gecko-dev/js/js2/interpreter.cpp
rogerl%netscape.com 60221db240 Optional and rest parameters.
Named arguments (just begun).
2000-09-02 01:01:04 +00:00

1470 lines
56 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is the JavaScript 2 Prototype.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU Public License (the "GPL"), in which case the
* provisions of the GPL are applicable instead of those above.
* If you wish to allow use of your version of this file only
* under the terms of the GPL and not to allow others to use your
* version of this file under the NPL, indicate your decision by
* deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete
* the provisions above, a recipient may use your version of this
* file under either the NPL or the GPL.
*/
#include "interpreter.h"
#include "jsclasses.h"
#include "world.h"
#include "parser.h"
#include "jsmath.h"
#include <assert.h>
namespace JavaScript {
namespace Interpreter {
// operand access macros.
#define op1(i) (i->o1())
#define op2(i) (i->o2())
#define op3(i) (i->o3())
#define op4(i) (i->o4())
// mnemonic names for operands.
#define dst(i) op1(i)
#define src1(i) op2(i)
#define src2(i) op3(i)
#define ofs(i) (i->getOffset())
#define val2(i) op2(i)
#define val3(i) op3(i)
#define val4(i) op4(i)
using namespace ICG;
using namespace JSTypes;
using namespace JSClasses;
using namespace JSMathClass;
// These classes are private to the JS interpreter.
/**
*
*/
struct Handler: public gc_base {
Handler(Label *catchLabel, Label *finallyLabel)
: catchTarget(catchLabel), finallyTarget(finallyLabel) {}
Label *catchTarget;
Label *finallyTarget;
};
typedef std::vector<Handler *> CatchStack;
/**
* Represents the current function's invocation state.
*/
struct Activation : public gc_base {
JSValues mRegisters;
ICodeModule* mICode;
CatchStack catchStack;
Activation(ICodeModule* iCode, const JSValues& args)
: mRegisters(iCode->itsMaxRegister + 1), mICode(iCode)
{
// copy arg list to initial registers.
JSValues::iterator dest = mRegisters.begin();
for (JSValues::const_iterator src = args.begin(),
end = args.end(); src != end; ++src, ++dest) {
*dest = *src;
}
}
Activation(ICodeModule* iCode, Activation* caller, const JSValue thisArg,
const ArgumentList& list)
: mRegisters(iCode->itsMaxRegister + 1), mICode(iCode)
{
// copy caller's parameter list to initial registers.
JSValues::iterator dest = mRegisters.begin();
*dest++ = thisArg;
const JSValues& params = caller->mRegisters;
for (ArgumentList::const_iterator src = list.begin(),
end = list.end(); src != end; ++src, ++dest) {
*dest = params[(*src).first.first];
}
}
Activation(ICodeModule* iCode, const JSValue arg1, const JSValue arg2)
: mRegisters(iCode->itsMaxRegister + 1), mICode(iCode)
{
mRegisters[0] = arg1;
mRegisters[1] = arg2;
}
};
/**
* exception-safe class to save off values.
*/
template <typename T>
class autosaver {
T& mRef;
T mOld;
public:
autosaver(T& ref, T val = T()) : mRef(ref), mOld(ref) { ref = val; }
~autosaver() { mRef = mOld; }
};
ICodeModule* Context::compileFunction(const String &source)
{
Arena a;
String filename = widenCString("Some source source");
Parser p(getWorld(), a, source, filename);
ExprNode* e = p.parseExpression(false);
ICodeGenerator icg(&getWorld(), getGlobalObject());
ASSERT(e->getKind() == ExprNode::functionLiteral);
FunctionExprNode* f = static_cast<FunctionExprNode*>(e);
icg.allocateParameter(getWorld().identifiers["this"]); // always parameter #0
VariableBinding* v = f->function.parameters;
while (v) {
if (v->name && (v->name->getKind() == ExprNode::identifier))
icg.allocateParameter((static_cast<IdentifierExprNode*>(v->name))->name);
v = v->next;
}
icg.genStmt(f->function.body);
ICodeModule* result = icg.complete();
result->setFileName(filename);
return result;
}
JSValue Context::readEvalFile(FILE* in, const String& fileName)
{
String buffer;
string line;
LineReader inReader(in);
JSValues emptyArgs;
JSValue result;
// save off important member variables, to enable recursive call to interpret.
// this is a little stinky, but should be exception-safe.
