mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-05 00:25:27 +00:00
595 lines
23 KiB
C++
595 lines
23 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef js_UbiNode_h
|
|
#define js_UbiNode_h
|
|
|
|
#include "mozilla/Alignment.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/Move.h"
|
|
|
|
#include "jspubtd.h"
|
|
|
|
#include "js/GCAPI.h"
|
|
#include "js/HashTable.h"
|
|
#include "js/TracingAPI.h"
|
|
#include "js/TypeDecls.h"
|
|
#include "js/Vector.h"
|
|
|
|
// JS::ubi::Node
|
|
//
|
|
// JS::ubi::Node is a pointer-like type designed for internal use by heap
|
|
// analysis tools. A ubi::Node can refer to:
|
|
//
|
|
// - a JS value, like a string, object, or symbol;
|
|
// - an internal SpiderMonkey structure, like a shape or a scope chain object
|
|
// - an instance of some embedding-provided type: in Firefox, an XPCOM
|
|
// object, or an internal DOM node class instance
|
|
//
|
|
// A ubi::Node instance provides metadata about its referent, and can
|
|
// enumerate its referent's outgoing edges, so you can implement heap analysis
|
|
// algorithms that walk the graph - finding paths between objects, or
|
|
// computing heap dominator trees, say - using ubi::Node, while remaining
|
|
// ignorant of the details of the types you're operating on.
|
|
//
|
|
// Of course, when it comes to presenting the results in a developer-facing
|
|
// tool, you'll need to stop being ignorant of those details, because you have
|
|
// to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
|
|
// can hand you dynamically checked, properly typed pointers to the original
|
|
// objects via the as<T> method, or generate descriptions of the referent
|
|
// itself.
|
|
//
|
|
// ubi::Node instances are lightweight (two-word) value types. Instances:
|
|
// - compare equal if and only if they refer to the same object;
|
|
// - have hash values that respect their equality relation; and
|
|
// - have serializations that are only equal if the ubi::Nodes are equal.
|
|
//
|
|
// A ubi::Node is only valid for as long as its referent is alive; if its
|
|
// referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
|
|
// that refers to a GC-managed object is not automatically a GC root; if the
|
|
// GC frees or relocates its referent, the ubi::Node becomes invalid. A
|
|
// ubi::Node that refers to a reference-counted object does not bump the
|
|
// reference count.
|
|
//
|
|
// ubi::Node values require no supporting data structures, making them
|
|
// feasible for use in memory-constrained devices --- ideally, the memory
|
|
// requirements of the algorithm which uses them will be the limiting factor,
|
|
// not the demands of ubi::Node itself.
|
|
//
|
|
// One can construct a ubi::Node value given a pointer to a type that ubi::Node
|
|
// supports. In the other direction, one can convert a ubi::Node back to a
|
|
// pointer; these downcasts are checked dynamically. In particular, one can
|
|
// convert a 'JSRuntime *' to a ubi::Node, yielding a node with an outgoing edge
|
|
// for every root registered with the runtime; starting from this, one can walk
|
|
// the entire heap. (Of course, one could also start traversal at any other kind
|
|
// of type to which one has a pointer.)
|
|
//
|
|
//
|
|
// Extending ubi::Node To Handle Your Embedding's Types
|
|
//
|
|
// To add support for a new ubi::Node referent type R, you must define a
|
|
// specialization of the ubi::Concrete template, ubi::Concrete<R>, which
|
|
// inherits from ubi::Base. ubi::Node itself uses the specialization for
|
|
// compile-time information (i.e. the checked conversions between R * and
|
|
// ubi::Node), and the inheritance for run-time dispatching.
|
|
//
|
|
//
|
|
// ubi::Node Exposes Implementation Details
|
|
//
|
|
// In many cases, a JavaScript developer's view of their data differs
|
|
// substantially from its actual implementation. For example, while the
|
|
// ECMAScript specification describes objects as maps from property names to
|
|
// sets of attributes (like ECMAScript's [[Value]]), in practice many objects
|
|
// have only a pointer to a shape, shared with other similar objects, and
|
|
// indexed slots that contain the [[Value]] attributes. As another example, a
|
|
// string produced by concatenating two other strings may sometimes be
|
|
// represented by a "rope", a structure that points to the two original
|
|
// strings.
