mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-02 01:48:05 +00:00
2067 lines
57 KiB
C++
2067 lines
57 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef XP_WIN
|
|
#if defined(MOZ_OPTIMIZE) && !defined(MOZ_PROFILING)
|
|
#error "Optimized, DMD-enabled builds on Windows must be built with --enable-profiling"
|
|
#endif
|
|
#include <windows.h>
|
|
#include <process.h>
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#ifdef ANDROID
|
|
#include <android/log.h>
|
|
#endif
|
|
|
|
#include "nscore.h"
|
|
#include "mozilla/StackWalk.h"
|
|
|
|
#include "js/HashTable.h"
|
|
#include "js/Vector.h"
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/HashFunctions.h"
|
|
#include "mozilla/IntegerPrintfMacros.h"
|
|
#include "mozilla/JSONWriter.h"
|
|
#include "mozilla/Likely.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
|
|
// CodeAddressService is defined entirely in the header, so this does not make
|
|
// DMD depend on XPCOM's object file.
|
|
#include "CodeAddressService.h"
|
|
|
|
// replace_malloc.h needs to be included before replace_malloc_bridge.h,
|
|
// which DMD.h includes, so DMD.h needs to be included after replace_malloc.h.
|
|
// MOZ_REPLACE_ONLY_MEMALIGN saves us from having to define
|
|
// replace_{posix_memalign,aligned_alloc,valloc}. It requires defining
|
|
// PAGE_SIZE. Nb: sysconf() is expensive, but it's only used for (the obsolete
|
|
// and rarely used) valloc.
|
|
#define MOZ_REPLACE_ONLY_MEMALIGN 1
|
|
|
|
#ifndef PAGE_SIZE
|
|
#define DMD_DEFINED_PAGE_SIZE
|
|
#ifdef XP_WIN
|
|
#define PAGE_SIZE GetPageSize()
|
|
static long GetPageSize()
|
|
{
|
|
SYSTEM_INFO si;
|
|
GetSystemInfo(&si);
|
|
return si.dwPageSize;
|
|
}
|
|
#else // XP_WIN
|
|
#define PAGE_SIZE sysconf(_SC_PAGESIZE)
|
|
#endif // XP_WIN
|
|
#endif // PAGE_SIZE
|
|
#include "replace_malloc.h"
|
|
#undef MOZ_REPLACE_ONLY_MEMALIGN
|
|
#ifdef DMD_DEFINED_PAGE_SIZE
|
|
#undef DMD_DEFINED_PAGE_SIZE
|
|
#undef PAGE_SIZE
|
|
#endif // DMD_DEFINED_PAGE_SIZE
|
|
|
|
#include "DMD.h"
|
|
|
|
namespace mozilla {
|
|
namespace dmd {
|
|
|
|
class DMDBridge : public ReplaceMallocBridge
|
|
{
|
|
virtual DMDFuncs* GetDMDFuncs() override;
|
|
};
|
|
|
|
static DMDBridge* gDMDBridge;
|
|
static DMDFuncs gDMDFuncs;
|
|
|
|
DMDFuncs*
|
|
DMDBridge::GetDMDFuncs()
|
|
{
|
|
return &gDMDFuncs;
|
|
}
|
|
|
|
inline void
|
|
StatusMsg(const char* aFmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, aFmt);
|
|
gDMDFuncs.StatusMsg(aFmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Utilities
|
|
//---------------------------------------------------------------------------
|
|
|
|
#ifndef DISALLOW_COPY_AND_ASSIGN
|
|
#define DISALLOW_COPY_AND_ASSIGN(T) \
|
|
T(const T&); \
|
|
void operator=(const T&)
|
|
#endif
|
|
|
|
static const malloc_table_t* gMallocTable = nullptr;
|
|
|
|
// Whether DMD finished initializing.
|
|
static bool gIsDMDInitialized = false;
|
|
|
|
// This provides infallible allocations (they abort on OOM). We use it for all
|
|
// of DMD's own allocations, which fall into the following three cases.
|
|
//
|
|
// - Direct allocations (the easy case).
|
|
//
|
|
// - Indirect allocations in js::{Vector,HashSet,HashMap} -- this class serves
|
|
// as their AllocPolicy.
|
|
//
|
|
// - Other indirect allocations (e.g. MozStackWalk) -- see the comments on
|
|
// Thread::mBlockIntercepts and in replace_malloc for how these work.
|
|
//
|
|
// It would be nice if we could use the InfallibleAllocPolicy from mozalloc,
|
|
// but DMD cannot use mozalloc.
|
|
//
|
|
class InfallibleAllocPolicy
|
|
{
|
|
static void ExitOnFailure(const void* aP);
|
|
|
|
public:
|
|
template <typename T>
|
|
static T* maybe_pod_malloc(size_t aNumElems)
|
|
{
|
|
if (aNumElems & mozilla::tl::MulOverflowMask<sizeof(T)>::value)
|
|
return nullptr;
|
|
return (T*)gMallocTable->malloc(aNumElems * sizeof(T));
|
|
}
|
|
|
|
template <typename T>
|
|
static T* maybe_pod_calloc(size_t aNumElems)
|
|
{
|
|
return (T*)gMallocTable->calloc(aNumElems, sizeof(T));
|
|
}
|
|
|
|
template <typename T>
|
|
static T* maybe_pod_realloc(T* aPtr, size_t aOldSize, size_t aNewSize)
|
|
{
|
|
if (aNewSize & mozilla::tl::MulOverflowMask<sizeof(T)>::value)
|
|
return nullptr;
|
|
return (T*)gMallocTable->realloc(aPtr, aNewSize * sizeof(T));
|
|
}
|
|
|
|
static void* malloc_(size_t aSize)
|
|
{
|
|
void* p = gMallocTable->malloc(aSize);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
template <typename T>
|
|
static T* pod_malloc(size_t aNumElems)
|
|
{
|
|
T* p = maybe_pod_malloc<T>(aNumElems);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
static void* calloc_(size_t aSize)
|
|
{
|
|
void* p = gMallocTable->calloc(1, aSize);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
template <typename T>
|
|
static T* pod_calloc(size_t aNumElems)
|
|
{
|
|
T* p = maybe_pod_calloc<T>(aNumElems);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
// This realloc_ is the one we use for direct reallocs within DMD.
|
|
static void* realloc_(void* aPtr, size_t aNewSize)
|
|
{
|
|
void* p = gMallocTable->realloc(aPtr, aNewSize);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
// This realloc_ is required for this to be a JS container AllocPolicy.
|
|
template <typename T>
|
|
static T* pod_realloc(T* aPtr, size_t aOldSize, size_t aNewSize)
|
|
{
|
|
T* p = maybe_pod_realloc(aPtr, aOldSize, aNewSize);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
static void* memalign_(size_t aAlignment, size_t aSize)
|
|
{
|
|
void* p = gMallocTable->memalign(aAlignment, aSize);
|
|
ExitOnFailure(p);
|
|
return p;
|
|
}
|
|
|
|
static void free_(void* aPtr) { gMallocTable->free(aPtr); }
|
|
|
|
static char* strdup_(const char* aStr)
|
|
{
|
|
char* s = (char*) InfallibleAllocPolicy::malloc_(strlen(aStr) + 1);
|
|
strcpy(s, aStr);
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
static T* new_()
|
|
{
|
|
void* mem = malloc_(sizeof(T));
|
|
ExitOnFailure(mem);
|
|
return new (mem) T;
|
|
}
|
|
|
|
template <class T, typename P1>
|
|
static T* new_(P1 p1)
|
|
{
|
|
void* mem = malloc_(sizeof(T));
|
|
ExitOnFailure(mem);
|
|
return new (mem) T(p1);
|
|
}
|
|
|
|
template <class T>
|
|
static void delete_(T *p)
|
|
{
|
|
if (p) {
|
|
p->~T();
|
|
InfallibleAllocPolicy::free_(p);
|
|
}
|
|
}
|
|
|
|
static void reportAllocOverflow() { ExitOnFailure(nullptr); }
|
|
bool checkSimulatedOOM() const { return true; }
|
|
};
|
|
|
|
// This is only needed because of the |const void*| vs |void*| arg mismatch.
|
|
static size_t
|
|
MallocSizeOf(const void* aPtr)
|
|
{
|
|
return gMallocTable->malloc_usable_size(const_cast<void*>(aPtr));
|
|
}
|
|
|
|
void
|
|
DMDFuncs::StatusMsg(const char* aFmt, va_list aAp)
|
|
{
|
|
#ifdef ANDROID
|
|
#ifdef MOZ_B2G_LOADER
|
|
// Don't call __android_log_vprint() during initialization, or the magic file
|
|
// descriptors will be occupied by android logcat.
|
|
if (gIsDMDInitialized)
|
|
#endif
|
|
__android_log_vprint(ANDROID_LOG_INFO, "DMD", aFmt, aAp);
|
|
#else
|
|
// The +64 is easily enough for the "DMD[<pid>] " prefix and the NUL.
|
|
char* fmt = (char*) InfallibleAllocPolicy::malloc_(strlen(aFmt) + 64);
|
|
sprintf(fmt, "DMD[%d] %s", getpid(), aFmt);
|
|
vfprintf(stderr, fmt, aAp);
|
|
InfallibleAllocPolicy::free_(fmt);
|
|
#endif
|
|
}
|
|
|
|
/* static */ void
|
|
InfallibleAllocPolicy::ExitOnFailure(const void* aP)
|
|
{
|
|
if (!aP) {
|
|
MOZ_CRASH("DMD out of memory; aborting");
|
|
}
|
|
}
|
|
|
|
static double
|
|
Percent(size_t part, size_t whole)
|
|
{
|
|
return (whole == 0) ? 0 : 100 * (double)part / whole;
|
|
}
|
|
|
|
// Commifies the number.