autosaver<Activation*> activation(mActivation, 0);
autosaver<Linkage*> linkage(mLinkage, 0);
autosaver<InstructionIterator> pc(mPC);
while (inReader.readLine(line) != 0) {
appendChars(buffer, line.data(), line.size());
try {
Arena a;
Parser p(getWorld(), a, buffer, fileName);
StmtNode *parsedStatements = p.parseProgram();
ASSERT(p.lexer.peek(true).hasKind(Token::end));
{
PrettyPrinter f(stdOut, 30);
{
PrettyPrinter::Block b(f, 2);
f << "Program =";
f.linearBreak(1);
StmtNode::printStatements(f, parsedStatements);
}
f.end();
}
stdOut << '\n';
// Generate code for parsedStatements, which is a linked
// list of zero or more statements
ICodeModule* icm = genCode(parsedStatements, fileName);
if (icm) {
result = interpret(icm, emptyArgs);
delete icm;
}
clear(buffer);
} catch (Exception &e) {
/* If we got a syntax error on the end of input,
* then wait for a continuation
* of input rather than printing the error message. */
if (!(e.hasKind(Exception::syntaxError) &&
e.lineNum && e.pos == buffer.size() &&
e.sourceFile == fileName)) {
stdOut << '\n' << e.fullMessage();
clear(buffer);
}
}
}
return result;
}
ICodeModule* Context::genCode(StmtNode *p, const String &fileName)
{
ICodeGenerator icg(&getWorld(), getGlobalObject());
TypedRegister ret(NotARegister, &None_Type);
while (p) {
ret = icg.genStmt(p);
p = p->next;
}
icg.returnStmt(ret);
ICodeModule *icm = icg.complete();
icm->setFileName (fileName);
return icm;
}
JSValues& Context::getRegisters() { return mActivation->mRegisters; }
ICodeModule* Context::getICode() { return mActivation->mICode; }
/**
* Stores saved state from the *previous* activation, the current
* activation is alive and well in locals of the interpreter loop.
*/
struct Linkage : public Context::Frame, public gc_base {
Linkage* mNext; // next linkage in linkage stack.
InstructionIterator mReturnPC;
Activation* mActivation; // caller's activation.
JSScope* mScope;
TypedRegister mResult; // the desired target register for the return value
Linkage(Linkage* linkage, InstructionIterator returnPC,
Activation* activation, JSScope* scope, TypedRegister result)
: mNext(linkage), mReturnPC(returnPC),
mActivation(activation), mScope(scope), mResult(result)
{
}
Context::Frame* getNext() { return mNext; }
void getState(InstructionIterator& pc, JSValues*& registers, ICodeModule*& iCode)
{
pc = mReturnPC;
registers = &mActivation->mRegisters;
iCode = mActivation->mICode;
}
};
static JSValue shiftLeft_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toInt32());
JSValue num2(r2.toUInt32());
return JSValue(num1.i32 << (num2.u32 & 0x1F));
}
static JSValue shiftRight_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toInt32());
JSValue num2(r2.toUInt32());
return JSValue(num1.i32 >> (num2.u32 & 0x1F));
}
static JSValue UshiftRight_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toUInt32());
JSValue num2(r2.toUInt32());
return JSValue(num1.u32 >> (num2.u32 & 0x1F));
}
static JSValue and_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
return JSValue(num1.i32 & num2.i32);
}
static JSValue or_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
return JSValue(num1.i32 | num2.i32);
}
static JSValue xor_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
return JSValue(num1.i32 ^ num2.i32);
}
static JSValue add_Default(const JSValue& r1, const JSValue& r2)
{
//
// could also handle these as separate entries in the override table for add
// by specifying add(String, Any), add(Any, String), add(String, String)
//
if (r1.isString() || r2.isString()) {
JSString& str1 = *r1.toString().string;
JSString& str2 = *r2.toString().string;
return JSValue(new JSString(str1 + str2));
}
else {
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(num1.f64 + num2.f64);
}
}
/*
static JSValue add_String1(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(num1.f64 + num2.f64);
}
*/
static JSValue subtract_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(num1.f64 - num2.f64);
}
static JSValue multiply_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(num1.f64 * num2.f64);
}
static JSValue divide_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(num1.f64 / num2.f64);
}
static JSValue remainder_Default(const JSValue& r1, const JSValue& r2)
{
JSValue num1(r1.toNumber());
JSValue num2(r2.toNumber());
return JSValue(fmod(num1.f64, num2.f64));
}
static JSValue less_Default(const JSValue& r1, const JSValue& r2)
{
JSValue lv = r1.toPrimitive(JSValue::Number);
JSValue rv = r2.toPrimitive(JSValue::Number);
if (lv.isString() && rv.isString()) {
return JSValue(bool(lv.string->compare(*rv.string) < 0));
}
else {
lv = lv.toNumber();
rv = rv.toNumber();
if (lv.isNaN() || rv.isNaN())
return JSValue();
else
return JSValue(lv.f64 < rv.f64);
}
}
static JSValue lessOrEqual_Default(const JSValue& r1, const JSValue& r2)
{
JSValue lv = r1.toPrimitive(JSValue::Number);
JSValue rv = r2.toPrimitive(JSValue::Number);
if (lv.isString() && rv.isString()) {
return JSValue(bool(lv.string->compare(*rv.string) <= 0));
}
else {
lv = lv.toNumber();
rv = rv.toNumber();
if (lv.isNaN() || rv.isNaN())
return JSValue();
else
return JSValue(lv.f64 <= rv.f64);
}
}
static JSValue equal_Default(const JSValue& r1, const JSValue& r2)
{
JSValue lv = r1.toPrimitive(JSValue::Number);
JSValue rv = r2.toPrimitive(JSValue::Number);
if (lv.isString() && rv.isString()) {
return JSValue(bool(lv.string->compare(*rv.string) == 0));
}
else {
lv = lv.toNumber();
rv = rv.toNumber();
if (lv.isNaN() || rv.isNaN())
return JSValue();
else
return JSValue(lv.f64 == rv.f64);
}
}
static JSValue identical_Default(const JSValue& r1, const JSValue& r2)
{
if (r1.getType() != r2.getType())
return kFalseValue;
if (r1.isUndefined() )
return kTrueValue;
if (r1.isNull())
return kTrueValue;
if (r1.isNumber()) {
if (r1.isNaN())
return kFalseValue;
if (r2.isNaN())
return kFalseValue;
return JSValue(r1.f64 == r2.f64);
}
else {
if (r1.isString())
return JSValue(bool(r1.string->compare(*r2.string) == 0));
if (r1.isBoolean())
return JSValue(bool(r1.boolean == r2.boolean));
if (r1.isObject())
return JSValue(bool(r1.object == r2.object));
return kFalseValue;
}
}
static JSValue defineAdd(Context *cx, const JSValues& argv)
{
// should be three args, first two are types, third is a function.
