gecko-dev/mfbt/Variant.h

597 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* A template class for tagged unions. */
#include <new>
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Move.h"
#ifndef mozilla_Variant_h
#define mozilla_Variant_h
namespace mozilla {
template<typename... Ts>
class Variant;
namespace detail {
// MaxSizeOf computes the maximum sizeof(T) for each T in Ts.
template<typename T, typename... Ts>
struct MaxSizeOf
{
static const size_t size = sizeof(T) > MaxSizeOf<Ts...>::size
? sizeof(T)
: MaxSizeOf<Ts...>::size;
};
template<typename T>
struct MaxSizeOf<T>
{
static const size_t size = sizeof(T);
};
// The `IsVariant` helper is used in conjunction with static_assert and
// `mozilla::EnableIf` to catch passing non-variant types to `Variant::is<T>()`
// and friends at compile time, rather than at runtime. It ensures that the
// given type `Needle` is one of the types in the set of types `Haystack`.
template<typename Needle, typename... Haystack>
struct IsVariant;
template<typename Needle>
struct IsVariant<Needle>
{
static const bool value = false;
};
template<typename Needle, typename... Haystack>
struct IsVariant<Needle, Needle, Haystack...>
{
static const bool value = true;
};
template<typename Needle, typename T, typename... Haystack>
struct IsVariant<Needle, T, Haystack...> : public IsVariant<Needle, Haystack...> { };
/// SelectVariantTypeHelper is used in the implementation of SelectVariantType.
template<typename T, typename... Variants>
struct SelectVariantTypeHelper;
template<typename T>
struct SelectVariantTypeHelper<T>
{ };
template<typename T, typename... Variants>
struct SelectVariantTypeHelper<T, T, Variants...>
{
typedef T Type;
};
template<typename T, typename... Variants>
struct SelectVariantTypeHelper<T, const T, Variants...>
{
typedef const T Type;
};
template<typename T, typename... Variants>
struct SelectVariantTypeHelper<T, const T&, Variants...>
{
typedef const T& Type;
};
template<typename T, typename... Variants>
struct SelectVariantTypeHelper<T, T&&, Variants...>
{
typedef T&& Type;
};
template<typename T, typename Head, typename... Variants>
struct SelectVariantTypeHelper<T, Head, Variants...>
: public SelectVariantTypeHelper<T, Variants...>
{ };
/**
* SelectVariantType takes a type T and a list of variant types Variants and
* yields a type Type, selected from Variants, that can store a value of type T
* or a reference to type T. If no such type was found, Type is not defined.
*/
template <typename T, typename... Variants>
struct SelectVariantType
: public SelectVariantTypeHelper<typename RemoveConst<typename RemoveReference<T>::Type>::Type,
Variants...>
{ };
// TagHelper gets the given sentinel tag value for the given type T. This has to
// be split out from VariantImplementation because you can't nest a partial template
// specialization within a template class.
template<size_t N, typename T, typename U, typename Next, bool isMatch>
struct TagHelper;
// In the case where T != U, we continue recursion.
template<size_t N, typename T, typename U, typename Next>
struct TagHelper<N, T, U, Next, false>
{
static size_t tag() { return Next::template tag<U>(); }
};
// In the case where T == U, return the tag number.
template<size_t N, typename T, typename U, typename Next>
struct TagHelper<N, T, U, Next, true>
{
static size_t tag() { return N; }
};
// The VariantImplementation template provides the guts of mozilla::Variant. We create
// an VariantImplementation for each T in Ts... which handles construction,
// destruction, etc for when the Variant's type is T. If the Variant's type is
// not T, it punts the request on to the next VariantImplementation.
template<size_t N, typename... Ts>
struct VariantImplementation;
// The singly typed Variant / recursion base case.