|
|
static char*
|
|
Show(size_t n, char* buf, size_t buflen)
|
|
{
|
|
int nc = 0, i = 0, lasti = buflen - 2;
|
|
buf[lasti + 1] = '\0';
|
|
if (n == 0) {
|
|
buf[lasti - i] = '0';
|
|
i++;
|
|
} else {
|
|
while (n > 0) {
|
|
if (((i - nc) % 3) == 0 && i != 0) {
|
|
buf[lasti - i] = ',';
|
|
i++;
|
|
nc++;
|
|
}
|
|
buf[lasti - i] = static_cast<char>((n % 10) + '0');
|
|
i++;
|
|
n /= 10;
|
|
}
|
|
}
|
|
int firstCharIndex = lasti - i + 1;
|
|
|
|
MOZ_ASSERT(firstCharIndex >= 0);
|
|
return &buf[firstCharIndex];
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Options (Part 1)
|
|
//---------------------------------------------------------------------------
|
|
|
|
class Options
|
|
{
|
|
template <typename T>
|
|
struct NumOption
|
|
{
|
|
const T mDefault;
|
|
const T mMax;
|
|
T mActual;
|
|
NumOption(T aDefault, T aMax)
|
|
: mDefault(aDefault), mMax(aMax), mActual(aDefault)
|
|
{}
|
|
};
|
|
|
|
// DMD has several modes. These modes affect what data is recorded and
|
|
// written to the output file, and the written data affects the
|
|
// post-processing that dmd.py can do.
|
|
//
|
|
// Users specify the mode as soon as DMD starts. This leads to minimal memory
|
|
// usage and log file size. It has the disadvantage that is inflexible -- if
|
|
// you want to change modes you have to re-run DMD. But in practice changing
|
|
// modes seems to be rare, so it's not much of a problem.
|
|
//
|
|
// An alternative possibility would be to always record and output *all* the
|
|
// information needed for all modes. This would let you choose the mode when
|
|
// running dmd.py, and so you could do multiple kinds of profiling on a
|
|
// single DMD run. But if you are only interested in one of the simpler
|
|
// modes, you'd pay the price of (a) increased memory usage and (b) *very*
|
|
// large log files.
|
|
//
|
|
// Finally, another alternative possibility would be to do mode selection
|
|
// partly at DMD startup or recording, and then partly in dmd.py. This would
|
|
// give some extra flexibility at moderate memory and file size cost. But
|
|
// certain mode pairs wouldn't work, which would be confusing.
|
|
//
|
|
enum Mode
|
|
{
|
|
// For each live block, this mode outputs: size (usable and slop),
|
|
// allocation stack, and whether it's sampled. This mode is good for live
|
|
// heap profiling.
|
|
Live,
|
|
|
|
// Like "Live", but for each live block it also outputs: zero or more
|
|
// report stacks. This mode is good for identifying where memory reporters
|
|
// should be added. This is the default mode.
|
|
DarkMatter,
|
|
|
|
// Like "Live", but also outputs the same data for dead blocks. This mode
|
|
// does cumulative heap profiling, which is good for identifying where large
|
|
// amounts of short-lived allocations occur.
|
|
Cumulative,
|
|
|
|
// Like "Live", but this mode also outputs for each live block the address
|
|
// of the block and the values contained in the blocks. This mode is useful
|
|
// for investigating leaks, by helping to figure out which blocks refer to
|
|
// other blocks. This mode disables sampling.
|
|
Scan
|
|
};
|
|
|
|
char* mDMDEnvVar; // a saved copy, for later printing
|
|
|
|
Mode mMode;
|
|
NumOption<size_t> mSampleBelowSize;
|
|
NumOption<uint32_t> mMaxFrames;
|
|
bool mShowDumpStats;
|
|
|
|
void BadArg(const char* aArg);
|
|
static const char* ValueIfMatch(const char* aArg, const char* aOptionName);
|
|
static bool GetLong(const char* aArg, const char* aOptionName,
|
|
long aMin, long aMax, long* aValue);
|
|
static bool GetBool(const char* aArg, const char* aOptionName, bool* aValue);
|
|
|
|
public:
|
|
explicit Options(const char* aDMDEnvVar);
|
|
|
|
bool IsLiveMode() const { return mMode == Live; }
|
|
bool IsDarkMatterMode() const { return mMode == DarkMatter; }
|
|
bool IsCumulativeMode() const { return mMode == Cumulative; }
|
|
bool IsScanMode() const { return mMode == Scan; }
|
|
|
|
const char* ModeString() const;
|
|
|
|
const char* DMDEnvVar() const { return mDMDEnvVar; }
|
|
|
|
size_t SampleBelowSize() const { return mSampleBelowSize.mActual; }
|
|
size_t MaxFrames() const { return mMaxFrames.mActual; }
|
|
size_t ShowDumpStats() const { return mShowDumpStats; }
|
|
};
|
|
|
|
static Options *gOptions;
|
|
|
|
//---------------------------------------------------------------------------
|
|
// The global lock
|
|
//---------------------------------------------------------------------------
|
|
|
|
// MutexBase implements the platform-specific parts of a mutex.
|
|
|
|
#ifdef XP_WIN
|
|
|
|
class MutexBase
|
|
{
|
|
CRITICAL_SECTION mCS;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(MutexBase);
|
|
|
|
public:
|
|
MutexBase() { InitializeCriticalSection(&mCS); }
|
|
~MutexBase() { DeleteCriticalSection(&mCS); }
|
|
|
|
void Lock() { EnterCriticalSection(&mCS); }
|
|
void Unlock() { LeaveCriticalSection(&mCS); }
|
|
};
|
|
|
|
#else
|
|
|
|
#include <pthread.h>
|
|
#include <sys/types.h>
|
|
|
|
class MutexBase
|
|
{
|
|
pthread_mutex_t mMutex;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(MutexBase);
|
|
|
|
public:
|
|
MutexBase() { pthread_mutex_init(&mMutex, nullptr); }
|
|
|
|
void Lock() { pthread_mutex_lock(&mMutex); }
|
|
void Unlock() { pthread_mutex_unlock(&mMutex); }
|
|
};
|
|
|
|
#endif
|
|
|
|
class Mutex : private MutexBase
|
|
{
|
|
bool mIsLocked;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Mutex);
|
|
|
|
public:
|
|
Mutex()
|
|
: mIsLocked(false)
|
|
{}
|
|
|
|
void Lock()
|
|
{
|
|
MutexBase::Lock();
|
|
MOZ_ASSERT(!mIsLocked);
|
|
mIsLocked = true;
|
|
}
|
|
|
|
void Unlock()
|
|
{
|
|
MOZ_ASSERT(mIsLocked);
|
|
mIsLocked = false;
|
|
MutexBase::Unlock();
|
|
}
|
|
|
|
bool IsLocked() { return mIsLocked; }
|
|
};
|
|
|
|
// This lock must be held while manipulating global state such as
|
|
// gStackTraceTable, gLiveBlockTable, gDeadBlockTable. Note that gOptions is
|
|
// *not* protected by this lock because it is only written to by Options(),
|
|
// which is only invoked at start-up and in ResetEverything(), which is only
|
|
// used by SmokeDMD.cpp.
|
|
static Mutex* gStateLock = nullptr;
|
|
|
|
class AutoLockState
|
|
{
|
|
DISALLOW_COPY_AND_ASSIGN(AutoLockState);
|
|
|
|
public:
|
|
AutoLockState() { gStateLock->Lock(); }
|
|
~AutoLockState() { gStateLock->Unlock(); }
|
|
};
|
|
|
|
class AutoUnlockState
|
|
{
|
|
DISALLOW_COPY_AND_ASSIGN(AutoUnlockState);
|
|
|
|
public:
|
|
AutoUnlockState() { gStateLock->Unlock(); }
|
|
~AutoUnlockState() { gStateLock->Lock(); }
|
|
};
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Thread-local storage and blocking of intercepts
|
|
//---------------------------------------------------------------------------
|
|
|
|
#ifdef XP_WIN
|
|
|
|
#define DMD_TLS_INDEX_TYPE DWORD
|
|
#define DMD_CREATE_TLS_INDEX(i_) do { \
|
|
(i_) = TlsAlloc(); \
|
|
} while (0)
|
|
#define DMD_DESTROY_TLS_INDEX(i_) TlsFree((i_))
|
|
#define DMD_GET_TLS_DATA(i_) TlsGetValue((i_))
|
|
#define DMD_SET_TLS_DATA(i_, v_) TlsSetValue((i_), (v_))
|
|
|
|
#else
|
|
|
|
#include <pthread.h>
|
|
|
|
#define DMD_TLS_INDEX_TYPE pthread_key_t
|
|
#define DMD_CREATE_TLS_INDEX(i_) pthread_key_create(&(i_), nullptr)
|
|
#define DMD_DESTROY_TLS_INDEX(i_) pthread_key_delete((i_))
|
|
#define DMD_GET_TLS_DATA(i_) pthread_getspecific((i_))
|
|
#define DMD_SET_TLS_DATA(i_, v_) pthread_setspecific((i_), (v_))
|
|
|
|
#endif
|
|
|
|
static DMD_TLS_INDEX_TYPE gTlsIndex;
|
|
|
|
class Thread
|
|
{
|
|
// Required for allocation via InfallibleAllocPolicy::new_.
|
|
friend class InfallibleAllocPolicy;
|
|
|
|
// When true, this blocks intercepts, which allows malloc interception
|
|
// functions to themselves call malloc. (Nb: for direct calls to malloc we
|
|
// can just use InfallibleAllocPolicy::{malloc_,new_}, but we sometimes
|
|
// indirectly call vanilla malloc via functions like MozStackWalk.)
