gecko-dev/mozglue/linker/ElfLoader.cpp
Mike Hommey 69fef46cab Bug 1651079 - Add necessary LOCAL_INCLUDES for StackWalk.cpp in memory/replace/logalloc/replay. r=rstewart
This requires a workaround for the use of __wrap_dladdr, which can't be
used in logalloc-replay. The workaround involves making __wrap_dladdr
expand to dladdr, but that makes the definition ElfLinker.h conflict
with the one in the Android system headers, so we change it to match,
and adjust ElfLinker.cpp accordingly.

And while here, fix the condition in mozglue/misc to match the condition
around including Linker.h in StackWalk.cpp itself.

Differential Revision: https://phabricator.services.mozilla.com/D82648
2020-07-08 21:37:24 +00:00

1361 lines
44 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <dlfcn.h>
#include <unistd.h>
#include <errno.h>
#include <algorithm>
#include <fcntl.h>
#include "ElfLoader.h"
#include "BaseElf.h"
#include "CustomElf.h"
#include "Mappable.h"
#include "Logging.h"
#include "Utils.h"
#include <inttypes.h>
// From Utils.h
mozilla::Atomic<size_t, mozilla::ReleaseAcquire> gPageSize;
#if defined(ANDROID)
# include <sys/syscall.h>
# include <sys/system_properties.h>
# include <math.h>
# include <android/api-level.h>
/**
* Return the current Android version, or 0 on failure.
*/
static int GetAndroidSDKVersion() {
static int version = 0;
if (version) {
return version;
}
char version_string[PROP_VALUE_MAX] = {'\0'};
int len = __system_property_get("ro.build.version.sdk", version_string);
if (len) {
version = static_cast<int>(strtol(version_string, nullptr, 10));
}
return version;
}
# if __ANDROID_API__ < 8
/* Android API < 8 doesn't provide sigaltstack */
extern "C" {
inline int sigaltstack(const stack_t* ss, stack_t* oss) {
return syscall(__NR_sigaltstack, ss, oss);
}
} /* extern "C" */
# endif /* __ANDROID_API__ */
#endif /* ANDROID */
#ifdef __ARM_EABI__
extern "C" MOZ_EXPORT const void* __gnu_Unwind_Find_exidx(void* pc, int* pcount)
__attribute__((weak));
#endif
/* Ideally we'd #include <link.h>, but that's a world of pain
* Moreover, not all versions of android support it, so we need a weak
* reference. */
extern "C" MOZ_EXPORT int dl_iterate_phdr(dl_phdr_cb callback, void* data)
__attribute__((weak));
/* Pointer to the PT_DYNAMIC section of the executable or library
* containing this code. */
extern "C" Elf::Dyn _DYNAMIC[];
/**
* dlfcn.h replacements functions
*/
void* __wrap_dlopen(const char* path, int flags) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dlopen(path, flags);
}
#endif
RefPtr<LibHandle> handle = ElfLoader::Singleton.Load(path, flags);
if (handle) handle->AddDirectRef();
return handle;
}
const char* __wrap_dlerror(void) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dlerror();
}
#endif
const char* error = ElfLoader::Singleton.lastError.exchange(nullptr);
if (error) {
// Return a custom error if available.
return error;
}
// Or fallback to the system error.
return dlerror();
}
void* __wrap_dlsym(void* handle, const char* symbol) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dlsym(handle, symbol);
}
#endif
if (!handle) {
ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported";
return nullptr;
}
if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) {
LibHandle* h = reinterpret_cast<LibHandle*>(handle);
return h->GetSymbolPtr(symbol);
}
ElfLoader::Singleton.lastError = nullptr; // Use system dlerror.
return dlsym(handle, symbol);
}
int __wrap_dlclose(void* handle) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dlclose(handle);
}
#endif
if (!handle) {
ElfLoader::Singleton.lastError = "No handle given to dlclose()";
return -1;
}
reinterpret_cast<LibHandle*>(handle)->ReleaseDirectRef();
return 0;
}
int __wrap_dladdr(const void* addr, Dl_info* info) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dladdr(addr, info);
}
#endif
RefPtr<LibHandle> handle =
ElfLoader::Singleton.GetHandleByPtr(const_cast<void*>(addr));
if (!handle) {
return dladdr(addr, info);
}
info->dli_fname = handle->GetPath();
info->dli_fbase = handle->GetBase();
return 1;
}
class DlIteratePhdrHelper {
public:
DlIteratePhdrHelper() {
int pipefd[2];
valid_pipe = (pipe(pipefd) == 0);
read_fd.reset(pipefd[0]);
write_fd.reset(pipefd[1]);
}
int fill_and_call(dl_phdr_cb callback, const void* l_addr, const char* l_name,
void* data);
private:
bool valid_pipe;
AutoCloseFD read_fd;
AutoCloseFD write_fd;
};
// This function is called for each shared library iterated over by
// dl_iterate_phdr, and is used to fill a dl_phdr_info which is then
// sent through to the dl_iterate_phdr callback.
int DlIteratePhdrHelper::fill_and_call(dl_phdr_cb callback, const void* l_addr,
const char* l_name, void* data) {
dl_phdr_info info;
info.dlpi_addr = reinterpret_cast<Elf::Addr>(l_addr);
info.dlpi_name = l_name;
info.dlpi_phdr = nullptr;
info.dlpi_phnum = 0;
// Assuming l_addr points to Elf headers (in most cases, this is true),
// get the Phdr location from there.
