mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-10-31 14:15:30 +00:00
1219 lines
37 KiB
C++
1219 lines
37 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: set ts=8 sts=4 et sw=4 tw=99:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef js_RootingAPI_h
|
|
#define js_RootingAPI_h
|
|
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/GuardObjects.h"
|
|
#include "mozilla/LinkedList.h"
|
|
#include "mozilla/NullPtr.h"
|
|
#include "mozilla/TypeTraits.h"
|
|
|
|
#include "jspubtd.h"
|
|
|
|
#include "js/TypeDecls.h"
|
|
#include "js/Utility.h"
|
|
|
|
/*
|
|
* Moving GC Stack Rooting
|
|
*
|
|
* A moving GC may change the physical location of GC allocated things, even
|
|
* when they are rooted, updating all pointers to the thing to refer to its new
|
|
* location. The GC must therefore know about all live pointers to a thing,
|
|
* not just one of them, in order to behave correctly.
|
|
*
|
|
* The |Rooted| and |Handle| classes below are used to root stack locations
|
|
* whose value may be held live across a call that can trigger GC. For a
|
|
* code fragment such as:
|
|
*
|
|
* JSObject *obj = NewObject(cx);
|
|
* DoSomething(cx);
|
|
* ... = obj->lastProperty();
|
|
*
|
|
* If |DoSomething()| can trigger a GC, the stack location of |obj| must be
|
|
* rooted to ensure that the GC does not move the JSObject referred to by
|
|
* |obj| without updating |obj|'s location itself. This rooting must happen
|
|
* regardless of whether there are other roots which ensure that the object
|
|
* itself will not be collected.
|
|
*
|
|
* If |DoSomething()| cannot trigger a GC, and the same holds for all other
|
|
* calls made between |obj|'s definitions and its last uses, then no rooting
|
|
* is required.
|
|
*
|
|
* SpiderMonkey can trigger a GC at almost any time and in ways that are not
|
|
* always clear. For example, the following innocuous-looking actions can
|
|
* cause a GC: allocation of any new GC thing; JSObject::hasProperty;
|
|
* JS_ReportError and friends; and ToNumber, among many others. The following
|
|
* dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_,
|
|
* rt->malloc_, and friends and JS_ReportOutOfMemory.
|
|
*
|
|
* The following family of three classes will exactly root a stack location.
|
|
* Incorrect usage of these classes will result in a compile error in almost
|
|
* all cases. Therefore, it is very hard to be incorrectly rooted if you use
|
|
* these classes exclusively. These classes are all templated on the type T of
|
|
* the value being rooted.
|
|
*
|
|
* - Rooted<T> declares a variable of type T, whose value is always rooted.
|
|
* Rooted<T> may be automatically coerced to a Handle<T>, below. Rooted<T>
|
|
* should be used whenever a local variable's value may be held live across a
|
|
* call which can trigger a GC.
|
|
*
|
|
* - Handle<T> is a const reference to a Rooted<T>. Functions which take GC
|
|
* things or values as arguments and need to root those arguments should
|
|
* generally use handles for those arguments and avoid any explicit rooting.
|
|
* This has two benefits. First, when several such functions call each other
|
|
* then redundant rooting of multiple copies of the GC thing can be avoided.
|
|
* Second, if the caller does not pass a rooted value a compile error will be
|
|
* generated, which is quicker and easier to fix than when relying on a
|
|
* separate rooting analysis.
|
|
*
|
|
* - MutableHandle<T> is a non-const reference to Rooted<T>. It is used in the
|
|
* same way as Handle<T> and includes a |set(const T &v)| method to allow
|
|
* updating the value of the referenced Rooted<T>. A MutableHandle<T> can be
|
|
* created from a Rooted<T> by using |Rooted<T>::operator&()|.
|
|
*
|
|
* In some cases the small performance overhead of exact rooting (measured to
|
|
* be a few nanoseconds on desktop) is too much. In these cases, try the
|
|
* following:
|
|
*
|
|
* - Move all Rooted<T> above inner loops: this allows you to re-use the root
|
|
* on each iteration of the loop.
|
|
*
|
|
* - Pass Handle<T> through your hot call stack to avoid re-rooting costs at
|
|
* every invocation.
|
|
*
|
|
* The following diagram explains the list of supported, implicit type
|
|
* conversions between classes of this family:
|
|
*
|
|
* Rooted<T> ----> Handle<T>
|
|
* | ^
|
|
* | |
|
|
* | |
|
|
* +---> MutableHandle<T>
|
|
* (via &)
|
|
*
|
|
* All of these types have an implicit conversion to raw pointers.