|
|
bool mBlockIntercepts;
|
|
|
|
Thread()
|
|
: mBlockIntercepts(false)
|
|
{}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Thread);
|
|
|
|
public:
|
|
static Thread* Fetch();
|
|
|
|
bool BlockIntercepts()
|
|
{
|
|
MOZ_ASSERT(!mBlockIntercepts);
|
|
return mBlockIntercepts = true;
|
|
}
|
|
|
|
bool UnblockIntercepts()
|
|
{
|
|
MOZ_ASSERT(mBlockIntercepts);
|
|
return mBlockIntercepts = false;
|
|
}
|
|
|
|
bool InterceptsAreBlocked() const { return mBlockIntercepts; }
|
|
};
|
|
|
|
/* static */ Thread*
|
|
Thread::Fetch()
|
|
{
|
|
Thread* t = static_cast<Thread*>(DMD_GET_TLS_DATA(gTlsIndex));
|
|
|
|
if (MOZ_UNLIKELY(!t)) {
|
|
// This memory is never freed, even if the thread dies. It's a leak, but
|
|
// only a tiny one.
|
|
t = InfallibleAllocPolicy::new_<Thread>();
|
|
DMD_SET_TLS_DATA(gTlsIndex, t);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
// An object of this class must be created (on the stack) before running any
|
|
// code that might allocate.
|
|
class AutoBlockIntercepts
|
|
{
|
|
Thread* const mT;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(AutoBlockIntercepts);
|
|
|
|
public:
|
|
explicit AutoBlockIntercepts(Thread* aT)
|
|
: mT(aT)
|
|
{
|
|
mT->BlockIntercepts();
|
|
}
|
|
~AutoBlockIntercepts()
|
|
{
|
|
MOZ_ASSERT(mT->InterceptsAreBlocked());
|
|
mT->UnblockIntercepts();
|
|
}
|
|
};
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Location service
|
|
//---------------------------------------------------------------------------
|
|
|
|
class StringTable
|
|
{
|
|
public:
|
|
StringTable() { (void)mSet.init(64); }
|
|
|
|
const char*
|
|
Intern(const char* aString)
|
|
{
|
|
StringHashSet::AddPtr p = mSet.lookupForAdd(aString);
|
|
if (p) {
|
|
return *p;
|
|
}
|
|
|
|
const char* newString = InfallibleAllocPolicy::strdup_(aString);
|
|
(void)mSet.add(p, newString);
|
|
return newString;
|
|
}
|
|
|
|
size_t
|
|
SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t n = 0;
|
|
n += mSet.sizeOfExcludingThis(aMallocSizeOf);
|
|
for (auto r = mSet.all(); !r.empty(); r.popFront()) {
|
|
n += aMallocSizeOf(r.front());
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private:
|
|
struct StringHasher
|
|
{
|
|
typedef const char* Lookup;
|
|
|
|
static uint32_t hash(const char* const& aS)
|
|
{
|
|
return HashString(aS);
|
|
}
|
|
|
|
static bool match(const char* const& aA, const char* const& aB)
|
|
{
|
|
return strcmp(aA, aB) == 0;
|
|
}
|
|
};
|
|
|
|
typedef js::HashSet<const char*, StringHasher, InfallibleAllocPolicy> StringHashSet;
|
|
|
|
StringHashSet mSet;
|
|
};
|
|
|
|
class StringAlloc
|
|
{
|
|
public:
|
|
static char* copy(const char* aString)
|
|
{
|
|
return InfallibleAllocPolicy::strdup_(aString);
|
|
}
|
|
static void free(char* aString)
|
|
{
|
|
InfallibleAllocPolicy::free_(aString);
|
|
}
|
|
};
|
|
|
|
struct DescribeCodeAddressLock
|
|
{
|
|
static void Unlock() { gStateLock->Unlock(); }
|
|
static void Lock() { gStateLock->Lock(); }
|
|
static bool IsLocked() { return gStateLock->IsLocked(); }
|
|
};
|
|
|
|
typedef CodeAddressService<StringTable, StringAlloc, DescribeCodeAddressLock>
|
|
CodeAddressService;
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Stack traces
|
|
//---------------------------------------------------------------------------
|
|
|
|
class StackTrace
|
|
{
|
|
public:
|
|
static const uint32_t MaxFrames = 24;
|
|
|
|
private:
|
|
uint32_t mLength; // The number of PCs.
|
|
const void* mPcs[MaxFrames]; // The PCs themselves. If --max-frames is less
|
|
// than 24, this array is bigger than
|
|
// necessary, but that case is unusual.
|
|
|
|
public:
|
|
StackTrace() : mLength(0) {}
|
|
|
|
uint32_t Length() const { return mLength; }
|
|
const void* Pc(uint32_t i) const
|
|
{
|
|
MOZ_ASSERT(i < mLength);
|
|
return mPcs[i];
|
|
}
|
|
|
|
uint32_t Size() const { return mLength * sizeof(mPcs[0]); }
|
|
|
|
// The stack trace returned by this function is interned in gStackTraceTable,
|
|
// and so is immortal and unmovable.
|
|
static const StackTrace* Get(Thread* aT);
|
|
|
|
// Hash policy.
|
|
|
|
typedef StackTrace* Lookup;
|
|
|
|
static uint32_t hash(const StackTrace* const& aSt)
|
|
{
|
|
return mozilla::HashBytes(aSt->mPcs, aSt->Size());
|
|
}
|
|
|
|
static bool match(const StackTrace* const& aA,
|
|
const StackTrace* const& aB)
|
|
{
|
|
return aA->mLength == aB->mLength &&
|
|
memcmp(aA->mPcs, aB->mPcs, aA->Size()) == 0;
|
|
}
|
|
|
|
private:
|
|
static void StackWalkCallback(uint32_t aFrameNumber, void* aPc, void* aSp,
|
|
void* aClosure)
|
|
{
|
|
StackTrace* st = (StackTrace*) aClosure;
|
|
MOZ_ASSERT(st->mLength < MaxFrames);
|
|
st->mPcs[st->mLength] = aPc;
|
|
st->mLength++;
|
|
MOZ_ASSERT(st->mLength == aFrameNumber);
|
|
}
|
|
};
|
|
|
|
typedef js::HashSet<StackTrace*, StackTrace, InfallibleAllocPolicy>
|
|
StackTraceTable;
|
|
static StackTraceTable* gStackTraceTable = nullptr;
|
|
|
|
typedef js::HashSet<const StackTrace*, js::DefaultHasher<const StackTrace*>,
|
|
InfallibleAllocPolicy>
|
|
StackTraceSet;
|
|
|
|
typedef js::HashSet<const void*, js::DefaultHasher<const void*>,
|
|
InfallibleAllocPolicy>
|
|
PointerSet;
|
|
typedef js::HashMap<const void*, uint32_t, js::DefaultHasher<const void*>,
|
|
InfallibleAllocPolicy>
|
|
PointerIdMap;
|
|
|
|
// We won't GC the stack trace table until it this many elements.
|
|
static uint32_t gGCStackTraceTableWhenSizeExceeds = 4 * 1024;
|
|
|
|
/* static */ const StackTrace*
|
|
StackTrace::Get(Thread* aT)
|
|
{
|
|
MOZ_ASSERT(gStateLock->IsLocked());
|
|
MOZ_ASSERT(aT->InterceptsAreBlocked());
|
|
|
|
// On Windows, MozStackWalk can acquire a lock from the shared library
|
|
// loader. Another thread might call malloc while holding that lock (when
|
|
// loading a shared library). So we can't be in gStateLock during the call
|
|
// to MozStackWalk. For details, see
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=374829#c8
|
|
// On Linux, something similar can happen; see bug 824340.
|
|
// So let's just release it on all platforms.
|
|
StackTrace tmp;
|
|
{
|
|
AutoUnlockState unlock;
|
|
uint32_t skipFrames = 2;
|
|
if (MozStackWalk(StackWalkCallback, skipFrames,
|
|
gOptions->MaxFrames(), &tmp, 0, nullptr)) {
|
|
// Handle the common case first. All is ok. Nothing to do.
|
|
} else {
|
|
tmp.mLength = 0;
|
|
}
|
|
}
|
|
|
|
StackTraceTable::AddPtr p = gStackTraceTable->lookupForAdd(&tmp);
|
|
if (!p) {
|
|
StackTrace* stnew = InfallibleAllocPolicy::new_<StackTrace>(tmp);
|
|
(void)gStackTraceTable->add(p, stnew);
|
|
}
|
|
return *p;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Heap blocks
|
|
//---------------------------------------------------------------------------
|
|
|
|
// This class combines a 2-byte-aligned pointer (i.e. one whose bottom bit
|
|
// is zero) with a 1-bit tag.
|
|
//
|
|
// |T| is the pointer type, e.g. |int*|, not the pointed-to type. This makes
|
|
// is easier to have const pointers, e.g. |TaggedPtr<const int*>|.