ASSERT(argv[0].isType());
ASSERT(argv[1].isType());
ASSERT(argv[2].isFunction());
// XXX need to prove that argv[2].function takes T1 and T2 as args and returns Boolean for the relational operators ?
cx->addBinaryOperator(BinaryOperator::Add, new BinaryOperator(argv[0].type, argv[1].type, argv[2].function));
return kUndefinedValue;
}
#define DEFINE_OBO(NAME) \
static JSValue define##NAME(Context *cx, const JSValues& argv) \
{ \
ASSERT(argv[0].isType()); \
ASSERT(argv[1].isType()); \
ASSERT(argv[2].isFunction()); \
cx->addBinaryOperator(BinaryOperator::##NAME, \
new BinaryOperator(argv[0].type, argv[1].type, argv[2].function)); \
return kUndefinedValue; \
} \
DEFINE_OBO(Subtract)
DEFINE_OBO(Multiply)
DEFINE_OBO(Divide)
DEFINE_OBO(Remainder)
DEFINE_OBO(LeftShift)
DEFINE_OBO(RightShift)
DEFINE_OBO(LogicalRightShift)
DEFINE_OBO(BitwiseOr)
DEFINE_OBO(BitwiseXor)
DEFINE_OBO(BitwiseAnd)
DEFINE_OBO(Less)
DEFINE_OBO(LessOrEqual)
DEFINE_OBO(Equal)
DEFINE_OBO(Identical)
void Context::initOperatorsPackage()
{
// hack - the following should be available only after importing the 'Operators' package
// (hmm, how will that work - the import needs to connect the functions into this mechanism
// do we watch for the specific package name???)
struct OBO {
char *name;
JSNativeFunction::JSCode fun;
} OBOs[] = {
{ "defineAdd", defineAdd },
{ "defineSubtract", defineSubtract },
{ "defineMultiply", defineMultiply },
{ "defineDivide", defineDivide },
{ "defineRemainder", defineRemainder },
{ "defineLeftShift", defineLeftShift },
{ "defineRightShift", defineRightShift },
{ "defineLogicalRightShift",defineLogicalRightShift },
{ "defineBitwiseOr", defineBitwiseOr },
{ "defineBitwiseXor", defineBitwiseXor },
{ "defineBitwiseAnd", defineBitwiseAnd },
{ "defineLess", defineLess },
{ "defineLessOrEqual", defineLessOrEqual },
{ "defineEqual", defineEqual },
{ "defineIdentical", defineIdentical },
};
for (int i = 0; i < sizeof(OBOs) / sizeof(struct OBO); i++)
mGlobal->defineNativeFunction(mWorld.identifiers[widenCString(OBOs[i].name)], OBOs[i].fun);
mHasOperatorsPackageLoaded = true;
}
void Context::initContext()
{
// if global has a parent, assume it's been initialized already.
if (mGlobal->getParent())
return;
// predefine the umm, predefined types;
struct PDT {
char *name;
JSType *type;
} PDTs[] = {
{ "any", &Any_Type },
{ "Integer", &Integer_Type },
{ "Number", &Number_Type },
{ "Character", &Character_Type },
{ "String", &String_Type },
{ "Function", &Function_Type },
{ "Array", &Array_Type },
{ "Type", &Type_Type },
{ "Boolean", &Boolean_Type },
{ "Null", &Null_Type },
{ "Void", &Void_Type },
{ "none", &None_Type }
};
for (int i = 0; i < sizeof(PDTs) / sizeof(struct PDT); i++)
mGlobal->defineVariable(widenCString(PDTs[i].name), &Type_Type, JSValue(PDTs[i].type));
// set up the correct [[Class]] for the global object (matching SpiderMonkey)
mGlobal->setClass(new JSString("global"));
// add (XXX some) of the global object properties
mGlobal->setProperty(widenCString("NaN"), kNaNValue);
mGlobal->setProperty(widenCString("undefined"), kUndefinedValue);
// 'Object', 'Date', 'RegExp', 'Array' etc are all (constructor) properties of the global object
// Some of these overlap with the predefined types above. The way we handle this is to set a
// 'constructor' function for types. When new <typename> is encountered, the type is queried for
// a 'constructor' function to be invoked.
