gecko-dev/js/public/RootingAPI.h
Wes Kocher 8c8c620553 Backed out 8 changesets (bug 1028418) for assertions in SavedStacks.cpp:103 CLOSED TREE
Backed out changeset 8f20146ce3c8 (bug 1028418)
Backed out changeset f6e78ff75f4b (bug 1028418)
Backed out changeset caf840e71590 (bug 1028418)
Backed out changeset ba47cb00a938 (bug 1028418)
Backed out changeset 3f298220d712 (bug 1028418)
Backed out changeset 7c2555a6e32e (bug 1028418)
Backed out changeset ed9287cd152a (bug 1028418)
Backed out changeset 88a5c0415403 (bug 1028418)
2015-07-27 17:52:01 -07:00

1153 lines
37 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_RootingAPI_h
#define js_RootingAPI_h
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/GuardObjects.h"
#include "mozilla/LinkedList.h"
#include "mozilla/Move.h"
#include "mozilla/TypeTraits.h"
#include "jspubtd.h"
#include "js/GCAPI.h"
#include "js/HeapAPI.h"
#include "js/TypeDecls.h"
#include "js/Utility.h"
/*
* Moving GC Stack Rooting
*
* A moving GC may change the physical location of GC allocated things, even
* when they are rooted, updating all pointers to the thing to refer to its new
* location. The GC must therefore know about all live pointers to a thing,
* not just one of them, in order to behave correctly.
*
* The |Rooted| and |Handle| classes below are used to root stack locations
* whose value may be held live across a call that can trigger GC. For a
* code fragment such as:
*
* JSObject* obj = NewObject(cx);
* DoSomething(cx);
* ... = obj->lastProperty();
*
* If |DoSomething()| can trigger a GC, the stack location of |obj| must be
* rooted to ensure that the GC does not move the JSObject referred to by
* |obj| without updating |obj|'s location itself. This rooting must happen
* regardless of whether there are other roots which ensure that the object
* itself will not be collected.
*
* If |DoSomething()| cannot trigger a GC, and the same holds for all other
* calls made between |obj|'s definitions and its last uses, then no rooting
* is required.
*
* SpiderMonkey can trigger a GC at almost any time and in ways that are not
* always clear. For example, the following innocuous-looking actions can
* cause a GC: allocation of any new GC thing; JSObject::hasProperty;
* JS_ReportError and friends; and ToNumber, among many others. The following
* dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_,
* rt->malloc_, and friends and JS_ReportOutOfMemory.
*
* The following family of three classes will exactly root a stack location.
* Incorrect usage of these classes will result in a compile error in almost
* all cases. Therefore, it is very hard to be incorrectly rooted if you use
* these classes exclusively. These classes are all templated on the type T of
* the value being rooted.
*
* - Rooted<T> declares a variable of type T, whose value is always rooted.
* Rooted<T> may be automatically coerced to a Handle<T>, below. Rooted<T>
* should be used whenever a local variable's value may be held live across a
* call which can trigger a GC.
*
* - Handle<T> is a const reference to a Rooted<T>. Functions which take GC
* things or values as arguments and need to root those arguments should
* generally use handles for those arguments and avoid any explicit rooting.
* This has two benefits. First, when several such functions call each other
* then redundant rooting of multiple copies of the GC thing can be avoided.
* Second, if the caller does not pass a rooted value a compile error will be
* generated, which is quicker and easier to fix than when relying on a
* separate rooting analysis.
*
* - MutableHandle<T> is a non-const reference to Rooted<T>. It is used in the
* same way as Handle<T> and includes a |set(const T& v)| method to allow
* updating the value of the referenced Rooted<T>. A MutableHandle<T> can be
* created with an implicit cast from a Rooted<T>*.
*
* In some cases the small performance overhead of exact rooting (measured to
* be a few nanoseconds on desktop) is too much. In these cases, try the
* following:
*
* - Move all Rooted<T> above inner loops: this allows you to re-use the root
* on each iteration of the loop.
*
* - Pass Handle<T> through your hot call stack to avoid re-rooting costs at
* every invocation.
*
* The following diagram explains the list of supported, implicit type
* conversions between classes of this family:
*
* Rooted<T> ----> Handle<T>
* | ^
* | |
* | |
* +---> MutableHandle<T>
* (via &)
*
* All of these types have an implicit conversion to raw pointers.