|
|
template <typename T>
|
|
class TaggedPtr
|
|
{
|
|
union
|
|
{
|
|
T mPtr;
|
|
uintptr_t mUint;
|
|
};
|
|
|
|
static const uintptr_t kTagMask = uintptr_t(0x1);
|
|
static const uintptr_t kPtrMask = ~kTagMask;
|
|
|
|
static bool IsTwoByteAligned(T aPtr)
|
|
{
|
|
return (uintptr_t(aPtr) & kTagMask) == 0;
|
|
}
|
|
|
|
public:
|
|
TaggedPtr()
|
|
: mPtr(nullptr)
|
|
{}
|
|
|
|
TaggedPtr(T aPtr, bool aBool)
|
|
: mPtr(aPtr)
|
|
{
|
|
MOZ_ASSERT(IsTwoByteAligned(aPtr));
|
|
uintptr_t tag = uintptr_t(aBool);
|
|
MOZ_ASSERT(tag <= kTagMask);
|
|
mUint |= (tag & kTagMask);
|
|
}
|
|
|
|
void Set(T aPtr, bool aBool)
|
|
{
|
|
MOZ_ASSERT(IsTwoByteAligned(aPtr));
|
|
mPtr = aPtr;
|
|
uintptr_t tag = uintptr_t(aBool);
|
|
MOZ_ASSERT(tag <= kTagMask);
|
|
mUint |= (tag & kTagMask);
|
|
}
|
|
|
|
T Ptr() const { return reinterpret_cast<T>(mUint & kPtrMask); }
|
|
|
|
bool Tag() const { return bool(mUint & kTagMask); }
|
|
};
|
|
|
|
// A live heap block. Stores both basic data and data about reports, if we're
|
|
// in DarkMatter mode.
|
|
class LiveBlock
|
|
{
|
|
const void* mPtr;
|
|
const size_t mReqSize; // size requested
|
|
|
|
// Ptr: |mAllocStackTrace| - stack trace where this block was allocated.
|
|
// Tag bit 0: |mIsSampled| - was this block sampled? (if so, slop == 0).
|
|
//
|
|
// Only used in DarkMatter mode.
|
|
TaggedPtr<const StackTrace* const>
|
|
mAllocStackTrace_mIsSampled;
|
|
|
|
// This array has two elements because we record at most two reports of a
|
|
// block.
|
|
// - Ptr: |mReportStackTrace| - stack trace where this block was reported.
|
|
// nullptr if not reported.
|
|
// - Tag bit 0: |mReportedOnAlloc| - was the block reported immediately on
|
|
// allocation? If so, DMD must not clear the report at the end of
|
|
// Analyze(). Only relevant if |mReportStackTrace| is non-nullptr.
|
|
//
|
|
// |mPtr| is used as the key in LiveBlockTable, so it's ok for this member
|
|
// to be |mutable|.
|
|
//
|
|
// Only used in DarkMatter mode.
|
|
mutable TaggedPtr<const StackTrace*> mReportStackTrace_mReportedOnAlloc[2];
|
|
|
|
public:
|
|
LiveBlock(const void* aPtr, size_t aReqSize,
|
|
const StackTrace* aAllocStackTrace, bool aIsSampled)
|
|
: mPtr(aPtr)
|
|
, mReqSize(aReqSize)
|
|
, mAllocStackTrace_mIsSampled(aAllocStackTrace, aIsSampled)
|
|
, mReportStackTrace_mReportedOnAlloc() // all fields get zeroed
|
|
{
|
|
MOZ_ASSERT(aAllocStackTrace);
|
|
}
|
|
|
|
const void* Address() const { return mPtr; }
|
|
|
|
size_t ReqSize() const { return mReqSize; }
|
|
|
|
// Sampled blocks always have zero slop.
|
|
size_t SlopSize() const
|
|
{
|
|
return IsSampled() ? 0 : MallocSizeOf(mPtr) - mReqSize;
|
|
}
|
|
|
|
size_t UsableSize() const
|
|
{
|
|
return IsSampled() ? mReqSize : MallocSizeOf(mPtr);
|
|
}
|
|
|
|
bool IsSampled() const
|
|
{
|
|
return mAllocStackTrace_mIsSampled.Tag();
|
|
}
|
|
|
|
const StackTrace* AllocStackTrace() const
|
|
{
|
|
return mAllocStackTrace_mIsSampled.Ptr();
|
|
}
|
|
|
|
const StackTrace* ReportStackTrace1() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
return mReportStackTrace_mReportedOnAlloc[0].Ptr();
|
|
}
|
|
|
|
const StackTrace* ReportStackTrace2() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
return mReportStackTrace_mReportedOnAlloc[1].Ptr();
|
|
}
|
|
|
|
bool ReportedOnAlloc1() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
return mReportStackTrace_mReportedOnAlloc[0].Tag();
|
|
}
|
|
|
|
bool ReportedOnAlloc2() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
return mReportStackTrace_mReportedOnAlloc[1].Tag();
|
|
}
|
|
|
|
void AddStackTracesToTable(StackTraceSet& aStackTraces) const
|
|
{
|
|
aStackTraces.put(AllocStackTrace()); // never null
|
|
if (gOptions->IsDarkMatterMode()) {
|
|
const StackTrace* st;
|
|
if ((st = ReportStackTrace1())) { // may be null
|
|
aStackTraces.put(st);
|
|
}
|
|
if ((st = ReportStackTrace2())) { // may be null
|
|
aStackTraces.put(st);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t NumReports() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
if (ReportStackTrace2()) {
|
|
MOZ_ASSERT(ReportStackTrace1());
|
|
return 2;
|
|
}
|
|
if (ReportStackTrace1()) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// This is |const| thanks to the |mutable| fields above.
|
|
void Report(Thread* aT, bool aReportedOnAlloc) const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
// We don't bother recording reports after the 2nd one.
|
|
uint32_t numReports = NumReports();
|
|
if (numReports < 2) {
|
|
mReportStackTrace_mReportedOnAlloc[numReports].Set(StackTrace::Get(aT),
|
|
aReportedOnAlloc);
|
|
}
|
|
}
|
|
|
|
void UnreportIfNotReportedOnAlloc() const
|
|
{
|
|
MOZ_ASSERT(gOptions->IsDarkMatterMode());
|
|
if (!ReportedOnAlloc1() && !ReportedOnAlloc2()) {
|
|
mReportStackTrace_mReportedOnAlloc[0].Set(nullptr, 0);
|
|
mReportStackTrace_mReportedOnAlloc[1].Set(nullptr, 0);
|
|
|
|
} else if (!ReportedOnAlloc1() && ReportedOnAlloc2()) {
|
|
// Shift the 2nd report down to the 1st one.
|
|
mReportStackTrace_mReportedOnAlloc[0] =
|
|
mReportStackTrace_mReportedOnAlloc[1];
|
|
mReportStackTrace_mReportedOnAlloc[1].Set(nullptr, 0);
|
|
|
|
} else if (ReportedOnAlloc1() && !ReportedOnAlloc2()) {
|
|
mReportStackTrace_mReportedOnAlloc[1].Set(nullptr, 0);
|
|
}
|
|
}
|
|
|
|
// Hash policy.
|
|
|
|
typedef const void* Lookup;
|
|
|
|
static uint32_t hash(const void* const& aPtr)
|
|
{
|
|
return mozilla::HashGeneric(aPtr);
|
|
}
|
|
|
|
static bool match(const LiveBlock& aB, const void* const& aPtr)
|
|
{
|
|
return aB.mPtr == aPtr;
|
|
}
|
|
};
|
|
|
|
typedef js::HashSet<LiveBlock, LiveBlock, InfallibleAllocPolicy> LiveBlockTable;
|
|
static LiveBlockTable* gLiveBlockTable = nullptr;
|
|
|
|
// A freed heap block.
|
|
class DeadBlock
|
|
{
|
|
const size_t mReqSize; // size requested
|
|
const size_t mSlopSize; // slop above size requested
|
|
|
|
// Ptr: |mAllocStackTrace| - stack trace where this block was allocated.
|
|
// Tag bit 0: |mIsSampled| - was this block sampled? (if so, slop == 0).
|
|
TaggedPtr<const StackTrace* const>
|
|
mAllocStackTrace_mIsSampled;
|
|
|
|
public:
|
|
DeadBlock()
|
|
: mReqSize(0)
|
|
, mSlopSize(0)
|
|
, mAllocStackTrace_mIsSampled(nullptr, 0)
|
|
{}
|
|
|
|
explicit DeadBlock(const LiveBlock& aLb)
|
|
: mReqSize(aLb.ReqSize())
|
|
, mSlopSize(aLb.SlopSize())
|
|
, mAllocStackTrace_mIsSampled(aLb.AllocStackTrace(), aLb.IsSampled())
|
|
{
|
|
MOZ_ASSERT(AllocStackTrace());
|
|
MOZ_ASSERT_IF(IsSampled(), SlopSize() == 0);
|
|
}
|
|
|
|
~DeadBlock() {}
|
|
|
|
size_t ReqSize() const { return mReqSize; }
|
|
size_t SlopSize() const { return mSlopSize; }
|
|
size_t UsableSize() const { return mReqSize + mSlopSize; }
|
|
|
|
bool IsSampled() const
|
|
{
|
|
return mAllocStackTrace_mIsSampled.Tag();
|
|
}
|
|
|
|
const StackTrace* AllocStackTrace() const
|
|
{
|
|
return mAllocStackTrace_mIsSampled.Ptr();
|
|
}
|
|
|
|
void AddStackTracesToTable(StackTraceSet& aStackTraces) const
|
|
{
|
|
aStackTraces.put(AllocStackTrace()); // never null
|
|
}
|
|
|
|
// Hash policy.
|
|
|
|
typedef DeadBlock Lookup;
|
|
|
|
static uint32_t hash(const DeadBlock& aB)
|
|
{
|
|
return mozilla::HashGeneric(aB.ReqSize(),
|
|
aB.SlopSize(),
|
|
aB.IsSampled(),
|
|
aB.AllocStackTrace());
|
|
}
|
|
|
|
static bool match(const DeadBlock& aA, const DeadBlock& aB)
|
|
{
|
|
return aA.ReqSize() == aB.ReqSize() &&
|
|
aA.SlopSize() == aB.SlopSize() &&
|
|
aA.IsSampled() == aB.IsSampled() &&
|
|
aA.AllocStackTrace() == aB.AllocStackTrace();
|
|
}
|
|
};
|
|
|
|
// For each unique DeadBlock value we store a count of how many actual dead
|
|
// blocks have that value.