|
|
*/
|
|
|
|
namespace js {
|
|
|
|
class ScriptSourceObject;
|
|
|
|
template <typename T>
|
|
struct GCMethods {};
|
|
|
|
template <typename T>
|
|
class RootedBase {};
|
|
|
|
template <typename T>
|
|
class HandleBase {};
|
|
|
|
template <typename T>
|
|
class MutableHandleBase {};
|
|
|
|
template <typename T>
|
|
class HeapBase {};
|
|
|
|
/*
|
|
* js::NullPtr acts like a nullptr pointer in contexts that require a Handle.
|
|
*
|
|
* Handle provides an implicit constructor for js::NullPtr so that, given:
|
|
* foo(Handle<JSObject*> h);
|
|
* callers can simply write:
|
|
* foo(js::NullPtr());
|
|
* which avoids creating a Rooted<JSObject*> just to pass nullptr.
|
|
*
|
|
* This is the SpiderMonkey internal variant. js::NullPtr should be used in
|
|
* preference to JS::NullPtr to avoid the GOT access required for JS_PUBLIC_API
|
|
* symbols.
|
|
*/
|
|
struct NullPtr
|
|
{
|
|
static void * const constNullValue;
|
|
};
|
|
|
|
namespace gc {
|
|
struct Cell;
|
|
template<typename T>
|
|
struct PersistentRootedMarker;
|
|
} /* namespace gc */
|
|
|
|
} /* namespace js */
|
|
|
|
namespace JS {
|
|
|
|
template <typename T> class Rooted;
|
|
template <typename T> class PersistentRooted;
|
|
|
|
/* This is exposing internal state of the GC for inlining purposes. */
|
|
JS_FRIEND_API(bool) isGCEnabled();
|
|
|
|
/*
|
|
* JS::NullPtr acts like a nullptr pointer in contexts that require a Handle.
|
|
*
|
|
* Handle provides an implicit constructor for JS::NullPtr so that, given:
|
|
* foo(Handle<JSObject*> h);
|
|
* callers can simply write:
|
|
* foo(JS::NullPtr());
|
|
* which avoids creating a Rooted<JSObject*> just to pass nullptr.
|
|
*/
|
|
struct JS_PUBLIC_API(NullPtr)
|
|
{
|
|
static void * const constNullValue;
|
|
};
|
|
|
|
/*
|
|
* The Heap<T> class is a heap-stored reference to a JS GC thing. All members of
|
|
* heap classes that refer to GC things should use Heap<T> (or possibly
|
|
* TenuredHeap<T>, described below).
|
|
*
|
|
* Heap<T> is an abstraction that hides some of the complexity required to
|
|
* maintain GC invariants for the contained reference. It uses operator
|
|
* overloading to provide a normal pointer interface, but notifies the GC every
|
|
* time the value it contains is updated. This is necessary for generational GC,
|
|
* which keeps track of all pointers into the nursery.
|
|
*
|
|
* Heap<T> instances must be traced when their containing object is traced to
|
|
* keep the pointed-to GC thing alive.
|
|
*
|
|
* Heap<T> objects should only be used on the heap. GC references stored on the
|
|
* C/C++ stack must use Rooted/Handle/MutableHandle instead.
|
|
*
|
|
* Type T must be one of: JS::Value, jsid, JSObject*, JSString*, JSScript*
|
|
*/
|
|
template <typename T>
|
|
class Heap : public js::HeapBase<T>
|
|
{
|
|
public:
|
|
Heap() {
|
|
static_assert(sizeof(T) == sizeof(Heap<T>),
|
|
"Heap<T> must be binary compatible with T.");
|
|
init(js::GCMethods<T>::initial());
|
|
}
|
|
explicit Heap(T p) { init(p); }
|
|
|
|
/*
|
|
* For Heap, move semantics are equivalent to copy semantics. In C++, a
|
|
* copy constructor taking const-ref is the way to get a single function
|
|
* that will be used for both lvalue and rvalue copies, so we can simply
|
|
* omit the rvalue variant.