*/
namespace js {
template <typename T>
struct GCMethods {
static T initial() { return T(); }
};
template <typename T>
class RootedBase {};
template <typename T>
class HandleBase {};
template <typename T>
class MutableHandleBase {};
template <typename T>
class HeapBase {};
template <typename T>
class PersistentRootedBase {};
static void* const ConstNullValue = nullptr;
namespace gc {
struct Cell;
template<typename T>
struct PersistentRootedMarker;
} /* namespace gc */
#define DECLARE_POINTER_COMPARISON_OPS(T) \
bool operator==(const T& other) const { return get() == other; } \
bool operator!=(const T& other) const { return get() != other; }
// Important: Return a reference so passing a Rooted<T>, etc. to
// something that takes a |const T&| is not a GC hazard.
#define DECLARE_POINTER_CONSTREF_OPS(T) \
operator const T&() const { return get(); } \
const T& operator->() const { return get(); }
// Assignment operators on a base class are hidden by the implicitly defined
// operator= on the derived class. Thus, define the operator= directly on the
// class as we would need to manually pass it through anyway.
#define DECLARE_POINTER_ASSIGN_OPS(Wrapper, T) \
Wrapper<T>& operator=(const T& p) { \
set(p); \
return *this; \
} \
Wrapper<T>& operator=(const Wrapper<T>& other) { \
set(other.get()); \
return *this; \
} \
#define DELETE_ASSIGNMENT_OPS(Wrapper, T) \
template <typename S> Wrapper<T>& operator=(S) = delete; \
Wrapper<T>& operator=(const Wrapper<T>&) = delete;
#define DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr) \
const T* address() const { return &(ptr); } \
const T& get() const { return (ptr); } \
#define DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr) \
T* address() { return &(ptr); } \
T& get() { return (ptr); } \
} /* namespace js */
namespace JS {
template <typename T> class Rooted;
template <typename T> class PersistentRooted;
/* This is exposing internal state of the GC for inlining purposes. */
JS_FRIEND_API(bool) isGCEnabled();
JS_FRIEND_API(void) HeapObjectPostBarrier(JSObject** objp, JSObject* prev, JSObject* next);
#ifdef JS_DEBUG
/*
* For generational GC, assert that an object is in the tenured generation as
* opposed to being in the nursery.
*/
extern JS_FRIEND_API(void)
AssertGCThingMustBeTenured(JSObject* obj);
extern JS_FRIEND_API(void)
AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell);
#else
inline void
AssertGCThingMustBeTenured(JSObject* obj) {}
inline void
AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell) {}
#endif
/*
* The Heap<T> class is a heap-stored reference to a JS GC thing. All members of
* heap classes that refer to GC things should use Heap<T> (or possibly
* TenuredHeap<T>, described below).
*
* Heap<T> is an abstraction that hides some of the complexity required to
* maintain GC invariants for the contained reference. It uses operator
* overloading to provide a normal pointer interface, but notifies the GC every
* time the value it contains is updated. This is necessary for generational GC,
* which keeps track of all pointers into the nursery.
*
* Heap<T> instances must be traced when their containing object is traced to
* keep the pointed-to GC thing alive.
*
* Heap<T> objects should only be used on the heap. GC references stored on the
* C/C++ stack must use Rooted/Handle/MutableHandle instead.
*
* Type T must be one of: JS::Value, jsid, JSObject*, JSString*, JSScript*
*/
template <typename T>
class Heap : public js::HeapBase<T>
{
public:
Heap() {
static_assert(sizeof(T) == sizeof(Heap<T>),
"Heap<T> must be binary compatible with T.");
init(js::GCMethods<T>::initial());
}
explicit Heap(T p) { init(p); }
/*
* For Heap, move semantics are equivalent to copy semantics. In C++, a
* copy constructor taking const-ref is the way to get a single function
* that will be used for both lvalue and rvalue copies, so we can simply
* omit the rvalue variant.
*/
explicit Heap(const Heap<T>& p) { init(p.ptr); }
~Heap() {
post(ptr, js::GCMethods<T>::initial());
}
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_POINTER_ASSIGN_OPS(Heap, T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
T* unsafeGet() { return &ptr; }
/*
* Set the pointer to a value which will cause a crash if it is
* dereferenced.