|
|
//
|
|
|
|
// We intend to use ubi::Node to write tools that report memory usage, so it's
|
|
// important that ubi::Node accurately portray how much memory nodes consume.
|
|
// Thus, for example, when data that apparently belongs to multiple nodes is
|
|
// in fact shared in a common structure, ubi::Node's graph uses a separate
|
|
// node for that shared structure, and presents edges to it from the data's
|
|
// apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
|
|
// shapes and base shapes, and exposes rope string and substring structure,
|
|
// because these optimizations become visible when a tool reports how much
|
|
// memory a structure consumes.
|
|
//
|
|
// However, fine granularity is not a goal. When a particular object is the
|
|
// exclusive owner of a separate block of memory, ubi::Node may present the
|
|
// object and its block as a single node, and add their sizes together when
|
|
// reporting the node's size, as there is no meaningful loss of data in this
|
|
// case. Thus, for example, a ubi::Node referring to a JavaScript object, when
|
|
// asked for the object's size in bytes, includes the object's slot and
|
|
// element arrays' sizes in the total. There is no separate ubi::Node value
|
|
// representing the slot and element arrays, since they are owned exclusively
|
|
// by the object.
|
|
//
|
|
//
|
|
// Presenting Analysis Results To JavaScript Developers
|
|
//
|
|
// If an analysis provides its results in terms of ubi::Node values, a user
|
|
// interface presenting those results will generally need to clean them up
|
|
// before they can be understood by JavaScript developers. For example,
|
|
// JavaScript developers should not need to understand shapes, only JavaScript
|
|
// objects. Similarly, they should not need to understand the distinction
|
|
// between DOM nodes and the JavaScript shadow objects that represent them.
|
|
//
|
|
//
|
|
// Rooting Restrictions
|
|
//
|
|
// At present there is no way to root ubi::Node instances, so instances can't be
|
|
// live across any operation that might GC. Analyses using ubi::Node must either
|
|
// run to completion and convert their results to some other rootable type, or
|
|
// save their intermediate state in some rooted structure if they must GC before
|
|
// they complete. (For algorithms like path-finding and dominator tree
|
|
// computation, we implement the algorithm avoiding any operation that could
|
|
// cause a GC --- and use AutoCheckCannotGC to verify this.)
|
|
//
|
|
// If this restriction prevents us from implementing interesting tools, we may
|
|
// teach the GC how to root ubi::Nodes, fix up hash tables that use them as
|
|
// keys, etc.
|
|
|
|
namespace JS {
|
|
namespace ubi {
|
|
|
|
using mozilla::Maybe;
|
|
|
|
class Edge;
|
|
class EdgeRange;
|
|
|
|
// The base class implemented by each ubi::Node referent type. Subclasses must
|
|
// not add data members to this class.
|
|
class Base {
|
|
friend class Node;
|
|
|
|
// For performance's sake, we'd prefer to avoid a virtual destructor; and
|
|
// an empty constructor seems consistent with the 'lightweight value type'
|
|
// visible behavior we're trying to achieve. But if the destructor isn't
|
|
// virtual, and a subclass overrides it, the subclass's destructor will be
|
|
// ignored. Is there a way to make the compiler catch that error?
|
|
|
|
protected:
|
|
// Space for the actual pointer. Concrete subclasses should define a
|
|
// properly typed 'get' member function to access this.
|
|
void *ptr;
|
|
|
|
explicit Base(void *ptr) : ptr(ptr) { }
|
|
|
|
public:
|
|
bool operator==(const Base &rhs) const {
|
|
// Some compilers will indeed place objects of different types at
|
|
// the same address, so technically, we should include the vtable
|
|
// in this comparison. But it seems unlikely to cause problems in
|
|
// practice.
|
|
return ptr == rhs.ptr;
|
|
}
|
|
bool operator!=(const Base &rhs) const { return !(*this == rhs); }
|
|
|
|
// Return a human-readable name for the referent's type. The result should
|
|
// be statically allocated. (You can use MOZ_UTF16("strings") for this.)
|
|
//
|
|
// This must always return Concrete<T>::concreteTypeName; we use that
|
|
// pointer as a tag for this particular referent type.
|
|
virtual const char16_t *typeName() const = 0;
|
|
|
|
// Return the size of this node, in bytes. Include any structures that this
|
|
// node owns exclusively that are not exposed as their own ubi::Nodes.
