
static MOZ_ALWAYS_INLINE void ExposeGCThingToActiveJS(JS::GCCellPtr thing) {
// GC things residing in the nursery cannot be gray: they have no mark bits.
// All live objects in the nursery are moved to tenured at the beginning of
// each GC slice, so the gray marker never sees nursery things.
if (IsInsideNursery(thing.asCell())) {
return;
}
// There's nothing to do for permanent GC things that might be owned by
// another runtime.
if (thing.mayBeOwnedByOtherRuntime()) {
return;
}
if (IsIncrementalBarrierNeededOnTenuredGCThing(thing)) {
PerformIncrementalReadBarrier(thing);
} else if (detail::TenuredCellIsMarkedGray(thing.asCell())) {
JS::UnmarkGrayGCThingRecursively(thing);
}
MOZ_ASSERT(!detail::TenuredCellIsMarkedGray(thing.asCell()));
}
template <typename T>
extern JS_PUBLIC_API bool EdgeNeedsSweepUnbarrieredSlow(T* thingp);
static MOZ_ALWAYS_INLINE bool EdgeNeedsSweepUnbarriered(JSObject** objp) {
// This function does not handle updating nursery pointers. Raw JSObject
// pointers should be updated separately or replaced with
// JS::Heap<JSObject*> which handles this automatically.
MOZ_ASSERT(!JS::RuntimeHeapIsMinorCollecting());
if (IsInsideNursery(*objp)) {
return false;
}
auto zone =
JS::shadow::Zone::from(detail::GetTenuredGCThingZone(uintptr_t(*objp)));
if (!zone->isGCSweepingOrCompacting()) {
return false;
}
return EdgeNeedsSweepUnbarrieredSlow(objp);
}
} // namespace gc
} // namespace js
namespace JS {
/*
* This should be called when an object that is marked gray is exposed to the JS
* engine (by handing it to running JS code or writing it into live JS
* data). During incremental GC, since the gray bits haven't been computed yet,
* we conservatively mark the object black.
*/
static MOZ_ALWAYS_INLINE void ExposeObjectToActiveJS(JSObject* obj) {
MOZ_ASSERT(obj);
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&obj));
js::gc::ExposeGCThingToActiveJS(GCCellPtr(obj));
}
} /* namespace JS */
#endif /* js_HeapAPI_h */