*/
void setToCrashOnTouch() {
ptr = reinterpret_cast<T>(crashOnTouchPointer);
}
bool isSetToCrashOnTouch() {
return ptr == crashOnTouchPointer;
}
private:
void init(T newPtr) {
ptr = newPtr;
post(js::GCMethods<T>::initial(), ptr);
}
void set(T newPtr) {
T tmp = ptr;
ptr = newPtr;
post(tmp, ptr);
}
void post(const T& prev, const T& next) {
js::GCMethods<T>::postBarrier(&ptr, prev, next);
}
enum {
crashOnTouchPointer = 1
};
T ptr;
};
/*
* The TenuredHeap<T> class is similar to the Heap<T> class above in that it
* encapsulates the GC concerns of an on-heap reference to a JS object. However,
* it has two important differences:
*
* 1) Pointers which are statically known to only reference "tenured" objects
* can avoid the extra overhead of SpiderMonkey's write barriers.
*
* 2) Objects in the "tenured" heap have stronger alignment restrictions than
* those in the "nursery", so it is possible to store flags in the lower
* bits of pointers known to be tenured. TenuredHeap wraps a normal tagged
* pointer with a nice API for accessing the flag bits and adds various
* assertions to ensure that it is not mis-used.
*
* GC things are said to be "tenured" when they are located in the long-lived
* heap: e.g. they have gained tenure as an object by surviving past at least
* one GC. For performance, SpiderMonkey allocates some things which are known
* to normally be long lived directly into the tenured generation; for example,
* global objects. Additionally, SpiderMonkey does not visit individual objects
* when deleting non-tenured objects, so object with finalizers are also always
* tenured; for instance, this includes most DOM objects.
*
* The considerations to keep in mind when using a TenuredHeap<T> vs a normal
* Heap<T> are:
*
* - It is invalid for a TenuredHeap<T> to refer to a non-tenured thing.
* - It is however valid for a Heap<T> to refer to a tenured thing.
* - It is not possible to store flag bits in a Heap<T>.
*/
template <typename T>
class TenuredHeap : public js::HeapBase<T>
{
public:
TenuredHeap() : bits(0) {
static_assert(sizeof(T) == sizeof(TenuredHeap<T>),
"TenuredHeap<T> must be binary compatible with T.");
}
explicit TenuredHeap(T p) : bits(0) { setPtr(p); }
explicit TenuredHeap(const TenuredHeap<T>& p) : bits(0) { setPtr(p.getPtr()); }
bool operator==(const TenuredHeap<T>& other) { return bits == other.bits; }
bool operator!=(const TenuredHeap<T>& other) { return bits != other.bits; }
void setPtr(T newPtr) {
MOZ_ASSERT((reinterpret_cast<uintptr_t>(newPtr) & flagsMask) == 0);
if (newPtr)
AssertGCThingMustBeTenured(newPtr);
bits = (bits & flagsMask) | reinterpret_cast<uintptr_t>(newPtr);
}
void setFlags(uintptr_t flagsToSet) {
MOZ_ASSERT((flagsToSet & ~flagsMask) == 0);
bits |= flagsToSet;
}
void unsetFlags(uintptr_t flagsToUnset) {
MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0);
bits &= ~flagsToUnset;
}
bool hasFlag(uintptr_t flag) const {
MOZ_ASSERT((flag & ~flagsMask) == 0);
return (bits & flag) != 0;
}
T getPtr() const { return reinterpret_cast<T>(bits & ~flagsMask); }
uintptr_t getFlags() const { return bits & flagsMask; }
operator T() const { return getPtr(); }
T operator->() const { return getPtr(); }
TenuredHeap<T>& operator=(T p) {
setPtr(p);
return *this;
}
TenuredHeap<T>& operator=(const TenuredHeap<T>& other) {
bits = other.bits;
return *this;
}
private:
enum {
maskBits = 3,
flagsMask = (1 << maskBits) - 1,
};
uintptr_t bits;
};
/*
* Reference to a T that has been rooted elsewhere. This is most useful
* as a parameter type, which guarantees that the T lvalue is properly
* rooted. See "Move GC Stack Rooting" above.