|
|
// |mallocSizeOf| should be a malloc block sizing function; see
|
|
// |mfbt/MemoryReporting.h.
|
|
virtual size_t size(mozilla::MallocSizeOf mallocSizeof) const { return 0; }
|
|
|
|
// Return an EdgeRange that initially contains all the referent's outgoing
|
|
// edges. The EdgeRange should be freed with 'js_delete'. (You could use
|
|
// ScopedDJSeletePtr<EdgeRange> to manage it.) On OOM, report an exception
|
|
// on |cx| and return nullptr.
|
|
//
|
|
// If wantNames is true, compute names for edges. Doing so can be expensive
|
|
// in time and memory.
|
|
virtual EdgeRange *edges(JSContext *cx, bool wantNames) const = 0;
|
|
|
|
// Return the Zone to which this node's referent belongs, or nullptr if the
|
|
// referent is not of a type allocated in SpiderMonkey Zones.
|
|
virtual JS::Zone *zone() const { return nullptr; }
|
|
|
|
// Return the compartment for this node. Some ubi::Node referents are not
|
|
// associated with JSCompartments, such as JSStrings (which are associated
|
|
// with Zones). When the referent is not associated with a compartment,
|
|
// nullptr is returned.
|
|
virtual JSCompartment *compartment() const { return nullptr; }
|
|
|
|
private:
|
|
Base(const Base &rhs) = delete;
|
|
Base &operator=(const Base &rhs) = delete;
|
|
};
|
|
|
|
// A traits template with a specialization for each referent type that
|
|
// ubi::Node supports. The specialization must be the concrete subclass of
|
|
// Base that represents a pointer to the referent type. It must also
|
|
// include the members described here.
|
|
template<typename Referent>
|
|
struct Concrete {
|
|
// The specific char16_t array returned by Concrete<T>::typeName.
|
|
static const char16_t concreteTypeName[];
|
|
|
|
// Construct an instance of this concrete class in |storage| referring
|
|
// to |referent|. Implementations typically use a placement 'new'.
|
|
//
|
|
// In some cases, |referent| will contain dynamic type information that
|
|
// identifies it a some more specific subclass of |Referent|. For example,
|
|
// when |Referent| is |JSObject|, then |referent->getClass()| could tell us
|
|
// that it's actually a JSFunction. Similarly, if |Referent| is
|
|
// |nsISupports|, we would like a ubi::Node that knows its final
|
|
// implementation type.
|
|
//
|
|
// So, we delegate the actual construction to this specialization, which
|
|
// knows Referent's details.
|
|
static void construct(void *storage, Referent *referent);
|
|
};
|
|
|
|
// A container for a Base instance; all members simply forward to the contained instance.
|
|
// This container allows us to pass ubi::Node instances by value.
|
|
class Node {
|
|
// Storage in which we allocate Base subclasses.
|
|
mozilla::AlignedStorage2<Base> storage;
|
|
Base *base() { return storage.addr(); }
|
|
const Base *base() const { return storage.addr(); }
|
|
|
|
template<typename T>
|
|
void construct(T *ptr) {
|
|
static_assert(sizeof(Concrete<T>) == sizeof(*base()),
|
|
"ubi::Base specializations must be the same size as ubi::Base");
|
|
Concrete<T>::construct(base(), ptr);
|
|
}
|
|
|
|
public:
|
|
Node() { construct<void>(nullptr); }
|
|
|
|
template<typename T>
|
|
Node(T *ptr) {
|
|
construct(ptr);
|
|
}
|
|
template<typename T>
|
|
Node &operator=(T *ptr) {
|
|
construct(ptr);
|
|
return *this;
|
|
}
|
|
|
|
// We can construct and assign from rooted forms of pointers.
|
|
template<typename T>
|
|
Node(const Rooted<T *> &root) {
|
|
construct(root.get());
|
|
}
|
|
template<typename T>
|
|
Node &operator=(const Rooted<T *> &root) {
|
|
construct(root.get());
|
|
return *this;
|
|
}
|
|
|
|
// Constructors accepting SpiderMonkey's other generic-pointer-ish types.
|
|
// Note that we *do* want an implicit constructor here: JS::Value and
|
|
// JS::ubi::Node are both essentially tagged references to other sorts of
|
|
// objects, so letting conversions happen automatically is appropriate.