// Unfortunately, when l_addr doesn't point to Elf headers, it may point
// to unmapped memory, or worse, unreadable memory. The only way to detect
// the latter without causing a SIGSEGV is to use the pointer in a system
// call that will try to read from there, and return an EFAULT error if
// it can't. One such system call is write(). It used to be possible to
// use a file descriptor on /dev/null for these kind of things, but recent
// Linux kernels never return an EFAULT error when using /dev/null.
// So instead, we use a self pipe. We do however need to read() from the
// read end of the pipe as well so as to not fill up the pipe buffer and
// block on subsequent writes.
// In the unlikely event reads from or write to the pipe fail for some
// other reason than EFAULT, we don't try any further and just skip setting
// the Phdr location for all subsequent libraries, rather than trying to
// start over with a new pipe.
int can_read = true;
if (valid_pipe) {
int ret;
char raw_ehdr[sizeof(Elf::Ehdr)];
static_assert(sizeof(raw_ehdr) < PIPE_BUF, "PIPE_BUF is too small");
do {
// writes are atomic when smaller than PIPE_BUF, per POSIX.1-2008.
ret = write(write_fd, l_addr, sizeof(raw_ehdr));
} while (ret == -1 && errno == EINTR);
if (ret != sizeof(raw_ehdr)) {
if (ret == -1 && errno == EFAULT) {
can_read = false;
} else {
valid_pipe = false;
}
} else {
size_t nbytes = 0;
do {
// Per POSIX.1-2008, interrupted reads can return a length smaller
// than the given one instead of failing with errno EINTR.
ret = read(read_fd, raw_ehdr + nbytes, sizeof(raw_ehdr) - nbytes);
if (ret > 0) nbytes += ret;
} while ((nbytes != sizeof(raw_ehdr) && ret > 0) ||
(ret == -1 && errno == EINTR));
if (nbytes != sizeof(raw_ehdr)) {
valid_pipe = false;
}
}
}
if (valid_pipe && can_read) {
const Elf::Ehdr* ehdr = Elf::Ehdr::validate(l_addr);
if (ehdr) {
info.dlpi_phdr = reinterpret_cast<const Elf::Phdr*>(
reinterpret_cast<const char*>(ehdr) + ehdr->e_phoff);
info.dlpi_phnum = ehdr->e_phnum;
}
}
return callback(&info, sizeof(dl_phdr_info), data);
}
int __wrap_dl_iterate_phdr(dl_phdr_cb callback, void* data) {
#if defined(ANDROID)
if (GetAndroidSDKVersion() >= 23) {
return dl_iterate_phdr(callback, data);
}
#endif
DlIteratePhdrHelper helper;
AutoLock lock(&ElfLoader::Singleton.handlesMutex);
if (dl_iterate_phdr) {
for (ElfLoader::LibHandleList::reverse_iterator it =
ElfLoader::Singleton.handles.rbegin();
it < ElfLoader::Singleton.handles.rend(); ++it) {
BaseElf* elf = (*it)->AsBaseElf();
if (!elf) {
continue;
}
int ret = helper.fill_and_call(callback, (*it)->GetBase(),
(*it)->GetPath(), data);
if (ret) return ret;
}
return dl_iterate_phdr(callback, data);
}
/* For versions of Android that don't support dl_iterate_phdr (< 5.0),
* we go through the debugger helper data, which is known to be racy, but
* there's not much we can do about this :( . */
if (!ElfLoader::Singleton.dbg) return -1;
for (ElfLoader::DebuggerHelper::iterator it =
ElfLoader::Singleton.dbg.begin();
it < ElfLoader::Singleton.dbg.end(); ++it) {
int ret = helper.fill_and_call(callback, it->l_addr, it->l_name, data);
if (ret) return ret;
}
return 0;
}
#ifdef __ARM_EABI__
const void* __wrap___gnu_Unwind_Find_exidx(void* pc, int* pcount) {
RefPtr<LibHandle> handle = ElfLoader::Singleton.GetHandleByPtr(pc);
if (handle) return handle->FindExidx(pcount);
if (__gnu_Unwind_Find_exidx) return __gnu_Unwind_Find_exidx(pc, pcount);
*pcount = 0;
return nullptr;
}
#endif
/**
* faulty.lib public API
*/
MFBT_API size_t __dl_get_mappable_length(void* handle) {
if (!handle) return 0;
return reinterpret_cast<LibHandle*>(handle)->GetMappableLength();
}
MFBT_API void* __dl_mmap(void* handle, void* addr, size_t length,
off_t offset) {
if (!handle) return nullptr;
return reinterpret_cast<LibHandle*>(handle)->MappableMMap(addr, length,
offset);
}
MFBT_API void __dl_munmap(void* handle, void* addr, size_t length) {
if (!handle) return;
return reinterpret_cast<LibHandle*>(handle)->MappableMUnmap(addr, length);
}
MFBT_API bool IsSignalHandlingBroken() {
return ElfLoader::Singleton.isSignalHandlingBroken();
}
namespace {
/**
* Returns the part after the last '/' for the given path
*/
const char* LeafName(const char* path) {
const char* lastSlash = strrchr(path, '/');
if (lastSlash) return lastSlash + 1;
return path;
}
/**
* Run the given lambda while holding the internal lock of the system linker.
* To take the lock, we call the system dl_iterate_phdr and invoke the lambda
* from the callback, which is called while the lock is held. Return true on
* success.
*/
template <class Lambda>
static bool RunWithSystemLinkerLock(Lambda&& aLambda) {
if (!dl_iterate_phdr) {
// No dl_iterate_phdr support.
return false;
}
#if defined(ANDROID)
if (GetAndroidSDKVersion() < 23) {
// dl_iterate_phdr is _not_ protected by a lock on Android < 23.