*
* If you want to add additional methods to Handle for a specific
* specialization, define a HandleBase<T> specialization containing them.
*/
template <typename T>
class MOZ_NONHEAP_CLASS Handle : public js::HandleBase<T>
{
friend class JS::MutableHandle<T>;
public:
/* Creates a handle from a handle of a type convertible to T. */
template <typename S>
Handle(Handle<S> handle,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
{
static_assert(sizeof(Handle<T>) == sizeof(T*),
"Handle must be binary compatible with T*.");
ptr = reinterpret_cast<const T*>(handle.address());
}
MOZ_IMPLICIT Handle(decltype(nullptr)) {
static_assert(mozilla::IsPointer<T>::value,
"nullptr_t overload not valid for non-pointer types");
ptr = reinterpret_cast<const T*>(&js::ConstNullValue);
}
MOZ_IMPLICIT Handle(MutableHandle<T> handle) {
ptr = handle.address();
}
/*
* Take care when calling this method!
*
* This creates a Handle from the raw location of a T.
*
* It should be called only if the following conditions hold:
*
* 1) the location of the T is guaranteed to be marked (for some reason
* other than being a Rooted), e.g., if it is guaranteed to be reachable
* from an implicit root.
*
* 2) the contents of the location are immutable, or at least cannot change
* for the lifetime of the handle, as its users may not expect its value
* to change underneath them.
*/
static MOZ_CONSTEXPR Handle fromMarkedLocation(const T* p) {
return Handle(p, DeliberatelyChoosingThisOverload,
ImUsingThisOnlyInFromFromMarkedLocation);
}
/*
* Construct a handle from an explicitly rooted location. This is the
* normal way to create a handle, and normally happens implicitly.
*/
template <typename S>
inline
Handle(const Rooted<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
template <typename S>
inline
Handle(const PersistentRooted<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
/* Construct a read only handle from a mutable handle. */
template <typename S>
inline
Handle(MutableHandle<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
DECLARE_POINTER_COMPARISON_OPS(T);
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
private:
Handle() {}
DELETE_ASSIGNMENT_OPS(Handle, T);
enum Disambiguator { DeliberatelyChoosingThisOverload = 42 };
enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 };
MOZ_CONSTEXPR Handle(const T* p, Disambiguator, CallerIdentity) : ptr(p) {}
const T* ptr;
};
/*
* Similar to a handle, but the underlying storage can be changed. This is
* useful for outparams.
*
* If you want to add additional methods to MutableHandle for a specific
* specialization, define a MutableHandleBase<T> specialization containing
* them.
*/
template <typename T>
class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase<T>
{
public:
inline MOZ_IMPLICIT MutableHandle(Rooted<T>* root);
inline MOZ_IMPLICIT MutableHandle(PersistentRooted<T>* root);
private:
// Disallow nullptr for overloading purposes.
MutableHandle(decltype(nullptr)) = delete;
public:
void set(T v) {
*ptr = v;
}
/*
* This may be called only if the location of the T is guaranteed
* to be marked (for some reason other than being a Rooted),
* e.g., if it is guaranteed to be reachable from an implicit root.
*
* Create a MutableHandle from a raw location of a T.
*/
static MutableHandle fromMarkedLocation(T* p) {
MutableHandle h;
h.ptr = p;
return h;
}
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);
private:
MutableHandle() {}
DELETE_ASSIGNMENT_OPS(MutableHandle, T);
T* ptr;
};
} /* namespace JS */
namespace js {
/*
* By default, things should use the inheritance hierarchy to find their
* ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that
* Rooted<T> may be used without the class definition being available.