|
|
MOZ_IMPLICIT Node(JS::HandleValue value);
|
|
Node(JSGCTraceKind kind, void *ptr);
|
|
|
|
// copy construction and copy assignment just use memcpy, since we know
|
|
// instances contain nothing but a vtable pointer and a data pointer.
|
|
//
|
|
// To be completely correct, concrete classes could provide a virtual
|
|
// 'construct' member function, which we could invoke on rhs to construct an
|
|
// instance in our storage. But this is good enough; there's no need to jump
|
|
// through vtables for copying and assignment that are just going to move
|
|
// two words around. The compiler knows how to optimize memcpy.
|
|
Node(const Node &rhs) {
|
|
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
|
|
}
|
|
|
|
Node &operator=(const Node &rhs) {
|
|
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const Node &rhs) const { return *base() == *rhs.base(); }
|
|
bool operator!=(const Node &rhs) const { return *base() != *rhs.base(); }
|
|
|
|
explicit operator bool() const {
|
|
return base()->ptr != nullptr;
|
|
}
|
|
|
|
template<typename T>
|
|
bool is() const {
|
|
return base()->typeName() == Concrete<T>::concreteTypeName;
|
|
}
|
|
|
|
template<typename T>
|
|
T *as() const {
|
|
MOZ_ASSERT(is<T>());
|
|
return static_cast<T *>(base()->ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
T *asOrNull() const {
|
|
return is<T>() ? static_cast<T *>(base()->ptr) : nullptr;
|
|
}
|
|
|
|
// If this node refers to something that can be represented as a JavaScript
|
|
// value that is safe to expose to JavaScript code, return that value.
|
|
// Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but
|
|
// not all!) JSObjects can be exposed.
|
|
JS::Value exposeToJS() const;
|
|
|
|
const char16_t *typeName() const { return base()->typeName(); }
|
|
JS::Zone *zone() const { return base()->zone(); }
|
|
JSCompartment *compartment() const { return base()->compartment(); }
|
|
|
|
size_t size(mozilla::MallocSizeOf mallocSizeof) const {
|
|
return base()->size(mallocSizeof);
|
|
}
|
|
|
|
EdgeRange *edges(JSContext *cx, bool wantNames = true) const {
|
|
return base()->edges(cx, wantNames);
|
|
}
|
|
|
|
// A hash policy for ubi::Nodes.
|
|
// This simply uses the stock PointerHasher on the ubi::Node's pointer.
|
|
// We specialize DefaultHasher below to make this the default.
|
|
class HashPolicy {
|
|
typedef js::PointerHasher<void *, mozilla::tl::FloorLog2<sizeof(void *)>::value> PtrHash;
|
|
|
|
public:
|
|
typedef Node Lookup;
|
|
|
|
static js::HashNumber hash(const Lookup &l) { return PtrHash::hash(l.base()->ptr); }
|
|
static bool match(const Node &k, const Lookup &l) { return k == l; }
|
|
static void rekey(Node &k, const Node &newKey) { k = newKey; }
|
|
};
|
|
};
|
|
|
|
|
|
// Edge is the abstract base class representing an outgoing edge of a node.
|
|
// Edges are owned by EdgeRanges, and need not have assignment operators or copy
|
|
// constructors.
|
|
//
|
|
// Each Edge class should inherit from this base class, overriding as
|
|
// appropriate.
|
|
class Edge {
|
|
protected:
|
|
Edge() : name(nullptr), referent() { }
|
|
virtual ~Edge() { }
|
|
|
|
public:
|
|
// This edge's name. This may be nullptr, if Node::edges was called with
|
|
// false as the wantNames parameter.
|
|
//
|
|
// The storage is owned by this Edge, and will be freed when this Edge is
|
|
// destructed.
|
|
//
|
|
// (In real life we'll want a better representation for names, to avoid
|
|
// creating tons of strings when the names follow a pattern; and we'll need
|
|
// to think about lifetimes carefully to ensure traversal stays cheap.)
|
|
const char16_t *name;
|
|
|
|
// This edge's referent.
|
|
Node referent;
|
|
|
|
private:
|
|
Edge(const Edge &) = delete;
|
|
Edge &operator=(const Edge &) = delete;
|
|
};
|
|
|
|
|
|
// EdgeRange is an abstract base class for iterating over a node's outgoing
|
|
// edges. (This is modeled after js::HashTable<K,V>::Range.)