// Also return false here if we failed to get the version.
return false;
}
#endif
dl_iterate_phdr(
[](dl_phdr_info*, size_t, void* lambda) -> int {
(*static_cast<Lambda*>(lambda))();
// Return 1 to stop iterating.
return 1;
},
&aLambda);
return true;
}
} /* Anonymous namespace */
/**
* LibHandle
*/
LibHandle::~LibHandle() { free(path); }
const char* LibHandle::GetName() const {
return path ? LeafName(path) : nullptr;
}
size_t LibHandle::GetMappableLength() const {
if (!mappable) mappable = GetMappable();
if (!mappable) return 0;
return mappable->GetLength();
}
void* LibHandle::MappableMMap(void* addr, size_t length, off_t offset) const {
if (!mappable) mappable = GetMappable();
if (!mappable) return MAP_FAILED;
void* mapped = mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset);
return mapped;
}
void LibHandle::MappableMUnmap(void* addr, size_t length) const {
if (mappable) mappable->munmap(addr, length);
}
/**
* SystemElf
*/
already_AddRefed<LibHandle> SystemElf::Load(const char* path, int flags) {
/* The Android linker returns a handle when the file name matches an
* already loaded library, even when the full path doesn't exist */
if (path && path[0] == '/' && (access(path, F_OK) == -1)) {
DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, (void*)nullptr);
ElfLoader::Singleton.lastError = "Specified file does not exist";
return nullptr;
}
ElfLoader::Singleton.lastError = nullptr; // Use system dlerror.
void* handle = dlopen(path, flags);
DEBUG_LOG("dlopen(\"%s\", 0x%x) = %p", path, flags, handle);
if (handle) {
SystemElf* elf = new SystemElf(path, handle);
ElfLoader::Singleton.Register(elf);
RefPtr<LibHandle> lib(elf);
return lib.forget();
}
return nullptr;
}
SystemElf::~SystemElf() {
if (!dlhandle) return;
DEBUG_LOG("dlclose(%p [\"%s\"])", dlhandle, GetPath());
ElfLoader::Singleton.lastError = nullptr; // Use system dlerror.
dlclose(dlhandle);
ElfLoader::Singleton.Forget(this);
}
void* SystemElf::GetSymbolPtr(const char* symbol) const {
ElfLoader::Singleton.lastError = nullptr; // Use system dlerror.
void* sym = dlsym(dlhandle, symbol);
DEBUG_LOG("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol,
sym);
return sym;
}
Mappable* SystemElf::GetMappable() const {
const char* path = GetPath();
if (!path) return nullptr;
#ifdef ANDROID
/* On Android, if we don't have the full path, try in /system/lib */
const char* name = LeafName(path);
std::string systemPath;
if (name == path) {
systemPath = "/system/lib/";
systemPath += path;
path = systemPath.c_str();
}
#endif
return MappableFile::Create(path);
}
#ifdef __ARM_EABI__
const void* SystemElf::FindExidx(int* pcount) const {
/* TODO: properly implement when ElfLoader::GetHandleByPtr
does return SystemElf handles */
*pcount = 0;
return nullptr;
}
#endif
/**
* ElfLoader
*/
/* Unique ElfLoader instance */
ElfLoader ElfLoader::Singleton;
already_AddRefed<LibHandle> ElfLoader::Load(const char* path, int flags,
LibHandle* parent) {
/* Ensure logging is initialized or refresh if environment changed. */
Logging::Init();
/* Ensure self_elf initialization. */
if (!self_elf) Init();
RefPtr<LibHandle> handle;
/* Handle dlopen(nullptr) directly. */
if (!path) {
handle = SystemElf::Load(nullptr, flags);
return handle.forget();
}
/* TODO: Handle relative paths correctly */
const char* name = LeafName(path);
/* Search the list of handles we already have for a match. When the given
* path is not absolute, compare file names, otherwise compare full paths. */
if (name == path) {
AutoLock lock(&handlesMutex);
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it)
if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0)) {
handle = *it;
return handle.forget();
}
} else {
AutoLock lock(&handlesMutex);
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it)
if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0)) {
handle = *it;
return handle.forget();
}
}
char* abs_path = nullptr;
const char* requested_path = path;
/* When the path is not absolute and the library is being loaded for
* another, first try to load the library from the directory containing
* that parent library. */
if ((name == path) && parent) {
const char* parentPath = parent->GetPath();
abs_path = new char[strlen(parentPath) + strlen(path)];
strcpy(abs_path, parentPath);
char* slash = strrchr(abs_path, '/');
strcpy(slash + 1, path);
path = abs_path;
}
Mappable* mappable = GetMappableFromPath(path);
/* Try loading with the custom linker if we have a Mappable */
if (mappable) handle = CustomElf::Load(mappable, path, flags);
/* Try loading with the system linker if everything above failed */
if (!handle) handle = SystemElf::Load(path, flags);
/* If we didn't have an absolute path and haven't been able to load
* a library yet, try in the system search path */
if (!handle && abs_path) handle = SystemElf::Load(name, flags);
delete[] abs_path;
DEBUG_LOG("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path,
flags, reinterpret_cast<void*>(parent),
parent ? parent->GetPath() : "", static_cast<void*>(handle));
return handle.forget();
}
already_AddRefed<LibHandle> ElfLoader::GetHandleByPtr(void* addr) {
AutoLock lock(&handlesMutex);
/* Scan the list of handles we already have for a match */
for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) {
if ((*it)->Contains(addr)) {
RefPtr<LibHandle> lib = *it;
return lib.forget();
}
}
return nullptr;
}
Mappable* ElfLoader::GetMappableFromPath(const char* path) {
const char* name = LeafName(path);
Mappable* mappable = nullptr;
RefPtr<Zip> zip;
const char* subpath;
if ((subpath = strchr(path, '!'))) {
char* zip_path = strndup(path, subpath - path);
while (*(++subpath) == '/') {
}
zip = ZipCollection::GetZip(zip_path);
free(zip_path);
Zip::Stream s;
if (zip && zip->GetStream(subpath, &s)) {
/* When the MOZ_LINKER_EXTRACT environment variable is set to "1",
* compressed libraries are going to be (temporarily) extracted as
* files, in the directory pointed by the MOZ_LINKER_CACHE
* environment variable. */
const char* extract = getenv("MOZ_LINKER_EXTRACT");
if (extract && !strncmp(extract, "1", 2 /* Including '\0' */))
mappable = MappableExtractFile::Create(name, zip, &s);
if (!mappable) {
if (s.GetType() == Zip::Stream::DEFLATE) {
mappable = MappableDeflate::Create(name, zip, &s);
}
}
}
}
/* If we couldn't load above, try with a MappableFile */
if (!mappable && !zip) mappable = MappableFile::Create(path);
return mappable;
}
void ElfLoader::Register(LibHandle* handle) {
AutoLock lock(&handlesMutex);
handles.push_back(handle);
}
void ElfLoader::Register(CustomElf* handle) {
Register(static_cast<LibHandle*>(handle));
if (dbg) {
// We could race with the system linker when modifying the debug map, so
// only do so while holding the system linker's internal lock.