JSObject::initObjectObject(mGlobal);
JSFunction::initFunctionObject(mGlobal);
JSBoolean::initBooleanObject(mGlobal);
// the 'Math' object just has some useful properties
JSMath::initMathObject(mGlobal);
// This initializes the state of the binary operator overload mechanism.
// One could argue that it is unneccessary to do this until the 'Operators'
// package is loaded and that all (un-typed) binary operators should use a
// form of icode that performed the inline operation instead.
JSBinaryOperator::JSBinaryCode defaultFunction[] = {
add_Default,
subtract_Default,
multiply_Default,
divide_Default,
remainder_Default,
shiftLeft_Default,
shiftRight_Default,
UshiftRight_Default,
or_Default,
xor_Default,
and_Default,
less_Default,
lessOrEqual_Default,
equal_Default,
identical_Default
};
for (BinaryOperator::BinaryOp b = BinaryOperator::BinaryOperatorFirst;
b < BinaryOperator::BinaryOperatorCount;
b = (BinaryOperator::BinaryOp)(b + 1) )
addBinaryOperator(b, new BinaryOperator(&Any_Type, &Any_Type, new JSBinaryOperator(defaultFunction[b])));
}
const JSValue Context::findBinaryOverride(JSValue &operand1, JSValue &operand2, BinaryOperator::BinaryOp op)
{
int32 bestDist1 = JSType::NoRelation;
int32 bestDist2 = JSType::NoRelation;
BinaryOperatorList::iterator candidate = NULL;
for (BinaryOperatorList::iterator i = mBinaryOperators[op].begin();
i != mBinaryOperators[op].end(); i++)
{
int32 dist1 = operand1.getType()->distance((*i)->t1);
int32 dist2 = operand2.getType()->distance((*i)->t2);
if ((dist1 < bestDist1) && (dist2 < bestDist2)) {
bestDist1 = dist1;
bestDist2 = dist2;
candidate = i;
}
}
ASSERT(candidate);
return JSValue((*candidate)->function);
}
bool Context::hasNamedArguments(ArgumentList &args)
{
Argument* e = args.end();
for (ArgumentList::iterator r = args.begin(); r != e; r++) {
if ((*r).second) return true;
}
return false;
}
JSValue Context::interpret(ICodeModule* iCode, const JSValues& args)
{
assert(mActivation == 0); /* recursion == bad */
JSValue rv;
// when invoked with empty args, make sure that 'this' is
// going to be the global object.
mActivation = new Activation(iCode, args);
JSValues* registers = &mActivation->mRegisters;
if (args.size() == 0) (*registers)[0] = mGlobal;
mPC = mActivation->mICode->its_iCode->begin();
InstructionIterator endPC = mActivation->mICode->its_iCode->end();
// stack of all catch/finally handlers available for the current activation
// to implement jsr/rts for finally code
std::stack<InstructionIterator> subroutineStack;
while (true) {
try {
// tell any listeners about the current execution state.
// XXX should only do this if we're single stepping/tracing.
if (mListeners.size())
broadcast(EV_STEP);
assert(mPC != endPC);
Instruction* instruction = *mPC;
switch (instruction->op()) {
case CAST:
{
Cast* c = static_cast<Cast*>(instruction);
JSType *toType = op3(c);
(*registers)[dst(c).first] = (*registers)[src1(c).first].convert(toType);
}
break;
case SUPER:
{
Super* su = static_cast<Super*>(instruction);
ASSERT((*registers)[0].isObject()); // should be scope of current class
JSScope *s = static_cast<JSScope *>((*registers)[0].object->getPrototype());
(*registers)[dst(su).first] = s;
}
break;
case GET_METHOD:
{
GetMethod* gm = static_cast<GetMethod*>(instruction);
JSValue base = (*registers)[src1(gm).first];
ASSERT(base.isObject()); // XXX runtime error
JSClass *theClass = dynamic_cast<JSClass*>(base.object->getType());
ASSERT(theClass);
(*registers)[dst(gm).first] = theClass->getMethod(src2(gm));
}
break;
case CALL:
{
Call* call = static_cast<Call*>(instruction);
JSValue v = (*registers)[op2(call).first];
JSFunction *target = NULL;
if (v.isFunction())
target = v.function;
else
if (v.isObject()) {
JSType *t = dynamic_cast<JSType*>(v.object);
if (t)
target = t->getInvokor();
}
if (!target)
throw new JSException("Call to non callable object");
if (target->isNative()) {
ArgumentList &params = op4(call);
JSValues argv(params.size() + 1);
argv[0] = (*registers)[op3(call).first];
JSValues::size_type i = 1;
for (ArgumentList::const_iterator src = params.begin(), end = params.end();
src != end; ++src, ++i) {
argv[i] = (*registers)[src->first.first];
}
JSValue result = static_cast<JSNativeFunction*>(target)->mCode(this, argv);
if (op1(call).first != NotARegister)
(*registers)[op1(call).first] = result;
break;
}
else {
ICodeModule *icm = target->getICode();
ArgumentList &args = op4(call);
ArgumentList newArgs(args.size());
uint32 argCount = args.size() + 1; // the 'this' arg is travelling separately
if (hasNamedArguments(args)) {
// find argument names that match parameter names
for (uint32 a = 0; a < args.size(); a++) {
if (args[a].second) {
VariableList::iterator i = icm->itsVariables->find(*(args[a].second));
if (i != icm->itsVariables->end()) {
TypedRegister r = (*i).second;
if (r.first < icm->mParameterCount) { // make sure we didn't match a local var