|
|
//
|
|
// Concrete instances of this class need not be as lightweight as Node itself,
|
|
// since they're usually only instantiated while iterating over a particular
|
|
// object's edges. For example, a dumb implementation for JS Cells might use
|
|
// JS_TraceChildren to to get the outgoing edges, and then store them in an
|
|
// array internal to the EdgeRange.
|
|
class EdgeRange {
|
|
protected:
|
|
// The current front edge of this range, or nullptr if this range is empty.
|
|
Edge *front_;
|
|
|
|
EdgeRange() : front_(nullptr) { }
|
|
|
|
public:
|
|
virtual ~EdgeRange() { }
|
|
|
|
// True if there are no more edges in this range.
|
|
bool empty() const { return !front_; }
|
|
|
|
// The front edge of this range. This is owned by the EdgeRange, and is
|
|
// only guaranteed to live until the next call to popFront, or until
|
|
// the EdgeRange is destructed.
|
|
const Edge &front() { return *front_; }
|
|
|
|
// Remove the front edge from this range. This should only be called if
|
|
// !empty().
|
|
virtual void popFront() = 0;
|
|
|
|
private:
|
|
EdgeRange(const EdgeRange &) = delete;
|
|
EdgeRange &operator=(const EdgeRange &) = delete;
|
|
};
|
|
|
|
|
|
// A dumb Edge concrete class. All but the most essential members have the
|
|
// default behavior.
|
|
class SimpleEdge : public Edge {
|
|
SimpleEdge(SimpleEdge &) = delete;
|
|
SimpleEdge &operator=(const SimpleEdge &) = delete;
|
|
|
|
public:
|
|
SimpleEdge() : Edge() { }
|
|
|
|
// Construct an initialized SimpleEdge, taking ownership of |name|.
|
|
SimpleEdge(char16_t *name, const Node &referent) {
|
|
this->name = name;
|
|
this->referent = referent;
|
|
}
|
|
~SimpleEdge() {
|
|
js_free(const_cast<char16_t *>(name));
|
|
}
|
|
|
|
// Move construction and assignment.
|
|
SimpleEdge(SimpleEdge &&rhs) {
|
|
name = rhs.name;
|
|
referent = rhs.referent;
|
|
|
|
rhs.name = nullptr;
|
|
}
|
|
SimpleEdge &operator=(SimpleEdge &&rhs) {
|
|
MOZ_ASSERT(&rhs != this);
|
|
this->~SimpleEdge();
|
|
new(this) SimpleEdge(mozilla::Move(rhs));
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
typedef mozilla::Vector<SimpleEdge, 8, js::TempAllocPolicy> SimpleEdgeVector;
|
|
|
|
|
|
// RootList is a class that can be pointed to by a |ubi::Node|, creating a
|
|
// fictional root-of-roots which has edges to every GC root in the JS
|
|
// runtime. Having a single root |ubi::Node| is useful for algorithms written
|
|
// with the assumption that there aren't multiple roots (such as computing
|
|
// dominator trees) and you want a single point of entry. It also ensures that
|
|
// the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise
|
|
// only be used as starting points).
|
|
//
|
|
// RootList::init itself causes a minor collection, but once the list of roots
|
|
// has been created, GC must not occur, as the referent ubi::Nodes are not
|
|
// stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose
|
|
// lifetime must extend at least as long as the RootList itself.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// {
|
|
// mozilla::Maybe<JS::AutoCheckCannotGC> maybeNoGC;
|
|
// JS::ubi::RootList rootList(cx, maybeNoGC);
|
|
// if (!rootList.init())
|
|
// return false;
|
|
//
|
|
// // The AutoCheckCannotGC is guaranteed to exist if init returned true.
|
|
// MOZ_ASSERT(maybeNoGC.isSome());
|
|
//
|
|
// JS::ubi::Node root(&rootList);
|
|
//
|
|
// ...
|
|
// }
|
|
class MOZ_STACK_CLASS RootList {
|
|
Maybe<AutoCheckCannotGC> &noGC;
|
|
JSContext *cx;
|
|
|
|
public:
|
|
SimpleEdgeVector edges;
|
|
bool wantNames;
|
|
|
|
RootList(JSContext *cx, Maybe<AutoCheckCannotGC> &noGC, bool wantNames = false);
|
|
|
|
// Find all GC roots.