RunWithSystemLinkerLock([this, handle] { dbg.Add(handle); });
}
}
void ElfLoader::Forget(LibHandle* handle) {
/* Ensure logging is initialized or refresh if environment changed. */
Logging::Init();
AutoLock lock(&handlesMutex);
LibHandleList::iterator it =
std::find(handles.begin(), handles.end(), handle);
if (it != handles.end()) {
DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast<void*>(handle),
handle->GetPath());
handles.erase(it);
} else {
DEBUG_LOG("ElfLoader::Forget(%p [\"%s\"]): Handle not found",
reinterpret_cast<void*>(handle), handle->GetPath());
}
}
void ElfLoader::Forget(CustomElf* handle) {
Forget(static_cast<LibHandle*>(handle));
if (dbg) {
// We could race with the system linker when modifying the debug map, so
// only do so while holding the system linker's internal lock.
RunWithSystemLinkerLock([this, handle] { dbg.Remove(handle); });
}
}
void ElfLoader::Init() {
Dl_info info;
/* On Android < 4.1 can't reenter dl* functions. So when the library
* containing this code is dlopen()ed, it can't call dladdr from a
* static initializer. */
if (dladdr(_DYNAMIC, &info) != 0) {
self_elf = LoadedElf::Create(info.dli_fname, info.dli_fbase);
}
#if defined(ANDROID)
// On Android < 5.0, resolving weak symbols via dlsym doesn't work.
// The weak symbols Gecko uses are in either libc or libm, so we
// wrap those such that this linker does symbol resolution for them.
if (GetAndroidSDKVersion() < 21) {
if (dladdr(FunctionPtr(syscall), &info) != 0) {
libc = LoadedElf::Create(info.dli_fname, info.dli_fbase);
}
if (dladdr(FunctionPtr<int (*)(double)>(isnan), &info) != 0) {
libm = LoadedElf::Create(info.dli_fname, info.dli_fbase);
}
}
#endif
}
ElfLoader::~ElfLoader() {
LibHandleList list;
if (!Singleton.IsShutdownExpected()) {
MOZ_CRASH("Unexpected shutdown");
}
/* Release self_elf and libc */
self_elf = nullptr;
#if defined(ANDROID)
libc = nullptr;
libm = nullptr;
#endif
AutoLock lock(&handlesMutex);
/* Build up a list of all library handles with direct (external) references.
* We actually skip system library handles because we want to keep at least
* some of these open. Most notably, Mozilla codebase keeps a few libgnome
* libraries deliberately open because of the mess that libORBit destruction
* is. dlclose()ing these libraries actually leads to problems. */
for (LibHandleList::reverse_iterator it = handles.rbegin();
it < handles.rend(); ++it) {
if ((*it)->DirectRefCount()) {
if (SystemElf* se = (*it)->AsSystemElf()) {
se->Forget();
} else {
list.push_back(*it);
}
}
}
/* Force release all external references to the handles collected above */
for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) {
while ((*it)->ReleaseDirectRef()) {
}
}
/* Remove the remaining system handles. */
if (handles.size()) {
list = handles;
for (LibHandleList::reverse_iterator it = list.rbegin(); it < list.rend();
++it) {
if ((*it)->AsSystemElf()) {
DEBUG_LOG(
"ElfLoader::~ElfLoader(): Remaining handle for \"%s\" "
"[%" PRIdPTR " direct refs, %" PRIdPTR " refs total]",
(*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount());
} else {
DEBUG_LOG(
"ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" "
"[%" PRIdPTR " direct refs, %" PRIdPTR " refs total]",
(*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount());
/* Not removing, since it could have references to other libraries,
* destroying them as a side effect, and possibly leaving dangling
* pointers in the handle list we're scanning */
}
}
}
pthread_mutex_destroy(&handlesMutex);
}
#ifdef __ARM_EABI__
int ElfLoader::__wrap_aeabi_atexit(void* that, ElfLoader::Destructor destructor,
void* dso_handle) {
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#else
int ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void* that,
void* dso_handle) {
Singleton.destructors.push_back(
DestructorCaller(destructor, that, dso_handle));
return 0;
}
#endif
void ElfLoader::__wrap_cxa_finalize(void* dso_handle) {
/* Call all destructors for the given DSO handle in reverse order they were
* registered. */
std::vector<DestructorCaller>::reverse_iterator it;
for (it = Singleton.destructors.rbegin(); it < Singleton.destructors.rend();
++it) {
if (it->IsForHandle(dso_handle)) {
it->Call();
}
}
}
void ElfLoader::DestructorCaller::Call() {
if (destructor) {
DEBUG_LOG("ElfLoader::DestructorCaller::Call(%p, %p, %p)",
FunctionPtr(destructor), object, dso_handle);
destructor(object);
destructor = nullptr;
}
}
ElfLoader::DebuggerHelper::DebuggerHelper()
: dbg(nullptr), firstAdded(nullptr) {
/* Find ELF auxiliary vectors.