|
|
typedef js::HashMap<DeadBlock, size_t, DeadBlock, InfallibleAllocPolicy>
|
|
DeadBlockTable;
|
|
static DeadBlockTable* gDeadBlockTable = nullptr;
|
|
|
|
// Add the dead block to the dead block table, if that's appropriate.
|
|
void MaybeAddToDeadBlockTable(const DeadBlock& aDb)
|
|
{
|
|
if (gOptions->IsCumulativeMode() && aDb.AllocStackTrace()) {
|
|
AutoLockState lock;
|
|
if (DeadBlockTable::AddPtr p = gDeadBlockTable->lookupForAdd(aDb)) {
|
|
p->value() += 1;
|
|
} else {
|
|
gDeadBlockTable->add(p, aDb, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add a pointer to each live stack trace into the given StackTraceSet. (A
|
|
// stack trace is live if it's used by one of the live blocks.)
|
|
static void
|
|
GatherUsedStackTraces(StackTraceSet& aStackTraces)
|
|
{
|
|
MOZ_ASSERT(gStateLock->IsLocked());
|
|
MOZ_ASSERT(Thread::Fetch()->InterceptsAreBlocked());
|
|
|
|
aStackTraces.finish();
|
|
aStackTraces.init(512);
|
|
|
|
for (auto r = gLiveBlockTable->all(); !r.empty(); r.popFront()) {
|
|
r.front().AddStackTracesToTable(aStackTraces);
|
|
}
|
|
|
|
for (auto r = gDeadBlockTable->all(); !r.empty(); r.popFront()) {
|
|
r.front().key().AddStackTracesToTable(aStackTraces);
|
|
}
|
|
}
|
|
|
|
// Delete stack traces that we aren't using, and compact our hashtable.
|
|
static void
|
|
GCStackTraces()
|
|
{
|
|
MOZ_ASSERT(gStateLock->IsLocked());
|
|
MOZ_ASSERT(Thread::Fetch()->InterceptsAreBlocked());
|
|
|
|
StackTraceSet usedStackTraces;
|
|
GatherUsedStackTraces(usedStackTraces);
|
|
|
|
// Delete all unused stack traces from gStackTraceTable. The Enum destructor
|
|
// will automatically rehash and compact the table.
|
|
for (StackTraceTable::Enum e(*gStackTraceTable); !e.empty(); e.popFront()) {
|
|
StackTrace* const& st = e.front();
|
|
if (!usedStackTraces.has(st)) {
|
|
e.removeFront();
|
|
InfallibleAllocPolicy::delete_(st);
|
|
}
|
|
}
|
|
|
|
// Schedule a GC when we have twice as many stack traces as we had right after
|
|
// this GC finished.
|
|
gGCStackTraceTableWhenSizeExceeds = 2 * gStackTraceTable->count();
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// malloc/free callbacks
|
|
//---------------------------------------------------------------------------
|
|
|
|
static size_t gSmallBlockActualSizeCounter = 0;
|
|
|
|
static void
|
|
AllocCallback(void* aPtr, size_t aReqSize, Thread* aT)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
|
|
AutoLockState lock;
|
|
AutoBlockIntercepts block(aT);
|
|
|
|
size_t actualSize = gMallocTable->malloc_usable_size(aPtr);
|
|
size_t sampleBelowSize = gOptions->SampleBelowSize();
|
|
|
|
if (actualSize < sampleBelowSize) {
|
|
// If this allocation is smaller than the sample-below size, increment the
|
|
// cumulative counter. Then, if that counter now exceeds the sample size,
|
|
// blame this allocation for |sampleBelowSize| bytes. This precludes the
|
|
// measurement of slop.
|
|
gSmallBlockActualSizeCounter += actualSize;
|
|
if (gSmallBlockActualSizeCounter >= sampleBelowSize) {
|
|
gSmallBlockActualSizeCounter -= sampleBelowSize;
|
|
|
|
LiveBlock b(aPtr, sampleBelowSize, StackTrace::Get(aT),
|
|
/* isSampled */ true);
|
|
(void)gLiveBlockTable->putNew(aPtr, b);
|
|
}
|
|
} else {
|
|
// If this block size is larger than the sample size, record it exactly.
|
|
LiveBlock b(aPtr, aReqSize, StackTrace::Get(aT), /* isSampled */ false);
|
|
(void)gLiveBlockTable->putNew(aPtr, b);
|
|
}
|
|
}
|
|
|
|
static void
|
|
FreeCallback(void* aPtr, Thread* aT, DeadBlock* aDeadBlock)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
|
|
AutoLockState lock;
|
|
AutoBlockIntercepts block(aT);
|
|
|
|
if (LiveBlockTable::Ptr lb = gLiveBlockTable->lookup(aPtr)) {
|
|
if (gOptions->IsCumulativeMode()) {
|
|
// Copy it out so it can be added to the dead block list later.
|
|
new (aDeadBlock) DeadBlock(*lb);
|
|
}
|
|
gLiveBlockTable->remove(lb);
|
|
} else {
|
|
// We have no record of the block. Do nothing. Either:
|
|
// - We're sampling and we skipped this block. This is likely.
|
|
// - It's a bogus pointer.
|
|
}
|
|
|
|
if (gStackTraceTable->count() > gGCStackTraceTableWhenSizeExceeds) {
|
|
GCStackTraces();
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// malloc/free interception
|
|
//---------------------------------------------------------------------------
|
|
|
|
static void Init(const malloc_table_t* aMallocTable);
|
|
|
|
} // namespace dmd
|
|
} // namespace mozilla
|
|
|
|
void
|
|
replace_init(const malloc_table_t* aMallocTable)
|
|
{
|
|
mozilla::dmd::Init(aMallocTable);
|
|
}
|
|
|
|
ReplaceMallocBridge*
|
|
replace_get_bridge()
|
|
{
|
|
return mozilla::dmd::gDMDBridge;
|
|
}
|
|
|
|
void*
|
|
replace_malloc(size_t aSize)
|
|
{
|
|
using namespace mozilla::dmd;
|
|
|
|
if (!gIsDMDInitialized) {
|
|
// DMD hasn't started up, either because it wasn't enabled by the user, or
|
|
// we're still in Init() and something has indirectly called malloc. Do a
|
|
// vanilla malloc. (In the latter case, if it fails we'll crash. But
|
|
// OOM is highly unlikely so early on.)
|
|
return gMallocTable->malloc(aSize);
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
if (t->InterceptsAreBlocked()) {
|
|
// Intercepts are blocked, which means this must be a call to malloc
|
|
// triggered indirectly by DMD (e.g. via MozStackWalk). Be infallible.
|
|
return InfallibleAllocPolicy::malloc_(aSize);
|
|
}
|
|
|
|
// This must be a call to malloc from outside DMD. Intercept it.
|
|
void* ptr = gMallocTable->malloc(aSize);
|
|
AllocCallback(ptr, aSize, t);
|
|
return ptr;
|
|
}
|
|
|
|
void*
|
|
replace_calloc(size_t aCount, size_t aSize)
|
|
{
|
|
using namespace mozilla::dmd;
|
|
|
|
if (!gIsDMDInitialized) {
|
|
return gMallocTable->calloc(aCount, aSize);
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
if (t->InterceptsAreBlocked()) {
|
|
return InfallibleAllocPolicy::calloc_(aCount * aSize);
|
|
}
|
|
|
|
void* ptr = gMallocTable->calloc(aCount, aSize);
|
|
AllocCallback(ptr, aCount * aSize, t);
|
|
return ptr;
|
|
}
|
|
|
|
void*
|
|
replace_realloc(void* aOldPtr, size_t aSize)
|
|
{
|
|
using namespace mozilla::dmd;
|
|
|
|
if (!gIsDMDInitialized) {
|
|
return gMallocTable->realloc(aOldPtr, aSize);
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
if (t->InterceptsAreBlocked()) {
|
|
return InfallibleAllocPolicy::realloc_(aOldPtr, aSize);
|
|
}
|
|
|
|
// If |aOldPtr| is nullptr, the call is equivalent to |malloc(aSize)|.
|
|
if (!aOldPtr) {
|
|
return replace_malloc(aSize);
|
|
}
|
|
|
|
// Be very careful here! Must remove the block from the table before doing
|
|
// the realloc to avoid races, just like in replace_free().
|
|
// Nb: This does an unnecessary hashtable remove+add if the block doesn't
|
|
// move, but doing better isn't worth the effort.
|
|
DeadBlock db;
|
|
FreeCallback(aOldPtr, t, &db);
|
|
void* ptr = gMallocTable->realloc(aOldPtr, aSize);
|
|
if (ptr) {
|
|
AllocCallback(ptr, aSize, t);
|
|
MaybeAddToDeadBlockTable(db);
|
|
} else {
|
|
// If realloc fails, we undo the prior operations by re-inserting the old
|
|
// pointer into the live block table. We don't have to do anything with the
|
|
// dead block list because the dead block hasn't yet been inserted. The
|
|
// block will end up looking like it was allocated for the first time here,
|
|
// which is untrue, and the slop bytes will be zero, which may be untrue.
|
|
// But this case is rare and doing better isn't worth the effort.