|
|
bool init();
|
|
// Find only GC roots in the provided set of |Zone|s.
|
|
bool init(ZoneSet &debuggees);
|
|
// Find only GC roots in the given Debugger object's set of debuggee zones.
|
|
bool init(HandleObject debuggees);
|
|
|
|
// Explicitly add the given Node as a root in this RootList. If wantNames is
|
|
// true, you must pass an edgeName. The RootList does not take ownership of
|
|
// edgeName.
|
|
bool addRoot(Node node, const char16_t *edgeName = nullptr);
|
|
};
|
|
|
|
|
|
// Concrete classes for ubi::Node referent types.
|
|
|
|
template<>
|
|
struct Concrete<RootList> : public Base {
|
|
EdgeRange *edges(JSContext *cx, bool wantNames) const MOZ_OVERRIDE;
|
|
const char16_t *typeName() const MOZ_OVERRIDE { return concreteTypeName; }
|
|
|
|
protected:
|
|
explicit Concrete(RootList *ptr) : Base(ptr) { }
|
|
RootList &get() const { return *static_cast<RootList *>(ptr); }
|
|
|
|
public:
|
|
static const char16_t concreteTypeName[];
|
|
static void construct(void *storage, RootList *ptr) { new (storage) Concrete(ptr); }
|
|
};
|
|
|
|
// A reusable ubi::Concrete specialization base class for types supported by
|
|
// JS_TraceChildren.
|
|
template<typename Referent>
|
|
class TracerConcrete : public Base {
|
|
const char16_t *typeName() const MOZ_OVERRIDE { return concreteTypeName; }
|
|
EdgeRange *edges(JSContext *, bool wantNames) const MOZ_OVERRIDE;
|
|
JS::Zone *zone() const MOZ_OVERRIDE;
|
|
|
|
protected:
|
|
explicit TracerConcrete(Referent *ptr) : Base(ptr) { }
|
|
Referent &get() const { return *static_cast<Referent *>(ptr); }
|
|
|
|
public:
|
|
static const char16_t concreteTypeName[];
|
|
static void construct(void *storage, Referent *ptr) { new (storage) TracerConcrete(ptr); }
|
|
};
|
|
|
|
// For JS_TraceChildren-based types that have a 'compartment' method.
|
|
template<typename Referent>
|
|
class TracerConcreteWithCompartment : public TracerConcrete<Referent> {
|
|
typedef TracerConcrete<Referent> TracerBase;
|
|
JSCompartment *compartment() const MOZ_OVERRIDE;
|
|
|
|
explicit TracerConcreteWithCompartment(Referent *ptr) : TracerBase(ptr) { }
|
|
|
|
public:
|
|
static void construct(void *storage, Referent *ptr) {
|
|
new (storage) TracerConcreteWithCompartment(ptr);
|
|
}
|
|
};
|
|
|
|
// Define specializations for some commonly-used public JSAPI types.
|
|
template<> struct Concrete<JSObject> : TracerConcreteWithCompartment<JSObject> { };
|
|
template<> struct Concrete<JSString> : TracerConcrete<JSString> { };
|
|
template<> struct Concrete<JS::Symbol> : TracerConcrete<JS::Symbol> { };
|
|
template<> struct Concrete<JSScript> : TracerConcreteWithCompartment<JSScript> { };
|
|
|
|
// The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
|
|
template<>
|
|
class Concrete<void> : public Base {
|
|
const char16_t *typeName() const MOZ_OVERRIDE;
|
|
size_t size(mozilla::MallocSizeOf mallocSizeOf) const MOZ_OVERRIDE;
|
|
EdgeRange *edges(JSContext *cx, bool wantNames) const MOZ_OVERRIDE;
|
|
JS::Zone *zone() const MOZ_OVERRIDE;
|
|
JSCompartment *compartment() const MOZ_OVERRIDE;
|
|
|
|
explicit Concrete(void *ptr) : Base(ptr) { }
|
|
|
|
public:
|
|
static void construct(void *storage, void *ptr) { new (storage) Concrete(ptr); }
|
|
static const char16_t concreteTypeName[];
|
|
};
|
|
|
|
|
|
} // namespace ubi
|
|
} // namespace JS
|
|
|
|
namespace js {
|
|
|
|
// Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
|
|
template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };
|
|
|
|
} // namespace js
|
|
|
|
#endif // js_UbiNode_h
|