*
* The kernel stores the following data on the stack when starting a
* program:
* argc
* argv[0] (pointer into argv strings defined below)
* argv[1] (likewise)
* ...
* argv[argc - 1] (likewise)
* nullptr
* envp[0] (pointer into environment strings defined below)
* envp[1] (likewise)
* ...
* envp[n] (likewise)
* nullptr
* ... (more NULLs on some platforms such as Android 4.3)
* auxv[0] (first ELF auxiliary vector)
* auxv[1] (second ELF auxiliary vector)
* ...
* auxv[p] (last ELF auxiliary vector)
* (AT_NULL, nullptr)
* padding
* argv strings, separated with '\0'
* environment strings, separated with '\0'
* nullptr
*
* What we are after are the auxv values defined by the following struct.
*/
struct AuxVector {
Elf::Addr type;
Elf::Addr value;
};
/* Pointer to the environment variables list */
extern char** environ;
/* The environment may have changed since the program started, in which
* case the environ variables list isn't the list the kernel put on stack
* anymore. But in this new list, variables that didn't change still point
* to the strings the kernel put on stack. It is quite unlikely that two
* modified environment variables point to two consecutive strings in memory,
* so we assume that if two consecutive environment variables point to two
* consecutive strings, we found strings the kernel put on stack. */
char** env;
for (env = environ; *env; env++)
if (*env + strlen(*env) + 1 == env[1]) break;
if (!*env) return;
/* Next, we scan the stack backwards to find a pointer to one of those
* strings we found above, which will give us the location of the original
* envp list. As we are looking for pointers, we need to look at 32-bits or
* 64-bits aligned values, depening on the architecture. */
char** scan = reinterpret_cast<char**>(reinterpret_cast<uintptr_t>(*env) &
~(sizeof(void*) - 1));
while (*env != *scan) scan--;
/* Finally, scan forward to find the last environment variable pointer and
* thus the first auxiliary vector. */
while (*scan++)
;
/* Some platforms have more NULLs here, so skip them if we encounter them */
while (!*scan) scan++;
AuxVector* auxv = reinterpret_cast<AuxVector*>(scan);
/* The two values of interest in the auxiliary vectors are AT_PHDR and
* AT_PHNUM, which gives us the the location and size of the ELF program
* headers. */
Array<Elf::Phdr> phdrs;
char* base = nullptr;
while (auxv->type) {
if (auxv->type == AT_PHDR) {
phdrs.Init(reinterpret_cast<Elf::Phdr*>(auxv->value));
/* Assume the base address is the first byte of the same page */
base = reinterpret_cast<char*>(PageAlignedPtr(auxv->value));
}
if (auxv->type == AT_PHNUM) phdrs.Init(auxv->value);
auxv++;
}
if (!phdrs) {
DEBUG_LOG("Couldn't find program headers");
return;
}
/* In some cases, the address for the program headers we get from the
* auxiliary vectors is not mapped, because of the PT_LOAD segments
* definitions in the program executable. Trying to map anonymous memory
* with a hint giving the base address will return a different address
* if something is mapped there, and the base address otherwise. */
MappedPtr mem(MemoryRange::mmap(base, PageSize(), PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (mem == base) {
/* If program headers aren't mapped, try to map them */
int fd = open("/proc/self/exe", O_RDONLY);
if (fd == -1) {
DEBUG_LOG("Failed to open /proc/self/exe");
return;
}
mem.Assign(
MemoryRange::mmap(base, PageSize(), PROT_READ, MAP_PRIVATE, fd, 0));
/* If we don't manage to map at the right address, just give up. */
if (mem != base) {
DEBUG_LOG("Couldn't read program headers");
return;
}
}
/* Sanity check: the first bytes at the base address should be an ELF
* header. */
if (!Elf::Ehdr::validate(base)) {
DEBUG_LOG("Couldn't find program base");
return;
}
/* Search for the program PT_DYNAMIC segment */
Array<Elf::Dyn> dyns;
for (Array<Elf::Phdr>::iterator phdr = phdrs.begin(); phdr < phdrs.end();
++phdr) {
/* While the program headers are expected within the first mapped page of
* the program executable, the executable PT_LOADs may actually make them
* loaded at an address that is not the wanted base address of the
* library. We thus need to adjust the base address, compensating for the
* virtual address of the PT_LOAD segment corresponding to offset 0. */
if (phdr->p_type == PT_LOAD && phdr->p_offset == 0) base -= phdr->p_vaddr;
if (phdr->p_type == PT_DYNAMIC)
dyns.Init(base + phdr->p_vaddr, phdr->p_filesz);
}
if (!dyns) {
DEBUG_LOG("Failed to find PT_DYNAMIC section in program");
return;
}
/* Search for the DT_DEBUG information */
for (Array<Elf::Dyn>::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) {
if (dyn->d_tag == DT_DEBUG) {
dbg = reinterpret_cast<r_debug*>(dyn->d_un.d_ptr);
break;
}
}
DEBUG_LOG("DT_DEBUG points at %p", static_cast<void*>(dbg));
}
/**
* Helper class to ensure the given pointer is writable within the scope of
* an instance. Permissions to the memory page where the pointer lies are
* restored to their original value when the instance is destroyed.