|
|
*/
|
|
explicit Heap(const Heap<T> &p) { init(p.ptr); }
|
|
|
|
~Heap() {
|
|
if (js::GCMethods<T>::needsPostBarrier(ptr))
|
|
relocate();
|
|
}
|
|
|
|
bool operator==(const Heap<T> &other) { return ptr == other.ptr; }
|
|
bool operator!=(const Heap<T> &other) { return ptr != other.ptr; }
|
|
|
|
bool operator==(const T &other) const { return ptr == other; }
|
|
bool operator!=(const T &other) const { return ptr != other; }
|
|
|
|
operator T() const { return ptr; }
|
|
T operator->() const { return ptr; }
|
|
const T *address() const { return &ptr; }
|
|
const T &get() const { return ptr; }
|
|
|
|
T *unsafeGet() { return &ptr; }
|
|
|
|
Heap<T> &operator=(T p) {
|
|
set(p);
|
|
return *this;
|
|
}
|
|
|
|
Heap<T> &operator=(const Heap<T>& other) {
|
|
set(other.get());
|
|
return *this;
|
|
}
|
|
|
|
void set(T newPtr) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(newPtr));
|
|
if (js::GCMethods<T>::needsPostBarrier(newPtr)) {
|
|
ptr = newPtr;
|
|
post();
|
|
} else if (js::GCMethods<T>::needsPostBarrier(ptr)) {
|
|
relocate(); /* Called before overwriting ptr. */
|
|
ptr = newPtr;
|
|
} else {
|
|
ptr = newPtr;
|
|
}
|
|
}
|
|
|
|
private:
|
|
void init(T newPtr) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(newPtr));
|
|
ptr = newPtr;
|
|
if (js::GCMethods<T>::needsPostBarrier(ptr))
|
|
post();
|
|
}
|
|
|
|
void post() {
|
|
#ifdef JSGC_GENERATIONAL
|
|
MOZ_ASSERT(js::GCMethods<T>::needsPostBarrier(ptr));
|
|
js::GCMethods<T>::postBarrier(&ptr);
|
|
#endif
|
|
}
|
|
|
|
void relocate() {
|
|
#ifdef JSGC_GENERATIONAL
|
|
js::GCMethods<T>::relocate(&ptr);
|
|
#endif
|
|
}
|
|
|
|
T ptr;
|
|
};
|
|
|
|
#ifdef JS_DEBUG
|
|
/*
|
|
* For generational GC, assert that an object is in the tenured generation as
|
|
* opposed to being in the nursery.
|
|
*/
|
|
extern JS_FRIEND_API(void)
|
|
AssertGCThingMustBeTenured(JSObject* obj);
|
|
#else
|
|
inline void
|
|
AssertGCThingMustBeTenured(JSObject *obj) {}
|
|
#endif
|
|
|
|
/*
|
|
* The TenuredHeap<T> class is similar to the Heap<T> class above in that it
|
|
* encapsulates the GC concerns of an on-heap reference to a JS object. However,
|
|
* it has two important differences:
|
|
*
|
|
* 1) Pointers which are statically known to only reference "tenured" objects
|
|
* can avoid the extra overhead of SpiderMonkey's write barriers.
|
|
*
|
|
* 2) Objects in the "tenured" heap have stronger alignment restrictions than
|
|
* those in the "nursery", so it is possible to store flags in the lower
|
|
* bits of pointers known to be tenured. TenuredHeap wraps a normal tagged
|
|
* pointer with a nice API for accessing the flag bits and adds various
|
|
* assertions to ensure that it is not mis-used.
|
|
*
|
|
* GC things are said to be "tenured" when they are located in the long-lived
|
|
* heap: e.g. they have gained tenure as an object by surviving past at least
|
|
* one GC. For performance, SpiderMonkey allocates some things which are known
|
|
* to normally be long lived directly into the tenured generation; for example,
|
|
* global objects. Additionally, SpiderMonkey does not visit individual objects
|
|
* when deleting non-tenured objects, so object with finalizers are also always
|
|
* tenured; for instance, this includes most DOM objects.
|
|
*
|
|
* The considerations to keep in mind when using a TenuredHeap<T> vs a normal
|
|
* Heap<T> are:
|
|
*
|
|
* - It is invalid for a TenuredHeap<T> to refer to a non-tenured thing.
|
|
* - It is however valid for a Heap<T> to refer to a tenured thing.
|
|
* - It is not possible to store flag bits in a Heap<T>.
|
|
*/
|
|
template <typename T>
|
|
class TenuredHeap : public js::HeapBase<T>
|
|
{
|
|
public:
|
|
TenuredHeap() : bits(0) {
|
|
static_assert(sizeof(T) == sizeof(TenuredHeap<T>),
|
|
"TenuredHeap<T> must be binary compatible with T.");
|
|
}
|
|
explicit TenuredHeap(T p) : bits(0) { setPtr(p); }
|
|
explicit TenuredHeap(const TenuredHeap<T> &p) : bits(0) { setPtr(p.getPtr()); }
|
|
|
|
bool operator==(const TenuredHeap<T> &other) { return bits == other.bits; }
|
|
bool operator!=(const TenuredHeap<T> &other) { return bits != other.bits; }
|
|
|
|
void setPtr(T newPtr) {
|
|
MOZ_ASSERT((reinterpret_cast<uintptr_t>(newPtr) & flagsMask) == 0);
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(newPtr));
|
|
if (newPtr)
|
|
AssertGCThingMustBeTenured(newPtr);
|
|
bits = (bits & flagsMask) | reinterpret_cast<uintptr_t>(newPtr);
|
|
}
|
|
|
|
void setFlags(uintptr_t flagsToSet) {
|
|
MOZ_ASSERT((flagsToSet & ~flagsMask) == 0);
|
|
bits |= flagsToSet;
|
|
}
|
|
|
|
void unsetFlags(uintptr_t flagsToUnset) {
|
|
MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0);
|
|
bits &= ~flagsToUnset;
|
|
}
|
|
|
|
bool hasFlag(uintptr_t flag) const {
|
|
MOZ_ASSERT((flag & ~flagsMask) == 0);
|
|
return (bits & flag) != 0;
|
|
}
|
|
|
|
T getPtr() const { return reinterpret_cast<T>(bits & ~flagsMask); }
|
|
uintptr_t getFlags() const { return bits & flagsMask; }
|
|
|
|
operator T() const { return getPtr(); }
|
|
T operator->() const { return getPtr(); }
|
|
|
|
TenuredHeap<T> &operator=(T p) {
|
|
setPtr(p);
|
|
return *this;
|
|
}
|
|
|
|
TenuredHeap<T> &operator=(const TenuredHeap<T>& other) {
|
|
bits = other.bits;
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
* Set the pointer to a value which will cause a crash if it is
|
|
* dereferenced.