|
|
AllocCallback(aOldPtr, gMallocTable->malloc_usable_size(aOldPtr), t);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void*
|
|
replace_memalign(size_t aAlignment, size_t aSize)
|
|
{
|
|
using namespace mozilla::dmd;
|
|
|
|
if (!gIsDMDInitialized) {
|
|
return gMallocTable->memalign(aAlignment, aSize);
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
if (t->InterceptsAreBlocked()) {
|
|
return InfallibleAllocPolicy::memalign_(aAlignment, aSize);
|
|
}
|
|
|
|
void* ptr = gMallocTable->memalign(aAlignment, aSize);
|
|
AllocCallback(ptr, aSize, t);
|
|
return ptr;
|
|
}
|
|
|
|
void
|
|
replace_free(void* aPtr)
|
|
{
|
|
using namespace mozilla::dmd;
|
|
|
|
if (!gIsDMDInitialized) {
|
|
gMallocTable->free(aPtr);
|
|
return;
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
if (t->InterceptsAreBlocked()) {
|
|
return InfallibleAllocPolicy::free_(aPtr);
|
|
}
|
|
|
|
// Do the actual free after updating the table. Otherwise, another thread
|
|
// could call malloc and get the freed block and update the table, and then
|
|
// our update here would remove the newly-malloc'd block.
|
|
DeadBlock db;
|
|
FreeCallback(aPtr, t, &db);
|
|
MaybeAddToDeadBlockTable(db);
|
|
gMallocTable->free(aPtr);
|
|
}
|
|
|
|
namespace mozilla {
|
|
namespace dmd {
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Options (Part 2)
|
|
//---------------------------------------------------------------------------
|
|
|
|
// Given an |aOptionName| like "foo", succeed if |aArg| has the form "foo=blah"
|
|
// (where "blah" is non-empty) and return the pointer to "blah". |aArg| can
|
|
// have leading space chars (but not other whitespace).
|
|
const char*
|
|
Options::ValueIfMatch(const char* aArg, const char* aOptionName)
|
|
{
|
|
MOZ_ASSERT(!isspace(*aArg)); // any leading whitespace should not remain
|
|
size_t optionLen = strlen(aOptionName);
|
|
if (strncmp(aArg, aOptionName, optionLen) == 0 && aArg[optionLen] == '=' &&
|
|
aArg[optionLen + 1]) {
|
|
return aArg + optionLen + 1;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Extracts a |long| value for an option from an argument. It must be within
|
|
// the range |aMin..aMax| (inclusive).
|
|
bool
|
|
Options::GetLong(const char* aArg, const char* aOptionName,
|
|
long aMin, long aMax, long* aValue)
|
|
{
|
|
if (const char* optionValue = ValueIfMatch(aArg, aOptionName)) {
|
|
char* endPtr;
|
|
*aValue = strtol(optionValue, &endPtr, /* base */ 10);
|
|
if (!*endPtr && aMin <= *aValue && *aValue <= aMax &&
|
|
*aValue != LONG_MIN && *aValue != LONG_MAX) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Extracts a |bool| value for an option -- encoded as "yes" or "no" -- from an
|
|
// argument.
|
|
bool
|
|
Options::GetBool(const char* aArg, const char* aOptionName, bool* aValue)
|
|
{
|
|
if (const char* optionValue = ValueIfMatch(aArg, aOptionName)) {
|
|
if (strcmp(optionValue, "yes") == 0) {
|
|
*aValue = true;
|
|
return true;
|
|
}
|
|
if (strcmp(optionValue, "no") == 0) {
|
|
*aValue = false;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The sample-below default is a prime number close to 4096.
|
|
// - Why that size? Because it's *much* faster but only moderately less precise
|
|
// than a size of 1.
|
|
// - Why prime? Because it makes our sampling more random. If we used a size
|
|
// of 4096, for example, then our alloc counter would only take on even
|
|
// values, because jemalloc always rounds up requests sizes. In contrast, a
|
|
// prime size will explore all possible values of the alloc counter.
|
|
//
|
|
Options::Options(const char* aDMDEnvVar)
|
|
: mDMDEnvVar(aDMDEnvVar ? InfallibleAllocPolicy::strdup_(aDMDEnvVar)
|
|
: nullptr)
|
|
, mMode(DarkMatter)
|
|
, mSampleBelowSize(4093, 100 * 100 * 1000)
|
|
, mMaxFrames(StackTrace::MaxFrames, StackTrace::MaxFrames)
|
|
, mShowDumpStats(false)
|
|
{
|
|
// It's no longer necessary to set the DMD env var to "1" if you want default
|
|
// options (you can leave it undefined) but we still accept "1" for
|
|
// backwards compatibility.
|
|
char* e = mDMDEnvVar;
|
|
if (e && strcmp(e, "1") != 0) {
|
|
bool isEnd = false;
|
|
while (!isEnd) {
|
|
// Consume leading whitespace.
|
|
while (isspace(*e)) {
|
|
e++;
|
|
}
|
|
|
|
// Save the start of the arg.
|
|
const char* arg = e;
|
|
|
|
// Find the first char after the arg, and temporarily change it to '\0'
|
|
// to isolate the arg.
|
|
while (!isspace(*e) && *e != '\0') {
|
|
e++;
|
|
}
|
|
char replacedChar = *e;
|
|
isEnd = replacedChar == '\0';
|
|
*e = '\0';
|
|
|
|
// Handle arg
|
|
long myLong;
|
|
bool myBool;
|
|
if (strcmp(arg, "--mode=live") == 0) {
|
|
mMode = Options::Live;
|
|
} else if (strcmp(arg, "--mode=dark-matter") == 0) {
|
|
mMode = Options::DarkMatter;
|
|
} else if (strcmp(arg, "--mode=cumulative") == 0) {
|
|
mMode = Options::Cumulative;
|
|
} else if (strcmp(arg, "--mode=scan") == 0) {
|
|
mMode = Options::Scan;
|
|
|
|
} else if (GetLong(arg, "--sample-below", 1, mSampleBelowSize.mMax,
|
|
&myLong)) {
|
|
mSampleBelowSize.mActual = myLong;
|
|
|
|
} else if (GetLong(arg, "--max-frames", 1, mMaxFrames.mMax, &myLong)) {
|
|
mMaxFrames.mActual = myLong;
|
|
|
|
} else if (GetBool(arg, "--show-dump-stats", &myBool)) {
|
|
mShowDumpStats = myBool;
|
|
|
|
} else if (strcmp(arg, "") == 0) {
|
|
// This can only happen if there is trailing whitespace. Ignore.
|
|
MOZ_ASSERT(isEnd);
|
|
|
|
} else {
|
|
BadArg(arg);
|
|
}
|
|
|
|
// Undo the temporary isolation.
|
|
*e = replacedChar;
|
|
}
|
|
}
|
|
|
|
if (mMode == Options::Scan) {
|
|
mSampleBelowSize.mActual = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
Options::BadArg(const char* aArg)
|
|
{
|
|
StatusMsg("\n");
|
|
StatusMsg("Bad entry in the $DMD environment variable: '%s'.\n", aArg);
|
|
StatusMsg("\n");
|
|
StatusMsg("$DMD must be a whitespace-separated list of |--option=val|\n");
|
|
StatusMsg("entries.\n");
|
|
StatusMsg("\n");
|
|
StatusMsg("The following options are allowed; defaults are shown in [].\n");
|
|
StatusMsg(" --mode=<mode> Profiling mode [dark-matter]\n");
|
|
StatusMsg(" where <mode> is one of: live, dark-matter, cumulative\n");
|
|
StatusMsg(" --sample-below=<1..%d> Sample blocks smaller than this [%d]\n",
|
|
int(mSampleBelowSize.mMax),
|
|
int(mSampleBelowSize.mDefault));
|
|
StatusMsg(" (prime numbers are recommended)\n");
|
|
StatusMsg(" --max-frames=<1..%d> Max. depth of stack traces [%d]\n",
|
|
int(mMaxFrames.mMax),
|
|
int(mMaxFrames.mDefault));
|
|
StatusMsg(" --show-dump-stats=<yes|no> Show stats about dumps? [no]\n");
|
|
StatusMsg("\n");
|
|
exit(1);
|
|
}
|
|
|
|
const char*
|
|
Options::ModeString() const
|
|
{
|
|
switch (mMode) {
|
|
case Live:
|
|
return "live";
|
|
case DarkMatter:
|
|
return "dark-matter";
|
|
case Cumulative:
|
|
return "cumulative";
|
|
case Scan:
|
|
return "scan";
|
|
default:
|
|
MOZ_ASSERT(false);
|
|
return "(unknown DMD mode)";
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// DMD start-up
|
|
//---------------------------------------------------------------------------
|
|
|
|
#ifdef XP_MACOSX
|
|
static void
|
|
NopStackWalkCallback(uint32_t aFrameNumber, void* aPc, void* aSp,
|
|
void* aClosure)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
// WARNING: this function runs *very* early -- before all static initializers
|
|
// have run. For this reason, non-scalar globals such as gStateLock and
|
|
// gStackTraceTable are allocated dynamically (so we can guarantee their
|
|
// construction in this function) rather than statically.
|
|
static void
|
|
Init(const malloc_table_t* aMallocTable)
|
|
{
|
|
gMallocTable = aMallocTable;
|
|
gDMDBridge = InfallibleAllocPolicy::new_<DMDBridge>();
|
|
|
|
// DMD is controlled by the |DMD| environment variable.
|
|
const char* e = getenv("DMD");
|
|
|
|
if (e) {
|
|
StatusMsg("$DMD = '%s'\n", e);
|
|
} else {
|
|
StatusMsg("$DMD is undefined\n", e);
|
|
}
|
|
|
|
// Parse $DMD env var.
|
|
gOptions = InfallibleAllocPolicy::new_<Options>(e);
|
|
|
|
#ifdef XP_MACOSX
|
|
// On Mac OS X we need to call StackWalkInitCriticalAddress() very early
|
|
// (prior to the creation of any mutexes, apparently) otherwise we can get
|
|
// hangs when getting stack traces (bug 821577). But
|
|
// StackWalkInitCriticalAddress() isn't exported from xpcom/, so instead we
|
|
// just call MozStackWalk, because that calls StackWalkInitCriticalAddress().