*/
template <typename T>
struct RootKind
{
static ThingRootKind rootKind() { return T::rootKind(); }
};
template <typename T>
struct RootKind<T*>
{
static ThingRootKind rootKind() { return T::rootKind(); }
};
template <typename T>
struct GCMethods<T*>
{
static T* initial() { return nullptr; }
static void postBarrier(T** vp, T* prev, T* next) {
if (next)
JS::AssertGCThingIsNotAnObjectSubclass(reinterpret_cast<js::gc::Cell*>(next));
}
static void relocate(T** vp) {}
};
template <>
struct GCMethods<JSObject*>
{
static JSObject* initial() { return nullptr; }
static gc::Cell* asGCThingOrNull(JSObject* v) {
if (!v)
return nullptr;
MOZ_ASSERT(uintptr_t(v) > 32);
return reinterpret_cast<gc::Cell*>(v);
}
static void postBarrier(JSObject** vp, JSObject* prev, JSObject* next) {
JS::HeapObjectPostBarrier(vp, prev, next);
}
};
template <>
struct GCMethods<JSFunction*>
{
static JSFunction* initial() { return nullptr; }
static void postBarrier(JSFunction** vp, JSFunction* prev, JSFunction* next) {
JS::HeapObjectPostBarrier(reinterpret_cast<JSObject**>(vp),
reinterpret_cast<JSObject*>(prev),
reinterpret_cast<JSObject*>(next));
}
};
} /* namespace js */
namespace JS {
// If a class containing GC pointers has (or can gain) a vtable, then it can be
// trivially used with Rooted/Handle/MutableHandle by deriving from
// DynamicTraceable and overriding |void trace(JSTracer*)|.
class DynamicTraceable
{
public:
static js::ThingRootKind rootKind() { return js::THING_ROOT_DYNAMIC_TRACEABLE; }
virtual ~DynamicTraceable() {}
virtual void trace(JSTracer* trc) = 0;
};
// To use a static class or struct (e.g. not containing a vtable) as part of a
// Rooted/Handle/MutableHandle, ensure that it derives from StaticTraceable
// (i.e. so that automatic upcast via calls works) and ensure that a method
// |static void trace(T*, JSTracer*)| exists on the class.
class StaticTraceable
{
public:
static js::ThingRootKind rootKind() { return js::THING_ROOT_STATIC_TRACEABLE; }
};
} /* namespace JS */
namespace js {
template <typename T>
class DispatchWrapper
{
static_assert(mozilla::IsBaseOf<JS::StaticTraceable, T>::value,
"DispatchWrapper is intended only for usage with a StaticTraceable");
using TraceFn = void (*)(T*, JSTracer*);
TraceFn tracer;
#if JS_BITS_PER_WORD == 32
uint32_t padding; // Ensure the storage fields have CellSize alignment.
#endif
T storage;
public:
// Mimic a pointer type, so that we can drop into Rooted.
MOZ_IMPLICIT DispatchWrapper(const T& initial) : tracer(&T::trace), storage(initial) {}
T* operator &() { return &storage; }
const T* operator &() const { return &storage; }
operator T&() { return storage; }
operator const T&() const { return storage; }
// Trace the contained storage (of unknown type) using the trace function
// we set aside when we did know the type.
static void TraceWrapped(JSTracer* trc, JS::StaticTraceable* thingp, const char* name) {
auto wrapper = reinterpret_cast<DispatchWrapper*>(
uintptr_t(thingp) - offsetof(DispatchWrapper, storage));
wrapper->tracer(&wrapper->storage, trc);
}
};
} /* namespace js */
namespace JS {
/*
* Local variable of type T whose value is always rooted. This is typically
* used for local variables, or for non-rooted values being passed to a
* function that requires a handle, e.g. Foo(Root<T>(cx, x)).
*
* If you want to add additional methods to Rooted for a specific
* specialization, define a RootedBase<T> specialization containing them.