template<size_t N, typename T>
struct VariantImplementation<N, T> {
template<typename U>
static size_t tag() {
static_assert(mozilla::IsSame<T, U>::value,
"mozilla::Variant: tag: bad type!");
return N;
}
template<typename Variant>
static void copyConstruct(void* aLhs, const Variant& aRhs) {
new (aLhs) T(aRhs.template as<T>());
}
template<typename Variant>
static void moveConstruct(void* aLhs, Variant&& aRhs) {
new (aLhs) T(aRhs.template extract<T>());
}
template<typename Variant>
static void destroy(Variant& aV) {
aV.template as<T>().~T();
}
template<typename Variant>
static bool
equal(const Variant& aLhs, const Variant& aRhs) {
return aLhs.template as<T>() == aRhs.template as<T>();
}
template<typename Matcher, typename ConcreteVariant,
typename ReturnType = typename RemoveReference<Matcher>::Type::ReturnType>
static ReturnType
match(Matcher&& aMatcher, ConcreteVariant& aV) {
return aMatcher.match(aV.template as<T>());
}
};
// VariantImplementation for some variant type T.
template<size_t N, typename T, typename... Ts>
struct VariantImplementation<N, T, Ts...>
{
// The next recursive VariantImplementation.
using Next = VariantImplementation<N + 1, Ts...>;
template<typename U>
static size_t tag() {
return TagHelper<N, T, U, Next, IsSame<T, U>::value>::tag();
}
template<typename Variant>
static void copyConstruct(void* aLhs, const Variant& aRhs) {
if (aRhs.template is<T>()) {
new (aLhs) T(aRhs.template as<T>());
} else {
Next::copyConstruct(aLhs, aRhs);
}
}
template<typename Variant>
static void moveConstruct(void* aLhs, Variant&& aRhs) {
if (aRhs.template is<T>()) {
new (aLhs) T(aRhs.template extract<T>());
} else {
Next::moveConstruct(aLhs, aRhs);
}
}
template<typename Variant>
static void destroy(Variant& aV) {
if (aV.template is<T>()) {
aV.template as<T>().~T();
} else {
Next::destroy(aV);
}
}
template<typename Variant>
static bool equal(const Variant& aLhs, const Variant& aRhs) {
if (aLhs.template is<T>()) {
MOZ_ASSERT(aRhs.template is<T>());
return aLhs.template as<T>() == aRhs.template as<T>();
} else {
return Next::equal(aLhs, aRhs);
}
}
template<typename Matcher, typename ConcreteVariant,
typename ReturnType = typename RemoveReference<Matcher>::Type::ReturnType>
static ReturnType
match(Matcher&& aMatcher, ConcreteVariant& aV)
{
if (aV.template is<T>()) {
return aMatcher.match(aV.template as<T>());
} else {
// If you're seeing compilation errors here like "no matching
// function for call to 'match'" then that means that the
// Matcher doesn't exhaust all variant types. There must exist a
// Matcher::match(T&) for every variant type T.
//
// If you're seeing compilation errors here like "cannot
// initialize return object of type <...> with an rvalue of type
// <...>" then that means that the Matcher::match(T&) overloads
// are returning different types. They must all return the same
// Matcher::ReturnType type.
return Next::match(aMatcher, aV);
}
}
};
/**
* AsVariantTemporary stores a value of type T to allow construction of a
* Variant value via type inference. Because T is copied and there's no
* guarantee that the copy can be elided, AsVariantTemporary is best used with
* primitive or very small types.
*/
template <typename T>
struct AsVariantTemporary
{
explicit AsVariantTemporary(const T& aValue)
: mValue(aValue)
{}
template<typename U>
explicit AsVariantTemporary(U&& aValue)
: mValue(Forward<U>(aValue))
{}
AsVariantTemporary(const AsVariantTemporary& aOther)
: mValue(aOther.mValue)
{}
AsVariantTemporary(AsVariantTemporary&& aOther)
: mValue(Move(aOther.mValue))
{}
AsVariantTemporary() = delete;
void operator=(const AsVariantTemporary&) = delete;
void operator=(AsVariantTemporary&&) = delete;
typename RemoveConst<typename RemoveReference<T>::Type>::Type mValue;
};
} // namespace detail
/**
* # mozilla::Variant
*
* A variant / tagged union / heterogenous disjoint union / sum-type template
* class. Similar in concept to (but not derived from) `boost::variant`.
*
* Sometimes, you may wish to use a C union with non-POD types. However, this is
* forbidden in C++ because it is not clear which type in the union should have
* its constructor and destructor run on creation and deletion
* respectively. This is the problem that `mozilla::Variant` solves.
*
* ## Usage
*
* A `mozilla::Variant` instance is constructed (via move or copy) from one of
* its variant types (ignoring const and references). It does *not* support
* construction from subclasses of variant types or types that coerce to one of
* the variant types.