// the named argument is arriving in slot a, but needs to be r instead
newArgs[r.first - 1] = Argument(args[a].first, NULL);
}
}
}
}
args = newArgs;
}
uint32 pOffset = icm->mEntryPoint;
if (argCount < icm->mNonOptionalParameterCount)
throw new JSException("Too few arguments in call");
if (argCount >= icm->mParameterCount) {
if (icm->mHasRestParameter) {
if (icm->mHasNamedRestParameter) {
uint32 restArgsCount = argCount - icm->mParameterCount + 1;
uint32 restArgsStart = icm->mParameterCount - 2; // 1 for 'this', 1 for 0-based
JSArray *r = new JSArray(restArgsCount);
for (uint32 i = 0; i < restArgsCount; i++)
(*r)[i] = (*registers)[args[i + restArgsStart].first.first];
(*registers)[args[restArgsStart].first.first] = r;
}
// else, we just ignore the other arguments
}
else {
if (argCount > icm->mParameterCount)
throw new JSException("Too many arguments in call");
}
}
else {
if (argCount < icm->mParameterCount)
pOffset = icm->mParameterInit[argCount - icm->mNonOptionalParameterCount];
}
mLinkage = new Linkage(mLinkage, ++mPC, mActivation, mGlobal, op1(call));
mActivation = new Activation(icm, mActivation, (*registers)[op3(call).first], args);
registers = &mActivation->mRegisters;
mPC = mActivation->mICode->its_iCode->begin() + pOffset;
endPC = mActivation->mICode->its_iCode->end();
continue;
}
}
case DIRECT_CALL:
{
DirectCall* call = static_cast<DirectCall*>(instruction);
JSFunction *target = op2(call);
if (target->isNative()) {
ArgumentList &params = op3(call);
JSValues argv(params.size() + 1);
JSValues::size_type i = 1;
for (ArgumentList::const_iterator src = params.begin(), end = params.end();
src != end; ++src, ++i) {
argv[i] = (*registers)[src->first.first];
}
JSValue result = static_cast<JSNativeFunction*>(target)->mCode(this, argv);
if (op1(call).first != NotARegister)
(*registers)[op1(call).first] = result;
break;
}
else {
mLinkage = new Linkage(mLinkage, ++mPC,
mActivation, mGlobal, op1(call));
mActivation = new Activation(target->getICode(), mActivation, kNullValue, op3(call));
registers = &mActivation->mRegisters;
mPC = mActivation->mICode->its_iCode->begin();
endPC = mActivation->mICode->its_iCode->end();
continue;
}
}
case RETURN_VOID:
{
Linkage *linkage = mLinkage;
if (!linkage)
{
// let the garbage collector free activations.
mActivation = 0;
return kUndefinedValue;
}
mLinkage = linkage->mNext;
mActivation = linkage->mActivation;
mGlobal = linkage->mScope;
registers = &mActivation->mRegisters;
if (linkage->mResult.first != NotARegister)
(*registers)[linkage->mResult.first] = kUndefinedValue;
mPC = linkage->mReturnPC;
endPC = mActivation->mICode->its_iCode->end();
}
continue;
case RETURN:
{
Return* ret = static_cast<Return*>(instruction);
JSValue result;
if (op1(ret).first != NotARegister)
result = (*registers)[op1(ret).first];
Linkage* linkage = mLinkage;
if (!linkage)
{
// let the garbage collector free activations.
mActivation = 0;
return result;
}
mLinkage = linkage->mNext;
mActivation = linkage->mActivation;
mGlobal = linkage->mScope;
registers = &mActivation->mRegisters;
if (linkage->mResult.first != NotARegister)
(*registers)[linkage->mResult.first] = result;
mPC = linkage->mReturnPC;
endPC = mActivation->mICode->its_iCode->end();
}
continue;
case MOVE:
{
Move* mov = static_cast<Move*>(instruction);
(*registers)[dst(mov).first] = (*registers)[src1(mov).first];
}
break;
case LOAD_NAME:
{
LoadName* ln = static_cast<LoadName*>(instruction);
(*registers)[dst(ln).first] = mGlobal->getVariable(*src1(ln));
}
break;
case SAVE_NAME:
{
SaveName* sn = static_cast<SaveName*>(instruction);
mGlobal->setVariable(*dst(sn), (*registers)[src1(sn).first]);
}
break;
case NEW_OBJECT:
{
NewObject* no = static_cast<NewObject*>(instruction);
if (src1(no).first != NotARegister)
(*registers)[dst(no).first] = new JSObject((*registers)[src1(no).first]);
else
(*registers)[dst(no).first] = new JSObject();
}
break;
case NEW_CLASS:
{
NewClass* nc = static_cast<NewClass*>(instruction);
JSClass* thisClass = src1(nc);
JSInstance* thisInstance = new(thisClass) JSInstance(thisClass);
(*registers)[dst(nc).first] = thisInstance;
}
break;
case NEW_FUNCTION:
{
NewFunction* nf = static_cast<NewFunction*>(instruction);
(*registers)[dst(nf).first] = new JSFunction(src1(nf), src2(nf));
}
break;
case NEW_ARRAY:
{
NewArray* na = static_cast<NewArray*>(instruction);
(*registers)[dst(na).first] = new JSArray();
}
break;
case DELETE_PROP:
{
DeleteProp* dp = static_cast<DeleteProp*>(instruction);
JSValue& value = (*registers)[src1(dp).first];
if (value.isObject() && !value.isType()) {
(*registers)[dst(dp).first] = value.object->deleteProperty(*src2(dp));
}
}
break;
case GET_PROP:
{
GetProp* gp = static_cast<GetProp*>(instruction);
JSValue& value = (*registers)[src1(gp).first];
if (value.isObject()) {
if (value.isType()) {
// REVISIT: should signal error if slot doesn't exist.