*/
template <typename T>
class MOZ_STACK_CLASS Rooted : public js::RootedBase<T>
{
static_assert(!mozilla::IsConvertible<T, StaticTraceable*>::value &&
!mozilla::IsConvertible<T, DynamicTraceable*>::value,
"Rooted takes pointer or Traceable types but not Traceable* type");
/* Note: CX is a subclass of either ContextFriendFields or PerThreadDataFriendFields. */
void registerWithRootLists(js::RootLists& roots) {
js::ThingRootKind kind = js::RootKind<T>::rootKind();
this->stack = &roots.stackRoots_[kind];
this->prev = *stack;
*stack = reinterpret_cast<Rooted<void*>*>(this);
}
static js::RootLists& rootListsForRootingContext(JSContext* cx) {
return js::ContextFriendFields::get(cx)->roots;
}
static js::RootLists& rootListsForRootingContext(js::ContextFriendFields* cx) {
return cx->roots;
}
static js::RootLists& rootListsForRootingContext(JSRuntime* rt) {
return js::PerThreadDataFriendFields::getMainThread(rt)->roots;
}
static js::RootLists& rootListsForRootingContext(js::PerThreadDataFriendFields* pt) {
return pt->roots;
}
public:
template <typename RootingContext>
explicit Rooted(const RootingContext& cx
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(js::GCMethods<T>::initial())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
registerWithRootLists(rootListsForRootingContext(cx));
}
template <typename RootingContext, typename S>
Rooted(const RootingContext& cx, S&& initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(mozilla::Forward<S>(initial))
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
registerWithRootLists(rootListsForRootingContext(cx));
}
~Rooted() {
MOZ_ASSERT(*stack == reinterpret_cast<Rooted<void*>*>(this));
*stack = prev;
}
Rooted<T>* previous() { return reinterpret_cast<Rooted<T>*>(prev); }
/*
* This method is public for Rooted so that Codegen.py can use a Rooted
* interchangeably with a MutableHandleValue.
*/
void set(T value) {
ptr = value;
}
DECLARE_POINTER_COMPARISON_OPS(T);
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_POINTER_ASSIGN_OPS(Rooted, T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);
private:
/*
* These need to be templated on void* to avoid aliasing issues between, for
* example, Rooted<JSObject> and Rooted<JSFunction>, which use the same
* stack head pointer for different classes.
*/
Rooted<void*>** stack;
Rooted<void*>* prev;
/*
* For pointer types, the TraceKind for tracing is based on the list it is
* in (selected via rootKind), so no additional storage is required here.
* All StaticTraceable, however, share the same list, so the function to
* call for tracing is stored adjacent to the struct. Since C++ cannot
* templatize on storage class, this is implemented via the wrapper class
* DispatchWrapper.
*/
using MaybeWrapped = typename mozilla::Conditional<
mozilla::IsBaseOf<StaticTraceable, T>::value,
js::DispatchWrapper<T>,
T>::Type;
MaybeWrapped ptr;
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
Rooted(const Rooted&) = delete;
};
} /* namespace JS */
namespace js {
/*
* Augment the generic Rooted<T> interface when T = JSObject* with
* class-querying and downcasting operations.
*
* Given a Rooted<JSObject*> obj, one can view
* Handle<StringObject*> h = obj.as<StringObject*>();
* as an optimization of
* Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
* Handle<StringObject*> h = rooted;
*/
template <>
class RootedBase<JSObject*>
{
public:
template <class U>
JS::Handle<U*> as() const;
};
/*
* Augment the generic Handle<T> interface when T = JSObject* with
* downcasting operations.
*
* Given a Handle<JSObject*> obj, one can view
* Handle<StringObject*> h = obj.as<StringObject*>();
* as an optimization of
* Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
* Handle<StringObject*> h = rooted;
*/
template <>
class HandleBase<JSObject*>
{
public:
template <class U>
JS::Handle<U*> as() const;
};
/* Interface substitute for Rooted<T> which does not root the variable's memory. */
template <typename T>
class FakeRooted : public RootedBase<T>
{
public:
template <typename CX>
FakeRooted(CX* cx
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(GCMethods<T>::initial())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
}
template <typename CX>
FakeRooted(CX* cx, T initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
}
DECLARE_POINTER_COMPARISON_OPS(T);
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_POINTER_ASSIGN_OPS(FakeRooted, T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);
private:
T ptr;
void set(const T& value) {
ptr = value;
}
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
FakeRooted(const FakeRooted&) = delete;
};
/* Interface substitute for MutableHandle<T> which is not required to point to rooted memory. */
template <typename T>
class FakeMutableHandle : public js::MutableHandleBase<T>
{
public:
MOZ_IMPLICIT FakeMutableHandle(T* t) {
ptr = t;
}
MOZ_IMPLICIT FakeMutableHandle(FakeRooted<T>* root) {
ptr = root->address();
}
void set(T v) {
*ptr = v;
}
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);
private:
FakeMutableHandle() {}
DELETE_ASSIGNMENT_OPS(FakeMutableHandle, T);
T* ptr;
};
/*
* Types for a variable that either should or shouldn't be rooted, depending on
* the template parameter allowGC. Used for implementing functions that can
* operate on either rooted or unrooted data.