|
|
// See the comment above StackWalkInitCriticalAddress() for more details.
|
|
(void)MozStackWalk(NopStackWalkCallback, /* skipFrames */ 0,
|
|
/* maxFrames */ 1, nullptr, 0, nullptr);
|
|
#endif
|
|
|
|
gStateLock = InfallibleAllocPolicy::new_<Mutex>();
|
|
|
|
gSmallBlockActualSizeCounter = 0;
|
|
|
|
DMD_CREATE_TLS_INDEX(gTlsIndex);
|
|
|
|
{
|
|
AutoLockState lock;
|
|
|
|
gStackTraceTable = InfallibleAllocPolicy::new_<StackTraceTable>();
|
|
gStackTraceTable->init(8192);
|
|
|
|
gLiveBlockTable = InfallibleAllocPolicy::new_<LiveBlockTable>();
|
|
gLiveBlockTable->init(8192);
|
|
|
|
// Create this even if the mode isn't Cumulative (albeit with a small
|
|
// size), in case the mode is changed later on (as is done by SmokeDMD.cpp,
|
|
// for example).
|
|
gDeadBlockTable = InfallibleAllocPolicy::new_<DeadBlockTable>();
|
|
gDeadBlockTable->init(gOptions->IsCumulativeMode() ? 8192 : 4);
|
|
}
|
|
|
|
gIsDMDInitialized = true;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Block reporting and unreporting
|
|
//---------------------------------------------------------------------------
|
|
|
|
static void
|
|
ReportHelper(const void* aPtr, bool aReportedOnAlloc)
|
|
{
|
|
if (!gOptions->IsDarkMatterMode() || !aPtr) {
|
|
return;
|
|
}
|
|
|
|
Thread* t = Thread::Fetch();
|
|
|
|
AutoBlockIntercepts block(t);
|
|
AutoLockState lock;
|
|
|
|
if (LiveBlockTable::Ptr p = gLiveBlockTable->lookup(aPtr)) {
|
|
p->Report(t, aReportedOnAlloc);
|
|
} else {
|
|
// We have no record of the block. Do nothing. Either:
|
|
// - We're sampling and we skipped this block. This is likely.
|
|
// - It's a bogus pointer. This is unlikely because Report() is almost
|
|
// always called in conjunction with a malloc_size_of-style function.
|
|
}
|
|
}
|
|
|
|
void
|
|
DMDFuncs::Report(const void* aPtr)
|
|
{
|
|
ReportHelper(aPtr, /* onAlloc */ false);
|
|
}
|
|
|
|
void
|
|
DMDFuncs::ReportOnAlloc(const void* aPtr)
|
|
{
|
|
ReportHelper(aPtr, /* onAlloc */ true);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// DMD output
|
|
//---------------------------------------------------------------------------
|
|
|
|
// The version number of the output format. Increment this if you make
|
|
// backwards-incompatible changes to the format. See DMD.h for the version
|
|
// history.
|
|
static const int kOutputVersionNumber = 4;
|
|
|
|
// Note that, unlike most SizeOf* functions, this function does not take a
|
|
// |mozilla::MallocSizeOf| argument. That's because those arguments are
|
|
// primarily to aid DMD track heap blocks... but DMD deliberately doesn't track
|
|
// heap blocks it allocated for itself!
|
|
//
|
|
// SizeOfInternal should be called while you're holding the state lock and
|
|
// while intercepts are blocked; SizeOf acquires the lock and blocks
|
|
// intercepts.
|
|
|
|
static void
|
|
SizeOfInternal(Sizes* aSizes)
|
|
{
|
|
MOZ_ASSERT(gStateLock->IsLocked());
|
|
MOZ_ASSERT(Thread::Fetch()->InterceptsAreBlocked());
|
|
|
|
aSizes->Clear();
|
|
|
|
StackTraceSet usedStackTraces;
|
|
GatherUsedStackTraces(usedStackTraces);
|
|
|
|
for (auto r = gStackTraceTable->all(); !r.empty(); r.popFront()) {
|
|
StackTrace* const& st = r.front();
|
|
|
|
if (usedStackTraces.has(st)) {
|
|
aSizes->mStackTracesUsed += MallocSizeOf(st);
|
|
} else {
|
|
aSizes->mStackTracesUnused += MallocSizeOf(st);
|
|
}
|
|
}
|
|
|
|
aSizes->mStackTraceTable =
|
|
gStackTraceTable->sizeOfIncludingThis(MallocSizeOf);
|
|
|
|
aSizes->mLiveBlockTable = gLiveBlockTable->sizeOfIncludingThis(MallocSizeOf);
|
|
|
|
aSizes->mDeadBlockTable = gDeadBlockTable->sizeOfIncludingThis(MallocSizeOf);
|
|
}
|
|
|
|
void
|
|
DMDFuncs::SizeOf(Sizes* aSizes)
|
|
{
|
|
aSizes->Clear();
|
|
|
|
AutoBlockIntercepts block(Thread::Fetch());
|
|
AutoLockState lock;
|
|
SizeOfInternal(aSizes);
|
|
}
|
|
|
|
void
|
|
DMDFuncs::ClearReports()
|
|
{
|
|
if (!gOptions->IsDarkMatterMode()) {
|
|
return;
|
|
}
|
|
|
|
AutoLockState lock;
|
|
|
|
// Unreport all blocks that were marked reported by a memory reporter. This
|
|
// excludes those that were reported on allocation, because they need to keep
|
|
// their reported marking.
|
|
for (auto r = gLiveBlockTable->all(); !r.empty(); r.popFront()) {
|
|
r.front().UnreportIfNotReportedOnAlloc();
|
|
}
|
|
}
|
|
|
|
class ToIdStringConverter final
|
|
{
|
|
public:
|
|
ToIdStringConverter() : mNextId(0) { mIdMap.init(512); }
|
|
|
|
// Converts a pointer to a unique ID. Reuses the existing ID for the pointer
|
|
// if it's been seen before.
|
|
const char* ToIdString(const void* aPtr)
|
|
{
|
|
uint32_t id;
|
|
PointerIdMap::AddPtr p = mIdMap.lookupForAdd(aPtr);
|
|
if (!p) {
|
|
id = mNextId++;
|
|
(void)mIdMap.add(p, aPtr, id);
|
|
} else {
|
|
id = p->value();
|
|
}
|
|
return Base32(id);
|
|
}
|
|
|
|
size_t sizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
return mIdMap.sizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
private:
|
|
// This function converts an integer to base-32. |aBuf| must have space for at
|
|
// least eight chars, which is the space needed to hold 'Dffffff' (including
|
|
// the terminating null char), which is the base-32 representation of
|
|
// 0xffffffff.
|
|
//
|
|
// We use base-32 values for indexing into the traceTable and the frameTable,
|
|
// for the following reasons.
|
|
//
|
|
// - Base-32 gives more compact indices than base-16.
|
|
//
|
|
// - 32 is a power-of-two, which makes the necessary div/mod calculations fast.
|
|
//
|
|
// - We can (and do) choose non-numeric digits for base-32. When
|
|
// inspecting/debugging the JSON output, non-numeric indices are easier to
|
|
// search for than numeric indices.
|
|
//
|
|
char* Base32(uint32_t aN)
|
|
{
|
|
static const char digits[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef";
|
|
|
|
char* b = mIdBuf + kIdBufLen - 1;
|
|
*b = '\0';
|
|
do {
|
|
b--;
|
|
if (b == mIdBuf) {
|
|
MOZ_CRASH("Base32 buffer too small");
|
|
}
|
|
*b = digits[aN % 32];
|
|
aN /= 32;
|
|
} while (aN);
|
|
|
|
return b;
|
|
}
|
|
|
|
PointerIdMap mIdMap;
|
|
uint32_t mNextId;
|
|
static const size_t kIdBufLen = 16;
|
|
char mIdBuf[kIdBufLen];
|
|
};
|
|
|
|
// Helper class for converting a pointer value to a string.
|
|
class ToStringConverter
|
|
{
|
|
public:
|
|
const char* ToPtrString(const void* aPtr)
|
|
{
|
|
snprintf(kPtrBuf, sizeof(kPtrBuf) - 1, "%" PRIxPTR, (uintptr_t)aPtr);
|
|
return kPtrBuf;
|
|
}
|
|
|
|
private:
|
|
char kPtrBuf[32];
|
|
};
|
|
|
|
static void
|
|
WriteBlockContents(JSONWriter& aWriter, const LiveBlock& aBlock)
|
|
{
|
|
MOZ_ASSERT(!aBlock.IsSampled(), "Sampled blocks do not have accurate sizes");
|
|
|
|
size_t numWords = aBlock.ReqSize() / sizeof(uintptr_t*);
|
|
if (numWords == 0) {
|
|
return;
|
|
}
|
|
|
|
aWriter.StartArrayProperty("contents", aWriter.SingleLineStyle);
|
|
{
|
|
const uintptr_t** block = (const uintptr_t**)aBlock.Address();
|
|
ToStringConverter sc;
|
|
for (size_t i = 0; i < numWords; ++i) {
|
|
aWriter.StringElement(sc.ToPtrString(block[i]));
|
|
}
|
|
}
|
|
aWriter.EndArray();
|
|
}
|
|
|
|
static void
|
|
AnalyzeImpl(UniquePtr<JSONWriteFunc> aWriter)
|
|
{
|
|
AutoBlockIntercepts block(Thread::Fetch());
|
|
AutoLockState lock;
|
|
|
|
// Allocate this on the heap instead of the stack because it's fairly large.