*
* Variant<char, uint32_t> v1('a');
* Variant<UniquePtr<A>, B, C> v2(MakeUnique<A>());
*
* Because specifying the full type of a Variant value is often verbose,
* AsVariant() can be used to construct a Variant value using type inference in
* contexts such as expressions or when returning values from functions. Because
* AsVariant() must copy or move the value into a temporary and this cannot
* necessarily be elided by the compiler, it's mostly appropriate only for use
* with primitive or very small types.
*
*
* Variant<char, uint32_t> Foo() { return AsVariant('x'); }
* // ...
* Variant<char, uint32_t> v1 = Foo(); // v1 holds char('x').
*
* All access to the contained value goes through type-safe accessors.
*
* void
* Foo(Variant<A, B, C> v)
* {
* if (v.is<A>()) {
* A& ref = v.as<A>();
* ...
* } else {
* ...
* }
* }
*
* Attempting to use the contained value as type `T1` when the `Variant`
* instance contains a value of type `T2` causes an assertion failure.
*
* A a;
* Variant<A, B, C> v(a);
* v.as<B>(); // <--- Assertion failure!
*
* Trying to use a `Variant<Ts...>` instance as some type `U` that is not a
* member of the set of `Ts...` is a compiler error.
*
* A a;
* Variant<A, B, C> v(a);
* v.as<SomeRandomType>(); // <--- Compiler error!
*
* Additionally, you can turn a `Variant` that `is<T>` into a `T` by moving it
* out of the containing `Variant` instance with the `extract<T>` method:
*
* Variant<UniquePtr<A>, B, C> v(MakeUnique<A>());
* auto ptr = v.extract<UniquePtr<A>>();
*
* Finally, you can exhaustively match on the contained variant and branch into
* different code paths depending which type is contained. This is preferred to
* manually checking every variant type T with is<T>() because it provides
* compile-time checking that you handled every type, rather than runtime
* assertion failures.
*
* // Bad!
* char* foo(Variant<A, B, C, D>& v) {
* if (v.is<A>()) {
* return ...;
* } else if (v.is<B>()) {
* return ...;
* } else {
* return doSomething(v.as<C>()); // Forgot about case D!
* }
* }
*
* // Good!
* struct FooMatcher
* {
* using ReturnType = char*;
* ReturnType match(A& a) { ... }
* ReturnType match(B& b) { ... }
* ReturnType match(C& c) { ... }
* ReturnType match(D& d) { ... } // Compile-time error to forget D!
* }
* char* foo(Variant<A, B, C, D>& v) {
* return v.match(FooMatcher());
* }
*
* ## Examples
*
* A tree is either an empty leaf, or a node with a value and two children:
*
* struct Leaf { };
*
* template<typename T>
* struct Node
* {
* T value;
* Tree<T>* left;
* Tree<T>* right;
* };
*
* template<typename T>
* using Tree = Variant<Leaf, Node<T>>;
*
* A copy-on-write string is either a non-owning reference to some existing
* string, or an owning reference to our copy:
*
* class CopyOnWriteString
* {
* Variant<const char*, UniquePtr<char[]>> string;
*
* ...
* };
*/
template<typename... Ts>
class Variant
{
using Impl = detail::VariantImplementation<0, Ts...>;
using RawData = AlignedStorage<detail::MaxSizeOf<Ts...>::size>;
// Each type is given a unique size_t sentinel. This tag lets us keep track of
// the contained variant value's type.
size_t tag;
// Raw storage for the contained variant value.
RawData raw;
void* ptr() {
return reinterpret_cast<void*>(&raw);
}
public:
/** Perfect forwarding construction for some variant type T. */
template<typename RefT,
// RefT captures both const& as well as && (as intended, to support
// perfect forwarding), so we have to remove those qualifiers here
// when ensuring that T is a variant of this type, and getting T's
// tag, etc.
typename T = typename detail::SelectVariantType<RefT, Ts...>::Type>
explicit Variant(RefT&& aT)
: tag(Impl::template tag<T>())
{
new (ptr()) T(Forward<RefT>(aT));
}
/**
* Constructs this Variant from an AsVariantTemporary<T> such that T can be
* stored in one of the types allowable in this Variant. This is used in the
* implementation of AsVariant().