*
* The toHandle() and toMutableHandle() functions are for calling functions
* which require handle types and are only called in the CanGC case. These
* allow the calling code to type check.
*/
enum AllowGC {
NoGC = 0,
CanGC = 1
};
template <typename T, AllowGC allowGC>
class MaybeRooted
{
};
template <typename T> class MaybeRooted<T, CanGC>
{
public:
typedef JS::Handle<T> HandleType;
typedef JS::Rooted<T> RootType;
typedef JS::MutableHandle<T> MutableHandleType;
static inline JS::Handle<T> toHandle(HandleType v) {
return v;
}
static inline JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
return v;
}
template <typename T2>
static inline JS::Handle<T2*> downcastHandle(HandleType v) {
return v.template as<T2>();
}
};
template <typename T> class MaybeRooted<T, NoGC>
{
public:
typedef T HandleType;
typedef FakeRooted<T> RootType;
typedef FakeMutableHandle<T> MutableHandleType;
static JS::Handle<T> toHandle(HandleType v) {
MOZ_CRASH("Bad conversion");
}
static JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
MOZ_CRASH("Bad conversion");
}
template <typename T2>
static inline T2* downcastHandle(HandleType v) {
return &v->template as<T2>();
}
};
} /* namespace js */
namespace JS {
template <typename T> template <typename S>
inline
Handle<T>::Handle(const Rooted<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = reinterpret_cast<const T*>(root.address());
}
template <typename T> template <typename S>
inline
Handle<T>::Handle(const PersistentRooted<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = reinterpret_cast<const T*>(root.address());
}
template <typename T> template <typename S>
inline
Handle<T>::Handle(MutableHandle<S>& root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = reinterpret_cast<const T*>(root.address());
}
template <typename T>
inline
MutableHandle<T>::MutableHandle(Rooted<T>* root)
{
static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
"MutableHandle must be binary compatible with T*.");
ptr = root->address();
}
template <typename T>
inline
MutableHandle<T>::MutableHandle(PersistentRooted<T>* root)
{
static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
"MutableHandle must be binary compatible with T*.");
ptr = root->address();
}
/*
* A copyable, assignable global GC root type with arbitrary lifetime, an
* infallible constructor, and automatic unrooting on destruction.
*
* These roots can be used in heap-allocated data structures, so they are not
* associated with any particular JSContext or stack. They are registered with
* the JSRuntime itself, without locking, so they require a full JSContext to be
* initialized, not one of its more restricted superclasses. Initialization may
* take place on construction, or in two phases if the no-argument constructor
* is called followed by init().
*
* Note that you must not use an PersistentRooted in an object owned by a JS
* object:
*
* Whenever one object whose lifetime is decided by the GC refers to another
* such object, that edge must be traced only if the owning JS object is traced.
* This applies not only to JS objects (which obviously are managed by the GC)
* but also to C++ objects owned by JS objects.
*
* If you put a PersistentRooted in such a C++ object, that is almost certainly
* a leak. When a GC begins, the referent of the PersistentRooted is treated as
* live, unconditionally (because a PersistentRooted is a *root*), even if the
* JS object that owns it is unreachable. If there is any path from that
* referent back to the JS object, then the C++ object containing the
* PersistentRooted will not be destructed, and the whole blob of objects will
* not be freed, even if there are no references to them from the outside.
*
* In the context of Firefox, this is a severe restriction: almost everything in
* Firefox is owned by some JS object or another, so using PersistentRooted in
* such objects would introduce leaks. For these kinds of edges, Heap<T> or
* TenuredHeap<T> would be better types. It's up to the implementor of the type
* containing Heap<T> or TenuredHeap<T> members to make sure their referents get
* marked when the object itself is marked.