|
|
auto locService = InfallibleAllocPolicy::new_<CodeAddressService>();
|
|
|
|
StackTraceSet usedStackTraces;
|
|
usedStackTraces.init(512);
|
|
|
|
PointerSet usedPcs;
|
|
usedPcs.init(512);
|
|
|
|
size_t iscSize;
|
|
|
|
static int analysisCount = 1;
|
|
StatusMsg("Dump %d {\n", analysisCount++);
|
|
|
|
JSONWriter writer(Move(aWriter));
|
|
writer.Start();
|
|
{
|
|
writer.IntProperty("version", kOutputVersionNumber);
|
|
|
|
writer.StartObjectProperty("invocation");
|
|
{
|
|
const char* var = gOptions->DMDEnvVar();
|
|
if (var) {
|
|
writer.StringProperty("dmdEnvVar", var);
|
|
} else {
|
|
writer.NullProperty("dmdEnvVar");
|
|
}
|
|
|
|
writer.StringProperty("mode", gOptions->ModeString());
|
|
writer.IntProperty("sampleBelowSize", gOptions->SampleBelowSize());
|
|
}
|
|
writer.EndObject();
|
|
|
|
StatusMsg(" Constructing the heap block list...\n");
|
|
|
|
ToIdStringConverter isc;
|
|
ToStringConverter sc;
|
|
|
|
writer.StartArrayProperty("blockList");
|
|
{
|
|
// Live blocks.
|
|
for (auto r = gLiveBlockTable->all(); !r.empty(); r.popFront()) {
|
|
const LiveBlock& b = r.front();
|
|
b.AddStackTracesToTable(usedStackTraces);
|
|
|
|
writer.StartObjectElement(writer.SingleLineStyle);
|
|
{
|
|
if (!b.IsSampled()) {
|
|
if (gOptions->IsScanMode()) {
|
|
writer.StringProperty("addr", sc.ToPtrString(b.Address()));
|
|
WriteBlockContents(writer, b);
|
|
}
|
|
writer.IntProperty("req", b.ReqSize());
|
|
if (b.SlopSize() > 0) {
|
|
writer.IntProperty("slop", b.SlopSize());
|
|
}
|
|
}
|
|
writer.StringProperty("alloc", isc.ToIdString(b.AllocStackTrace()));
|
|
if (gOptions->IsDarkMatterMode() && b.NumReports() > 0) {
|
|
writer.StartArrayProperty("reps");
|
|
{
|
|
if (b.ReportStackTrace1()) {
|
|
writer.StringElement(isc.ToIdString(b.ReportStackTrace1()));
|
|
}
|
|
if (b.ReportStackTrace2()) {
|
|
writer.StringElement(isc.ToIdString(b.ReportStackTrace2()));
|
|
}
|
|
}
|
|
writer.EndArray();
|
|
}
|
|
}
|
|
writer.EndObject();
|
|
}
|
|
|
|
// Dead blocks.
|
|
for (auto r = gDeadBlockTable->all(); !r.empty(); r.popFront()) {
|
|
const DeadBlock& b = r.front().key();
|
|
b.AddStackTracesToTable(usedStackTraces);
|
|
|
|
size_t num = r.front().value();
|
|
MOZ_ASSERT(num > 0);
|
|
|
|
writer.StartObjectElement(writer.SingleLineStyle);
|
|
{
|
|
if (!b.IsSampled()) {
|
|
writer.IntProperty("req", b.ReqSize());
|
|
if (b.SlopSize() > 0) {
|
|
writer.IntProperty("slop", b.SlopSize());
|
|
}
|
|
}
|
|
writer.StringProperty("alloc", isc.ToIdString(b.AllocStackTrace()));
|
|
|
|
if (num > 1) {
|
|
writer.IntProperty("num", num);
|
|
}
|
|
}
|
|
writer.EndObject();
|
|
}
|
|
}
|
|
writer.EndArray();
|
|
|
|
StatusMsg(" Constructing the stack trace table...\n");
|
|
|
|
writer.StartObjectProperty("traceTable");
|
|
{
|
|
for (auto r = usedStackTraces.all(); !r.empty(); r.popFront()) {
|
|
const StackTrace* const st = r.front();
|
|
writer.StartArrayProperty(isc.ToIdString(st), writer.SingleLineStyle);
|
|
{
|
|
for (uint32_t i = 0; i < st->Length(); i++) {
|
|
const void* pc = st->Pc(i);
|
|
writer.StringElement(isc.ToIdString(pc));
|
|
usedPcs.put(pc);
|
|
}
|
|
}
|
|
writer.EndArray();
|
|
}
|
|
}
|
|
writer.EndObject();
|
|
|
|
StatusMsg(" Constructing the stack frame table...\n");
|
|
|
|
writer.StartObjectProperty("frameTable");
|
|
{
|
|
static const size_t locBufLen = 1024;
|
|
char locBuf[locBufLen];
|
|
|
|
for (PointerSet::Enum e(usedPcs); !e.empty(); e.popFront()) {
|
|
const void* const pc = e.front();
|
|
|
|
// Use 0 for the frame number. See the JSON format description comment
|
|
// in DMD.h to understand why.
|
|
locService->GetLocation(0, pc, locBuf, locBufLen);
|
|
writer.StringProperty(isc.ToIdString(pc), locBuf);
|
|
}
|
|
}
|
|
writer.EndObject();
|
|
|
|
iscSize = isc.sizeOfExcludingThis(MallocSizeOf);
|
|
}
|
|
writer.End();
|
|
|
|
if (gOptions->ShowDumpStats()) {
|
|
Sizes sizes;
|
|
SizeOfInternal(&sizes);
|
|
|
|
static const size_t kBufLen = 64;
|
|
char buf1[kBufLen];
|
|
char buf2[kBufLen];
|
|
char buf3[kBufLen];
|
|
|
|
StatusMsg(" Execution measurements {\n");
|
|
|
|
StatusMsg(" Data structures that persist after Dump() ends {\n");
|
|
|
|
StatusMsg(" Used stack traces: %10s bytes\n",
|
|
Show(sizes.mStackTracesUsed, buf1, kBufLen));
|
|
|
|
StatusMsg(" Unused stack traces: %10s bytes\n",
|
|
Show(sizes.mStackTracesUnused, buf1, kBufLen));
|
|
|
|
StatusMsg(" Stack trace table: %10s bytes (%s entries, %s used)\n",
|
|
Show(sizes.mStackTraceTable, buf1, kBufLen),
|
|
Show(gStackTraceTable->capacity(), buf2, kBufLen),
|
|
Show(gStackTraceTable->count(), buf3, kBufLen));
|
|
|
|
StatusMsg(" Live block table: %10s bytes (%s entries, %s used)\n",
|
|
Show(sizes.mLiveBlockTable, buf1, kBufLen),
|
|
Show(gLiveBlockTable->capacity(), buf2, kBufLen),
|
|
Show(gLiveBlockTable->count(), buf3, kBufLen));
|
|
|
|
StatusMsg(" Dead block table: %10s bytes (%s entries, %s used)\n",
|
|
Show(sizes.mDeadBlockTable, buf1, kBufLen),
|
|
Show(gDeadBlockTable->capacity(), buf2, kBufLen),
|
|
Show(gDeadBlockTable->count(), buf3, kBufLen));
|
|
|
|
StatusMsg(" }\n");
|
|
StatusMsg(" Data structures that are destroyed after Dump() ends {\n");
|
|
|
|
StatusMsg(" Location service: %10s bytes\n",
|
|
Show(locService->SizeOfIncludingThis(MallocSizeOf), buf1, kBufLen));
|
|
StatusMsg(" Used stack traces set: %10s bytes\n",
|
|
Show(usedStackTraces.sizeOfExcludingThis(MallocSizeOf), buf1, kBufLen));
|
|
StatusMsg(" Used PCs set: %10s bytes\n",
|
|
Show(usedPcs.sizeOfExcludingThis(MallocSizeOf), buf1, kBufLen));
|
|
StatusMsg(" Pointer ID map: %10s bytes\n",
|
|
Show(iscSize, buf1, kBufLen));
|
|
|
|
StatusMsg(" }\n");
|
|
StatusMsg(" Counts {\n");
|
|
|
|
size_t hits = locService->NumCacheHits();
|
|
size_t misses = locService->NumCacheMisses();
|
|
size_t requests = hits + misses;
|
|
StatusMsg(" Location service: %10s requests\n",
|
|
Show(requests, buf1, kBufLen));
|
|
|
|
size_t count = locService->CacheCount();
|
|
size_t capacity = locService->CacheCapacity();
|
|
StatusMsg(" Location service cache: "
|
|
"%4.1f%% hit rate, %.1f%% occupancy at end\n",
|
|
Percent(hits, requests), Percent(count, capacity));
|
|
|
|
StatusMsg(" }\n");
|
|
StatusMsg(" }\n");
|
|
}
|
|
|
|
InfallibleAllocPolicy::delete_(locService);
|
|
|
|
StatusMsg("}\n");
|
|
}
|
|
|
|
void
|
|
DMDFuncs::Analyze(UniquePtr<JSONWriteFunc> aWriter)
|
|
{
|
|
AnalyzeImpl(Move(aWriter));
|
|
ClearReports();
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Testing
|
|
//---------------------------------------------------------------------------
|
|
|
|
void
|
|
DMDFuncs::ResetEverything(const char* aOptions)
|
|
{
|
|
AutoLockState lock;
|
|
|
|
// Reset options.
|
|
InfallibleAllocPolicy::delete_(gOptions);
|
|
gOptions = InfallibleAllocPolicy::new_<Options>(aOptions);
|
|
|
|
// Clear all existing blocks.
|
|
gLiveBlockTable->clear();
|
|
gDeadBlockTable->clear();
|
|
gSmallBlockActualSizeCounter = 0;
|
|
}
|
|
|
|
} // namespace dmd
|
|
} // namespace mozilla
|