*/
class EnsureWritable {
public:
template <typename T>
explicit EnsureWritable(T* ptr, size_t length_ = sizeof(T)) {
MOZ_ASSERT(length_ < PageSize());
prot = -1;
page = MAP_FAILED;
char* firstPage = PageAlignedPtr(reinterpret_cast<char*>(ptr));
char* lastPageEnd =
PageAlignedEndPtr(reinterpret_cast<char*>(ptr) + length_);
length = lastPageEnd - firstPage;
uintptr_t start = reinterpret_cast<uintptr_t>(firstPage);
uintptr_t end;
prot = getProt(start, &end);
if (prot == -1 || (start + length) > end) MOZ_CRASH();
if (prot & PROT_WRITE) {
success = true;
return;
}
page = firstPage;
int ret = mprotect(page, length, prot | PROT_WRITE);
success = ret == 0;
if (!success) {
ERROR("mprotect(%p, %zu, %d) = %d (errno=%d; %s)", page, length,
prot | PROT_WRITE, ret, errno, strerror(errno));
}
}
bool IsWritable() const { return success; }
~EnsureWritable() {
if (success && page != MAP_FAILED) {
mprotect(page, length, prot);
}
}
private:
int getProt(uintptr_t addr, uintptr_t* end) {
/* The interesting part of the /proc/self/maps format looks like:
* startAddr-endAddr rwxp */
int result = 0;
AutoCloseFILE f(fopen("/proc/self/maps", "r"));
while (f) {
unsigned long long startAddr, endAddr;
char perms[5];
if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr,
perms) != 3)
return -1;
if (addr < startAddr || addr >= endAddr) continue;
if (perms[0] == 'r')
result |= PROT_READ;
else if (perms[0] != '-')
return -1;
if (perms[1] == 'w')
result |= PROT_WRITE;
else if (perms[1] != '-')
return -1;
if (perms[2] == 'x')
result |= PROT_EXEC;
else if (perms[2] != '-')
return -1;
*end = endAddr;
return result;
}
return -1;
}
int prot;
void* page;
size_t length;
bool success;
};
/**
* The system linker maintains a doubly linked list of library it loads
* for use by the debugger. Unfortunately, it also uses the list pointers
* in a lot of operations and adding our data in the list is likely to
* trigger crashes when the linker tries to use data we don't provide or
* that fall off the amount data we allocated. Fortunately, the linker only
* traverses the list forward and accesses the head of the list from a
* private pointer instead of using the value in the r_debug structure.
* This means we can safely add members at the beginning of the list.
* Unfortunately, gdb checks the coherency of l_prev values, so we have
* to adjust the l_prev value for the first element the system linker
* knows about. Fortunately, it doesn't use l_prev, and the first element
* is not ever going to be released before our elements, since it is the
* program executable, so the system linker should not be changing
* r_debug::r_map.
*/
void ElfLoader::DebuggerHelper::Add(ElfLoader::link_map* map) {
if (!dbg->r_brk) return;
dbg->r_state = r_debug::RT_ADD;
dbg->r_brk();
if (!firstAdded) {
/* When adding a library for the first time, r_map points to data
* handled by the system linker, and that data may be read-only */
EnsureWritable w(&dbg->r_map->l_prev);
if (!w.IsWritable()) {
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
return;
}
firstAdded = map;
dbg->r_map->l_prev = map;
} else
dbg->r_map->l_prev = map;
map->l_prev = nullptr;
map->l_next = dbg->r_map;
dbg->r_map = map;
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
}
void ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map* map) {
if (!dbg->r_brk) return;
dbg->r_state = r_debug::RT_DELETE;
dbg->r_brk();
if (map == firstAdded) {
/* When removing the first added library, its l_next is going to be
* data handled by the system linker, and that data may be read-only */
EnsureWritable w(&map->l_next->l_prev);
if (!w.IsWritable()) {
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
return;
}
firstAdded = map->l_prev;
map->l_next->l_prev = map->l_prev;
} else if (map->l_next) {
map->l_next->l_prev = map->l_prev;
}
if (dbg->r_map == map)
dbg->r_map = map->l_next;
else if (map->l_prev) {
map->l_prev->l_next = map->l_next;
}
dbg->r_state = r_debug::RT_CONSISTENT;
dbg->r_brk();
}
#if defined(ANDROID) && defined(__NR_sigaction)
/* As some system libraries may be calling signal() or sigaction() to
* set a SIGSEGV handler, effectively breaking MappableSeekableZStream,
* or worse, restore our SIGSEGV handler with wrong flags (which using
* signal() will do), we want to hook into the system's sigaction() to
* replace it with our own wrapper instead, so that our handler is never
* replaced. We used to only do that with libraries this linker loads,
* but it turns out at least one system library does call signal() and
* breaks us (libsc-a3xx.so on the Samsung Galaxy S4).
* As libc's signal (bsd_signal/sysv_signal, really) calls sigaction
* under the hood, instead of calling the signal system call directly,
* we only need to hook sigaction. This is true for both bionic and
* glibc.