JSClass* thisClass = dynamic_cast<JSClass*>(value.type);
if (thisClass && thisClass->hasStatic(*src2(gp))) {
const JSSlot& slot = thisClass->getStatic(*src2(gp));
(*registers)[dst(gp).first] = (*thisClass)[slot.mIndex];
}
else
(*registers)[dst(gp).first] = value.object->getProperty(*src2(gp));
} else {
(*registers)[dst(gp).first] = value.object->getProperty(*src2(gp));
}
}
// XXX runtime error
}
break;
case SET_PROP:
{
SetProp* sp = static_cast<SetProp*>(instruction);
JSValue& value = (*registers)[dst(sp).first];
if (value.isObject()) {
if (value.isType()) {
// REVISIT: should signal error if slot doesn't exist.
JSClass* thisClass = dynamic_cast<JSClass*>(value.object);
if (thisClass && thisClass->hasStatic(*src1(sp))) {
const JSSlot& slot = thisClass->getStatic(*src1(sp));
(*thisClass)[slot.mIndex] = (*registers)[src2(sp).first];
}
else
value.object->setProperty(*src1(sp), (*registers)[src2(sp).first]);
} else {
value.object->setProperty(*src1(sp), (*registers)[src2(sp).first]);
}
}
}
break;
case GET_STATIC:
{
GetStatic* gs = static_cast<GetStatic*>(instruction);
JSClass* c = src1(gs);
(*registers)[dst(gs).first] = (*c)[src2(gs)];
}
break;
case SET_STATIC:
{
SetStatic* ss = static_cast<SetStatic*>(instruction);
JSClass* c = dst(ss);
(*c)[src1(ss)] = (*registers)[src2(ss).first];
}
break;
/*
In 1.5, there is no 'array' type really, the index operation
turns into a get_property call like this, only we need to be
using JSString throughout.
case GET_ELEMENT:
{
GetElement* ge = static_cast<GetElement*>(instruction);
JSValue& base = (*registers)[src1(ge)];
JSValue index = (*registers)[src2(ge)].toString();
if (base.tag == JSValue::object_tag) {
JSObject* object = base.object;
(*registers)[dst(ge)] = object->getProperty(*index.string);
}
}
break;
*/
case GET_ELEMENT:
{
GetElement* ge = static_cast<GetElement*>(instruction);
JSValue& value = (*registers)[src1(ge).first];
if (value.tag == JSValue::array_tag) {
JSArray* array = value.array;
(*registers)[dst(ge).first] = (*array)[(*registers)[src2(ge).first]];
}
}
break;
case SET_ELEMENT:
{
SetElement* se = static_cast<SetElement*>(instruction);
JSValue& value = (*registers)[dst(se).first];
if (value.tag == JSValue::array_tag) {
JSArray* array = value.array;
(*array)[(*registers)[src1(se).first]] = (*registers)[src2(se).first];
}
}
break;
case GET_SLOT:
{
GetSlot* gs = static_cast<GetSlot*>(instruction);
JSValue& value = (*registers)[src1(gs).first];
if (value.isObject()) {
JSInstance* inst = static_cast<JSInstance *>(value.object);
(*registers)[dst(gs).first] = (*inst)[src2(gs)];
}
// XXX runtime error
}
break;
case SET_SLOT:
{
SetSlot* ss = static_cast<SetSlot*>(instruction);
JSValue& value = (*registers)[dst(ss).first];
if (value.isObject()) {
JSInstance* inst = static_cast<JSInstance *>(value.object);
(*inst)[src1(ss)] = (*registers)[src2(ss).first];
}
}
break;
case LOAD_IMMEDIATE:
{
LoadImmediate* li = static_cast<LoadImmediate*>(instruction);
(*registers)[dst(li).first] = src1(li);
}
break;
case LOAD_STRING:
{
LoadString* ls = static_cast<LoadString*>(instruction);
(*registers)[dst(ls).first] = src1(ls);
}
break;
case LOAD_BOOLEAN:
{
LoadBoolean* lb = static_cast<LoadBoolean*>(instruction);
(*registers)[dst(lb).first] = src1(lb);
}
break;
case BRANCH:
{
GenericBranch* bra =
static_cast<GenericBranch*>(instruction);
mPC = mActivation->mICode->its_iCode->begin() + ofs(bra);
continue;
}
break;
case BRANCH_TRUE:
{
GenericBranch* bc =
static_cast<GenericBranch*>(instruction);
ASSERT((*registers)[src1(bc).first].isBoolean());
if ((*registers)[src1(bc).first].boolean) {
mPC = mActivation->mICode->its_iCode->begin() + ofs(bc);
continue;
}
}
break;
case BRANCH_FALSE:
{
GenericBranch* bc =
static_cast<GenericBranch*>(instruction);
ASSERT((*registers)[src1(bc).first].isBoolean());
if (!(*registers)[src1(bc).first].boolean) {
mPC = mActivation->mICode->its_iCode->begin() + ofs(bc);
continue;
}
}
break;
case GENERIC_BINARY_OP:
