mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-29 15:52:07 +00:00
209 lines
6.0 KiB
C++
209 lines
6.0 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla code.
|
|
*
|
|
* The Initial Developer of the Original Code is the Mozilla Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2009
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Chris Jones <jones.chris.g@gmail.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
//
|
|
// Implement TimeStamp::Now() with POSIX clocks.
|
|
//
|
|
// The "tick" unit for POSIX clocks is simply a nanosecond, as this is
|
|
// the smallest unit of time representable by struct timespec. That
|
|
// doesn't mean that a nanosecond is the resolution of TimeDurations
|
|
// obtained with this API; see TimeDuration::Resolution;
|
|
//
|
|
|
|
#include <time.h>
|
|
|
|
#include "mozilla/TimeStamp.h"
|
|
|
|
// Estimate of the smallest duration of time we can measure.
|
|
static PRUint64 sResolution;
|
|
static PRUint64 sResolutionSigDigs;
|
|
|
|
static const PRUint16 kNsPerUs = 1000;
|
|
static const PRUint64 kNsPerMs = 1000000;
|
|
static const PRUint64 kNsPerSec = 1000000000;
|
|
static const double kNsPerMsd = 1000000.0;
|
|
static const double kNsPerSecd = 1000000000.0;
|
|
|
|
static PRUint64
|
|
TimespecToNs(const struct timespec& ts)
|
|
{
|
|
PRUint64 baseNs = PRUint64(ts.tv_sec) * kNsPerSec;
|
|
return baseNs + PRUint64(ts.tv_nsec);
|
|
}
|
|
|
|
static PRUint64
|
|
ClockTimeNs()
|
|
{
|
|
struct timespec ts;
|
|
// this can't fail: we know &ts is valid, and TimeStamp::Init()
|
|
// checks that CLOCK_MONOTONIC is supported (and aborts if not)
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
|
|
// tv_sec is defined to be relative to an arbitrary point in time,
|
|
// but it would be madness for that point in time to be earlier than
|
|
// the Epoch. So we can safely assume that even if time_t is 32
|
|
// bits, tv_sec won't overflow while the browser is open. Revisit
|
|
// this argument if we're still building with 32-bit time_t around
|
|
// the year 2037.
|
|
return TimespecToNs(ts);
|
|
}
|
|
|
|
static PRUint64
|
|
ClockResolutionNs()
|
|
{
|
|
// NB: why not rely on clock_getres()? Two reasons: (i) it might
|
|
// lie, and (ii) it might return an "ideal" resolution that while
|
|
// theoretically true, could never be measured in practice. Since
|
|
// clock_gettime() likely involves a system call on your platform,
|
|
// the "actual" timing resolution shouldn't be lower than syscall
|
|
// overhead.
|
|
|
|
PRUint64 start = ClockTimeNs();
|
|
PRUint64 end = ClockTimeNs();
|
|
PRUint64 minres = (end - start);
|
|
|
|
// 10 total trials is arbitrary: what we're trying to avoid by
|
|
// looping is getting unlucky and being interrupted by a context
|
|
// switch or signal, or being bitten by paging/cache effects
|
|
for (int i = 0; i < 9; ++i) {
|
|
start = ClockTimeNs();
|
|
end = ClockTimeNs();
|
|
|
|
PRUint64 candidate = (start - end);
|
|
if (candidate < minres)
|
|
minres = candidate;
|
|
}
|
|
|
|
if (0 == minres) {
|
|
// measurable resolution is either incredibly low, ~1ns, or very
|
|
// high. fall back on clock_getres()
|
|
struct timespec ts;
|
|
if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) {
|
|
minres = TimespecToNs(ts);
|
|
}
|
|
}
|
|
|
|
if (0 == minres) {
|
|
// clock_getres probably failed. fall back on NSPR's resolution
|
|
// assumption
|
|
minres = 1 * kNsPerMs;
|
|
}
|
|
|
|
return minres;
|
|
}
|
|
|
|
|
|
namespace mozilla {
|
|
|
|
double
|
|
TimeDuration::ToSeconds() const
|
|
{
|
|
return double(mValue) / kNsPerSecd;
|
|
}
|
|
|
|
double
|
|
TimeDuration::ToSecondsSigDigits() const
|
|
{
|
|
// don't report a value < mResolution ...
|
|
PRInt64 valueSigDigs = sResolution * (mValue / sResolution);
|
|
// and chop off insignificant digits
|
|
valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
|
|
return double(valueSigDigs) / kNsPerSecd;
|
|
}
|
|
|
|
TimeDuration
|
|
TimeDuration::FromMilliseconds(double aMilliseconds)
|
|
{
|
|
return TimeDuration::FromTicks(aMilliseconds * kNsPerMsd);
|
|
}
|
|
|
|
TimeDuration
|
|
TimeDuration::Resolution()
|
|
{
|
|
return TimeDuration::FromTicks(PRInt64(sResolution));
|
|
}
|
|
|
|
struct TimeStampInitialization
|
|
{
|
|
TimeStampInitialization() {
|
|
TimeStamp::Startup();
|
|
}
|
|
~TimeStampInitialization() {
|
|
TimeStamp::Shutdown();
|
|
}
|
|
};
|
|
|
|
static TimeStampInitialization initOnce;
|
|
static PRBool gInitialized = PR_FALSE;
|
|
|
|
nsresult
|
|
TimeStamp::Startup()
|
|
{
|
|
if (gInitialized)
|
|
return NS_OK;
|
|
|
|
struct timespec dummy;
|
|
if (0 != clock_gettime(CLOCK_MONOTONIC, &dummy))
|
|
NS_RUNTIMEABORT("CLOCK_MONOTONIC is absent!");
|
|
|
|
sResolution = ClockResolutionNs();
|
|
|
|
// find the number of significant digits in sResolution, for the
|
|
// sake of ToSecondsSigDigits()
|
|
for (sResolutionSigDigs = 1;
|
|
!(sResolutionSigDigs == sResolution
|
|
|| 10*sResolutionSigDigs > sResolution);
|
|
sResolutionSigDigs *= 10);
|
|
|
|
gInitialized = PR_TRUE;
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
TimeStamp::Shutdown()
|
|
{
|
|
}
|
|
|
|
TimeStamp
|
|
TimeStamp::Now()
|
|
{
|
|
return TimeStamp(ClockTimeNs());
|
|
}
|
|
|
|
}
|