*/
/* libc's sigaction */
extern "C" int sigaction(int signum, const struct sigaction* act,
struct sigaction* oldact);
/* Simple reimplementation of sigaction. This is roughly equivalent
* to the assembly that comes in bionic, but not quite equivalent to
* glibc's implementation, so we only use this on Android. */
int sys_sigaction(int signum, const struct sigaction* act,
struct sigaction* oldact) {
return syscall(__NR_sigaction, signum, act, oldact);
}
/* Replace the first instructions of the given function with a jump
* to the given new function. */
template <typename T>
static bool Divert(T func, T new_func) {
void* ptr = FunctionPtr(func);
uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
# if defined(__i386__)
// A 32-bit jump is a 5 bytes instruction.
EnsureWritable w(ptr, 5);
*reinterpret_cast<unsigned char*>(addr) = 0xe9; // jmp
*reinterpret_cast<intptr_t*>(addr + 1) =
reinterpret_cast<uintptr_t>(new_func) - addr - 5; // target displacement
return true;
# elif defined(__arm__) || defined(__aarch64__)
const unsigned char trampoline[] = {
# ifdef __arm__
// .thumb
0x46, 0x04, // nop
0x78, 0x47, // bx pc
0x46, 0x04, // nop
// .arm
0x04, 0xf0, 0x1f, 0xe5, // ldr pc, [pc, #-4]
// .word <new_func>
# else // __aarch64__
0x50, 0x00,
0x00, 0x58, // ldr x16, [pc, #8] ; x16 (aka ip0) is the first
0x00, 0x02,
0x1f, 0xd6, // br x16 ; intra-procedure-call
// .word <new_func.lo> ; scratch register.
// .word <new_func.hi>
# endif
};
const unsigned char* start;
# ifdef __arm__
if (addr & 0x01) {
/* Function is thumb, the actual address of the code is without the
* least significant bit. */
addr--;
/* The arm part of the trampoline needs to be 32-bit aligned */
if (addr & 0x02)
start = trampoline;
else
start = trampoline + 2;
} else {
/* Function is arm, we only need the arm part of the trampoline */
start = trampoline + 6;
}
# else // __aarch64__
start = trampoline;
# endif
size_t len = sizeof(trampoline) - (start - trampoline);
EnsureWritable w(reinterpret_cast<void*>(addr), len + sizeof(void*));
memcpy(reinterpret_cast<void*>(addr), start, len);
*reinterpret_cast<void**>(addr + len) = FunctionPtr(new_func);
__builtin___clear_cache(reinterpret_cast<char*>(addr),
reinterpret_cast<char*>(addr + len + sizeof(void*)));
return true;
# else
return false;
# endif
}
#else
# define sys_sigaction sigaction
template <typename T>
static bool Divert(T func, T new_func) {
return false;
}
#endif
namespace {
/* Clock that only accounts for time spent in the current process. */
static uint64_t ProcessTimeStamp_Now() {
struct timespec ts;
int rv = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
if (rv != 0) {
return 0;
}
uint64_t baseNs = (uint64_t)ts.tv_sec * 1000000000;
return baseNs + (uint64_t)ts.tv_nsec;
}
} // namespace
/* Data structure used to pass data to the temporary signal handler,
* as well as triggering a test crash. */
struct TmpData {
volatile int crash_int;
volatile uint64_t crash_timestamp;
};
SEGVHandler::SEGVHandler()
: initialized(false),
registeredHandler(false),
signalHandlingBroken(true),
signalHandlingSlow(true) {
/* Ensure logging is initialized before the DEBUG_LOG in the test_handler.
* As this constructor runs before the ElfLoader constructor (by effect
* of ElfLoader inheriting from this class), this also initializes on behalf
* of ElfLoader and DebuggerHelper. */
Logging::Init();
/* Initialize oldStack.ss_flags to an invalid value when used to set
* an alternative stack, meaning we haven't got information about the
* original alternative stack and thus don't mean to restore it in
* the destructor. */
oldStack.ss_flags = SS_ONSTACK;
/* Get the current segfault signal handler. */
struct sigaction old_action;
sys_sigaction(SIGSEGV, nullptr, &old_action);
/* Some devices don't provide useful information to their SIGSEGV handlers,
* making it impossible for on-demand decompression to work. To check if
* we're on such a device, setup a temporary handler and deliberately
* trigger a segfault. The handler will set signalHandlingBroken if the
* provided information is bogus.
* Some other devices have a kernel option enabled that makes SIGSEGV handler
* have an overhead so high that it affects how on-demand decompression
* performs. The handler will also set signalHandlingSlow if the triggered
* SIGSEGV took too much time. */
struct sigaction action;
action.sa_sigaction = &SEGVHandler::test_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO | SA_NODEFER;
action.sa_restorer = nullptr;
stackPtr.Assign(MemoryRange::mmap(nullptr, PageSize(), PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (stackPtr.get() == MAP_FAILED) return;
if (sys_sigaction(SIGSEGV, &action, nullptr)) return;
TmpData* data = reinterpret_cast<TmpData*>(stackPtr.get());
data->crash_timestamp = ProcessTimeStamp_Now();
mprotect(stackPtr, stackPtr.GetLength(), PROT_NONE);
data->crash_int = 123;
/* Restore the original segfault signal handler. */
sys_sigaction(SIGSEGV, &old_action, nullptr);
stackPtr.Assign(MAP_FAILED, 0);
}
void SEGVHandler::FinishInitialization() {
/* Ideally, we'd need some locking here, but in practice, we're not
* going to race with another thread. */
initialized = true;
if (signalHandlingBroken || signalHandlingSlow) return;
typedef int (*sigaction_func)(int, const struct sigaction*,
struct sigaction*);
sigaction_func libc_sigaction;
#if defined(ANDROID)
/* Android > 4.4 comes with a sigaction wrapper in a LD_PRELOADed library
* (libsigchain) for ART. That wrapper kind of does the same trick as we
* do, so we need extra care in handling it.