{
GenericBinaryOP* gbo = static_cast<GenericBinaryOP*>(instruction);
JSValue& dest = (*registers)[dst(gbo).first];
JSValue& r1 = (*registers)[val3(gbo).first];
JSValue& r2 = (*registers)[val4(gbo).first];
const JSValue ovr = findBinaryOverride(r1, r2, val2(gbo));
JSFunction *target = ovr.function;
if (target->isNative()) {
JSValues argv(2);
argv[0] = r1;
argv[1] = r2;
dest = static_cast<JSBinaryOperator*>(target)->mCode(r1, r2);
break;
}
else {
mLinkage = new Linkage(mLinkage, ++mPC,
mActivation, mGlobal, dst(gbo));
mActivation = new Activation(target->getICode(), r1, r2);
registers = &mActivation->mRegisters;
mPC = mActivation->mICode->its_iCode->begin();
endPC = mActivation->mICode->its_iCode->end();
continue;
}
}
break;
case SHIFTLEFT:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toInt32());
JSValue num2(r2.toUInt32());
dest = JSValue(num1.i32 << (num2.u32 & 0x1F));
}
break;
case SHIFTRIGHT:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toInt32());
JSValue num2(r2.toUInt32());
dest = JSValue(num1.i32 >> (num2.u32 & 0x1F));
}
break;
case USHIFTRIGHT:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toUInt32());
JSValue num2(r2.toUInt32());
dest = JSValue(num1.u32 >> (num2.u32 & 0x1F));
}
break;
case AND:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
dest = JSValue(num1.i32 & num2.i32);
}
break;
case OR:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
dest = JSValue(num1.i32 | num2.i32);
}
break;
case XOR:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
JSValue num1(r1.toInt32());
JSValue num2(r2.toInt32());
dest = JSValue(num1.i32 ^ num2.i32);
}
break;
case ADD:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
dest = JSValue(r1.f64 + r2.f64);
}
break;
case SUBTRACT:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
dest = JSValue(r1.f64 - r2.f64);
}
break;
case MULTIPLY:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
dest = JSValue(r1.f64 * r2.f64);
}
break;
case DIVIDE:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
dest = JSValue(r1.f64 / r2.f64);
}
break;
case REMAINDER:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
dest = JSValue(fmod(r1.f64, r2.f64));
}
break;
case COMPARE_LT:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
if (r1.isNaN() || r2.isNaN())
dest = JSValue();
else
dest = JSValue(r1.f64 < r2.f64);
}
break;
case COMPARE_LE:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
if (r1.isNaN() || r2.isNaN())
dest = JSValue();
else
dest = JSValue(r1.f64 <= r2.f64);
}
break;
case COMPARE_EQ:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
if (r1.isNaN() || r2.isNaN())
dest = JSValue();
else
dest = JSValue(r1.f64 == r2.f64);
}
break;
case STRICT_EQ:
{
Arithmetic* a = static_cast<Arithmetic*>(instruction);
JSValue& dest = (*registers)[dst(a).first];
JSValue& r1 = (*registers)[src1(a).first];
JSValue& r2 = (*registers)[src2(a).first];
ASSERT(r1.isNumber());
ASSERT(r2.isNumber());
if (r1.isNaN() || r2.isNaN())
dest = kFalseValue;
else
dest = JSValue(r1.f64 == r2.f64);
}
break;
case VAR_XCR:
{
VarXcr *vx = static_cast<VarXcr*>(instruction);
JSValue& dest = (*registers)[dst(vx).first];
JSValue r = (*registers)[src1(vx).first].toNumber();
dest = r;
r.f64 += val3(vx);
(*registers)[src1(vx).first] = r;
}
break;
case PROP_XCR:
{
PropXcr *px = static_cast<PropXcr*>(instruction);
JSValue& dest = (*registers)[dst(px).first];
JSValue& base = (*registers)[src1(px).first];
JSObject *object = base.object;
JSValue r = object->getProperty(*src2(px)).toNumber();
dest = r;
r.f64 += val4(px);
object->setProperty(*src2(px), r);
}
break;
case SLOT_XCR:
{
SlotXcr *sx = static_cast<SlotXcr*>(instruction);
JSValue& dest = (*registers)[dst(sx).first];
JSValue& base = (*registers)[src1(sx).first];
JSInstance *inst = static_cast<JSInstance*>(base.object);
JSValue r = (*inst)[src2(sx)].toNumber();
dest = r;
r.f64 += val4(sx);
(*inst)[src2(sx)] = r;
}
break;
case STATIC_XCR:
{
StaticXcr *sx = static_cast<StaticXcr*>(instruction);