*/
template<typename T>
class PersistentRooted : public js::PersistentRootedBase<T>,
private mozilla::LinkedListElement<PersistentRooted<T>>
{
typedef mozilla::LinkedListElement<PersistentRooted<T>> ListBase;
friend class mozilla::LinkedList<PersistentRooted>;
friend class mozilla::LinkedListElement<PersistentRooted>;
friend struct js::gc::PersistentRootedMarker<T>;
friend void js::gc::FinishPersistentRootedChains(js::RootLists&);
void registerWithRootLists(js::RootLists& roots) {
MOZ_ASSERT(!initialized());
roots.getPersistentRootedList<T>().insertBack(this);
}
public:
PersistentRooted() : ptr(js::GCMethods<T>::initial()) {}
explicit PersistentRooted(JSContext* cx) {
init(cx);
}
PersistentRooted(JSContext* cx, T initial) {
init(cx, initial);
}
explicit PersistentRooted(JSRuntime* rt) {
init(rt);
}
PersistentRooted(JSRuntime* rt, T initial) {
init(rt, initial);
}
PersistentRooted(const PersistentRooted& rhs)
: mozilla::LinkedListElement<PersistentRooted<T>>(),
ptr(rhs.ptr)
{
/*
* Copy construction takes advantage of the fact that the original
* is already inserted, and simply adds itself to whatever list the
* original was on - no JSRuntime pointer needed.
*
* This requires mutating rhs's links, but those should be 'mutable'
* anyway. C++ doesn't let us declare mutable base classes.
*/
const_cast<PersistentRooted&>(rhs).setNext(this);
}
bool initialized() {
return ListBase::isInList();
}
void init(JSContext* cx) {
init(cx, js::GCMethods<T>::initial());
}
void init(JSContext* cx, T initial) {
ptr = initial;
registerWithRootLists(js::ContextFriendFields::get(cx)->roots);
}
void init(JSRuntime* rt) {
init(rt, js::GCMethods<T>::initial());
}
void init(JSRuntime* rt, T initial) {
ptr = initial;
registerWithRootLists(js::PerThreadDataFriendFields::getMainThread(rt)->roots);
}
void reset() {
if (initialized()) {
set(js::GCMethods<T>::initial());
ListBase::remove();
}
}
DECLARE_POINTER_COMPARISON_OPS(T);
DECLARE_POINTER_CONSTREF_OPS(T);
DECLARE_POINTER_ASSIGN_OPS(PersistentRooted, T);
DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
// These are the same as DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS, except
// they check that |this| is initialized in case the caller later stores
// something in |ptr|.
T* address() {
MOZ_ASSERT(initialized());
return &ptr;
}
T& get() {
MOZ_ASSERT(initialized());
return ptr;
}
private:
void set(T value) {
MOZ_ASSERT(initialized());
ptr = value;
}
T ptr;
};
class JS_PUBLIC_API(ObjectPtr)
{
Heap<JSObject*> value;
public:
ObjectPtr() : value(nullptr) {}
explicit ObjectPtr(JSObject* obj) : value(obj) {}
/* Always call finalize before the destructor. */
~ObjectPtr() { MOZ_ASSERT(!value); }
void finalize(JSRuntime* rt) {
if (IsIncrementalBarrierNeeded(rt))
IncrementalObjectBarrier(value);
value = nullptr;
}
void init(JSObject* obj) { value = obj; }
JSObject* get() const { return value; }
void writeBarrierPre(JSRuntime* rt) {
IncrementalObjectBarrier(value);
}
void updateWeakPointerAfterGC();
ObjectPtr& operator=(JSObject* obj) {
IncrementalObjectBarrier(value);
value = obj;
return *this;
}
void trace(JSTracer* trc, const char* name);
JSObject& operator*() const { return *value; }
JSObject* operator->() const { return value; }
operator JSObject*() const { return value; }
};
} /* namespace JS */
namespace js {
namespace gc {
template <typename T, typename TraceCallbacks>
void
CallTraceCallbackOnNonHeap(T* v, const TraceCallbacks& aCallbacks, const char* aName, void* aClosure)
{
static_assert(sizeof(T) == sizeof(JS::Heap<T>), "T and Heap<T> must be compatible.");
MOZ_ASSERT(v);
mozilla::DebugOnly<Cell*> cell = GCMethods<T>::asGCThingOrNull(*v);
MOZ_ASSERT(cell);
MOZ_ASSERT(!IsInsideNursery(cell));
JS::Heap<T>* asHeapT = reinterpret_cast<JS::Heap<T>*>(v);
aCallbacks.Trace(asHeapT, aName, aClosure);
}
} /* namespace gc */
} /* namespace js */
#undef DELETE_ASSIGNMENT_OPS
#endif /* js_RootingAPI_h */