* - Divert the libc's sigaction, assuming the LD_PRELOADed library uses
* it under the hood (which is more or less true according to the source
* of that library, since it's doing a lookup in RTLD_NEXT)
* - With the LD_PRELOADed library in place, all calls to sigaction from
* from system libraries will go to the LD_PRELOADed library.
* - The LD_PRELOADed library calls to sigaction go to our __wrap_sigaction.
* - The calls to sigaction from libraries faulty.lib loads are sent to
* the LD_PRELOADed library.
* In practice, for signal handling, this means:
* - The signal handler registered to the kernel is ours.
* - Our handler redispatches to the LD_PRELOADed library's if there's a
* segfault we don't handle.
* - The LD_PRELOADed library redispatches according to whatever system
* library or faulty.lib-loaded library set with sigaction.
*
* When there is no sigaction wrapper in place:
* - Divert the libc's sigaction.
* - Calls to sigaction from system library and faulty.lib-loaded libraries
* all go to the libc's sigaction, which end up in our __wrap_sigaction.
* - The signal handler registered to the kernel is ours.
* - Our handler redispatches according to whatever system library or
* faulty.lib-loaded library set with sigaction.
*/
void* libc = dlopen("libc.so", RTLD_GLOBAL | RTLD_LAZY);
if (libc) {
/*
* Lollipop bionic only has a small trampoline in sigaction, with the real
* work happening in __sigaction. Divert there instead of sigaction if it
* exists. Bug 1154803
*/
libc_sigaction =
reinterpret_cast<sigaction_func>(dlsym(libc, "__sigaction"));
if (!libc_sigaction) {
libc_sigaction =
reinterpret_cast<sigaction_func>(dlsym(libc, "sigaction"));
}
} else
#endif
{
libc_sigaction = sigaction;
}
if (!Divert(libc_sigaction, __wrap_sigaction)) return;
/* Setup an alternative stack if the already existing one is not big
* enough, or if there is none. */
if (sigaltstack(nullptr, &oldStack) == 0) {
if (oldStack.ss_flags == SS_ONSTACK) oldStack.ss_flags = 0;
if (!oldStack.ss_sp || oldStack.ss_size < stackSize) {
stackPtr.Assign(MemoryRange::mmap(nullptr, stackSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (stackPtr.get() == MAP_FAILED) return;
stack_t stack;
stack.ss_sp = stackPtr;
stack.ss_size = stackSize;
stack.ss_flags = 0;
if (sigaltstack(&stack, nullptr) != 0) return;
}
}
/* Register our own handler, and store the already registered one in
* SEGVHandler's struct sigaction member */
action.sa_sigaction = &SEGVHandler::handler;
action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
registeredHandler = !sys_sigaction(SIGSEGV, &action, &this->action);
}
SEGVHandler::~SEGVHandler() {
/* Restore alternative stack for signals */
if (oldStack.ss_flags != SS_ONSTACK) sigaltstack(&oldStack, nullptr);
/* Restore original signal handler */
if (registeredHandler) sys_sigaction(SIGSEGV, &this->action, nullptr);
}
/* Test handler for a deliberately triggered SIGSEGV that determines whether
* useful information is provided to signal handlers, particularly whether
* si_addr is filled in properly, and whether the segfault handler is called
* quickly enough. */
void SEGVHandler::test_handler(int signum, siginfo_t* info, void* context) {
SEGVHandler& that = ElfLoader::Singleton;
if (signum == SIGSEGV && info && info->si_addr == that.stackPtr.get())
that.signalHandlingBroken = false;
mprotect(that.stackPtr, that.stackPtr.GetLength(), PROT_READ | PROT_WRITE);
TmpData* data = reinterpret_cast<TmpData*>(that.stackPtr.get());
uint64_t latency = ProcessTimeStamp_Now() - data->crash_timestamp;
DEBUG_LOG("SEGVHandler latency: %" PRIu64, latency);
/* See bug 886736 for timings on different devices, 150 µs is reasonably above
* the latency on "working" devices and seems to be short enough to not incur
* a huge overhead to on-demand decompression. */
if (latency <= 150000) that.signalHandlingSlow = false;
}
/* TODO: "properly" handle signal masks and flags */
void SEGVHandler::handler(int signum, siginfo_t* info, void* context) {
// ASSERT(signum == SIGSEGV);
DEBUG_LOG("Caught segmentation fault @%p", info->si_addr);
/* Redispatch to the registered handler */
SEGVHandler& that = ElfLoader::Singleton;
if (that.action.sa_flags & SA_SIGINFO) {
DEBUG_LOG("Redispatching to registered handler @%p",
FunctionPtr(that.action.sa_sigaction));
that.action.sa_sigaction(signum, info, context);
} else if (that.action.sa_handler == SIG_DFL) {
DEBUG_LOG("Redispatching to default handler");
/* Reset the handler to the default one, and trigger it. */
sys_sigaction(signum, &that.action, nullptr);
raise(signum);
} else if (that.action.sa_handler != SIG_IGN) {
DEBUG_LOG("Redispatching to registered handler @%p",
FunctionPtr(that.action.sa_handler));
that.action.sa_handler(signum);
} else {
DEBUG_LOG("Ignoring");
}
}
int SEGVHandler::__wrap_sigaction(int signum, const struct sigaction* act,
struct sigaction* oldact) {
SEGVHandler& that = ElfLoader::Singleton;
/* Use system sigaction() function for all but SIGSEGV signals. */
if (!that.registeredHandler || (signum != SIGSEGV))
return sys_sigaction(signum, act, oldact);
if (oldact) *oldact = that.action;
if (act) that.action = *act;
return 0;
}