JSValue& dest = (*registers)[dst(sx).first];
JSClass* thisClass = src1(sx);
JSValue r = (*thisClass)[src2(sx)].toNumber();
dest = r;
r.f64 += val4(sx);
(*thisClass)[src2(sx)] = r;
}
break;
case NAME_XCR:
{
NameXcr *nx = static_cast<NameXcr*>(instruction);
JSValue& dest = (*registers)[dst(nx).first];
JSValue r = mGlobal->getVariable(*src1(nx)).toNumber();
dest = r;
r.f64 += val3(nx);
mGlobal->setVariable(*src1(nx), r);
}
break;
case TEST:
{
Test* tst = static_cast<Test*>(instruction);
(*registers)[dst(tst).first] = (*registers)[src1(tst).first].toBoolean();
}
break;
case NEGATE:
{
Negate* neg = static_cast<Negate*>(instruction);
(*registers)[dst(neg).first] = -(*registers)[src1(neg).first].toNumber().f64;
}
break;
case POSATE:
{
Posate* pos = static_cast<Posate*>(instruction);
(*registers)[dst(pos).first] = (*registers)[src1(pos).first].toNumber();
}
break;
case BITNOT:
{
Bitnot* bn = static_cast<Bitnot*>(instruction);
(*registers)[dst(bn).first] = ~(*registers)[src1(bn).first].toInt32().i32;
}
break;
case NOT:
{
Not* nt = static_cast<Not*>(instruction);
ASSERT((*registers)[src1(nt).first].isBoolean());
(*registers)[dst(nt).first] = !(*registers)[src1(nt).first].boolean;
}
break;
case THROW:
{
Throw* thrw = static_cast<Throw*>(instruction);
throw new JSException((*registers)[op1(thrw).first]);
}
case TRYIN:
{ // push the catch handler address onto the try stack
Tryin* tri = static_cast<Tryin*>(instruction);
mActivation->catchStack.push_back(new Handler(op1(tri),
op2(tri)));
}
break;
case TRYOUT:
{
Handler *h = mActivation->catchStack.back();
mActivation->catchStack.pop_back();
delete h;
}
break;
case JSR:
{
subroutineStack.push(++mPC);
Jsr* jsr = static_cast<Jsr*>(instruction);
uint32 offset = ofs(jsr);
mPC = mActivation->mICode->its_iCode->begin() + offset;
continue;
}
case RTS:
{
ASSERT(!subroutineStack.empty());
mPC = subroutineStack.top();
subroutineStack.pop();
continue;
}
case WITHIN:
{
Within* within = static_cast<Within*>(instruction);
JSValue& value = (*registers)[op1(within).first];
assert(value.tag == JSValue::object_tag);
mGlobal = new JSScope(mGlobal, value.object);
}
break;
case WITHOUT:
{
// Without* without = static_cast<Without*>(instruction);
mGlobal = mGlobal->getParent();
}
break;
case DEBUGGER:
{
if (mListeners.size())
broadcast(EV_DEBUG);
break;
}
default:
NOT_REACHED("bad opcode");
break;
}
// increment the program counter.
++mPC;
}
catch (JSException *x) {
if (mLinkage) {
if (mActivation->catchStack.empty()) {
Linkage *pLinkage = mLinkage;
for (; pLinkage != NULL; pLinkage = pLinkage->mNext) {
if (!pLinkage->mActivation->catchStack.empty()) {
mActivation = pLinkage->mActivation;
Handler *h = mActivation->catchStack.back();
registers = &mActivation->mRegisters;
if (h->catchTarget) {
mPC = mActivation->mICode->its_iCode->begin() + h->catchTarget->mOffset;
}
else {
ASSERT(h->finallyTarget);
mPC = mActivation->mICode->its_iCode->begin() + h->finallyTarget->mOffset;
}
mLinkage = pLinkage;
break;
}
}
if (pLinkage)
continue;
}
else {
Handler *h = mActivation->catchStack.back();
if (h->catchTarget) {
mPC = mActivation->mICode->its_iCode->begin() + h->catchTarget->mOffset;
}
else {
ASSERT(h->finallyTarget);
mPC = mActivation->mICode->its_iCode->begin() + h->finallyTarget->mOffset;
}
continue;
}
}
rv = x->value;
break;
}
}
mActivation = 0;
return rv;
} /* interpret */
void Context::addListener(Listener* listener)
{
mListeners.push_back(listener);
}
void Context::removeListener(Listener* listener)
{
ListenerIterator e = mListeners.end();
ListenerIterator l = std::find(mListeners.begin(), e, listener);
if (l != e) mListeners.erase(l);
}
void Context::broadcast(Event event)
{
for (ListenerIterator i = mListeners.begin(), e = mListeners.end();
i != e; ++i) {
Listener* listener = *i;
listener->listen(this, event);
}
}
Context::Frame* Context::getFrames()
{
return mLinkage;
}
} /* namespace Interpreter */
} /* namespace JavaScript */