*/
template<typename RefT,
typename T = typename detail::SelectVariantType<RefT, Ts...>::Type>
MOZ_IMPLICIT Variant(detail::AsVariantTemporary<RefT>&& aValue)
: tag(Impl::template tag<T>())
{
new (ptr()) T(Move(aValue.mValue));
}
/** Copy construction. */
Variant(const Variant& aRhs)
: tag(aRhs.tag)
{
Impl::copyConstruct(ptr(), aRhs);
}
/** Move construction. */
Variant(Variant&& aRhs)
: tag(aRhs.tag)
{
Impl::moveConstruct(ptr(), Move(aRhs));
}
/** Copy assignment. */
Variant& operator=(const Variant& aRhs) {
MOZ_ASSERT(&aRhs != this, "self-assign disallowed");
this->~Variant();
new (this) Variant(aRhs);
return *this;
}
/** Move assignment. */
Variant& operator=(Variant&& aRhs) {
MOZ_ASSERT(&aRhs != this, "self-assign disallowed");
this->~Variant();
new (this) Variant(Move(aRhs));
return *this;
}
/** Move assignment from AsVariant(). */
template <typename T>
Variant& operator=(detail::AsVariantTemporary<T>&& aValue)
{
this->~Variant();
new (this) Variant(Move(aValue));
return *this;
}
~Variant()
{
Impl::destroy(*this);
}
/** Check which variant type is currently contained. */
template<typename T>
bool is() const {
static_assert(detail::IsVariant<T, Ts...>::value,
"provided a type not found in this Variant's type list");
return Impl::template tag<T>() == tag;
}
/**
* Operator == overload that defers to the variant type's operator==
* implementation if the rhs is tagged as the same type as this one.
*/
bool operator==(const Variant& aRhs) const {
return tag == aRhs.tag && Impl::equal(*this, aRhs);
}
/**
* Operator != overload that defers to the negation of the variant type's
* operator== implementation if the rhs is tagged as the same type as this
* one.
*/
bool operator!=(const Variant& aRhs) const {
return !(*this == aRhs);
}
// Accessors for working with the contained variant value.
/** Mutable reference. */
template<typename T>
T& as() {
static_assert(detail::IsVariant<T, Ts...>::value,
"provided a type not found in this Variant's type list");
MOZ_ASSERT(is<T>());
return *reinterpret_cast<T*>(&raw);
}
/** Immutable const reference. */
template<typename T>
const T& as() const {
static_assert(detail::IsVariant<T, Ts...>::value,
"provided a type not found in this Variant's type list");
MOZ_ASSERT(is<T>());
return *reinterpret_cast<const T*>(&raw);
}
/**
* Extract the contained variant value from this container into a temporary
* value. On completion, the value in the variant will be in a
* safely-destructible state, as determined by the behavior of T's move
* constructor when provided the variant's internal value.
*/
template<typename T>
T extract() {
static_assert(detail::IsVariant<T, Ts...>::value,
"provided a type not found in this Variant's type list");
MOZ_ASSERT(is<T>());
return T(Move(as<T>()));
}
// Exhaustive matching of all variant types on the contained value.
/** Match on an immutable const reference. */
template<typename Matcher>
typename RemoveReference<Matcher>::Type::ReturnType
match(Matcher&& aMatcher) const {
return Impl::match(aMatcher, *this);
}
/** Match on a mutable non-const reference. */
template<typename Matcher>
typename RemoveReference<Matcher>::Type::ReturnType
match(Matcher&& aMatcher) {
return Impl::match(aMatcher, *this);
}
};
/*
* AsVariant() is used to construct a Variant<T,...> value containing the
* provided T value using type inference. It can be used to construct Variant
* values in expressions or return them from functions without specifying the
* entire Variant type.
*
* Because AsVariant() must copy or move the value into a temporary and this
* cannot necessarily be elided by the compiler, it's mostly appropriate only
* for use with primitive or very small types.
*
* AsVariant() returns a AsVariantTemporary value which is implicitly
* convertible to any Variant that can hold a value of type T.
*/
template<typename T>
detail::AsVariantTemporary<T>
AsVariant(T&& aValue)
{
return detail::AsVariantTemporary<T>(Forward<T>(aValue));
}
} // namespace mozilla
#endif /* mozilla_Variant_h */