|
|
*/
|
|
void setToCrashOnTouch() {
|
|
bits = (bits & flagsMask) | crashOnTouchPointer;
|
|
}
|
|
|
|
bool isSetToCrashOnTouch() {
|
|
return (bits & ~flagsMask) == crashOnTouchPointer;
|
|
}
|
|
|
|
private:
|
|
enum {
|
|
maskBits = 3,
|
|
flagsMask = (1 << maskBits) - 1,
|
|
crashOnTouchPointer = 1 << maskBits
|
|
};
|
|
|
|
uintptr_t bits;
|
|
};
|
|
|
|
/*
|
|
* Reference to a T that has been rooted elsewhere. This is most useful
|
|
* as a parameter type, which guarantees that the T lvalue is properly
|
|
* rooted. See "Move GC Stack Rooting" above.
|
|
*
|
|
* If you want to add additional methods to Handle for a specific
|
|
* specialization, define a HandleBase<T> specialization containing them.
|
|
*/
|
|
template <typename T>
|
|
class MOZ_NONHEAP_CLASS Handle : public js::HandleBase<T>
|
|
{
|
|
friend class JS::MutableHandle<T>;
|
|
|
|
public:
|
|
/* Creates a handle from a handle of a type convertible to T. */
|
|
template <typename S>
|
|
Handle(Handle<S> handle,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
|
|
{
|
|
static_assert(sizeof(Handle<T>) == sizeof(T *),
|
|
"Handle must be binary compatible with T*.");
|
|
ptr = reinterpret_cast<const T *>(handle.address());
|
|
}
|
|
|
|
/* Create a handle for a nullptr pointer. */
|
|
Handle(js::NullPtr) {
|
|
static_assert(mozilla::IsPointer<T>::value,
|
|
"js::NullPtr overload not valid for non-pointer types");
|
|
ptr = reinterpret_cast<const T *>(&js::NullPtr::constNullValue);
|
|
}
|
|
|
|
/* Create a handle for a nullptr pointer. */
|
|
Handle(JS::NullPtr) {
|
|
static_assert(mozilla::IsPointer<T>::value,
|
|
"JS::NullPtr overload not valid for non-pointer types");
|
|
ptr = reinterpret_cast<const T *>(&JS::NullPtr::constNullValue);
|
|
}
|
|
|
|
Handle(MutableHandle<T> handle) {
|
|
ptr = handle.address();
|
|
}
|
|
|
|
/*
|
|
* Take care when calling this method!
|
|
*
|
|
* This creates a Handle from the raw location of a T.
|
|
*
|
|
* It should be called only if the following conditions hold:
|
|
*
|
|
* 1) the location of the T is guaranteed to be marked (for some reason
|
|
* other than being a Rooted), e.g., if it is guaranteed to be reachable
|
|
* from an implicit root.
|
|
*
|
|
* 2) the contents of the location are immutable, or at least cannot change
|
|
* for the lifetime of the handle, as its users may not expect its value
|
|
* to change underneath them.
|
|
*/
|
|
static MOZ_CONSTEXPR Handle fromMarkedLocation(const T *p) {
|
|
return Handle(p, DeliberatelyChoosingThisOverload,
|
|
ImUsingThisOnlyInFromFromMarkedLocation);
|
|
}
|
|
|
|
/*
|
|
* Construct a handle from an explicitly rooted location. This is the
|
|
* normal way to create a handle, and normally happens implicitly.
|
|
*/
|
|
template <typename S>
|
|
inline
|
|
Handle(const Rooted<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
|
|
|
|
template <typename S>
|
|
inline
|
|
Handle(const PersistentRooted<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
|
|
|
|
/* Construct a read only handle from a mutable handle. */
|
|
template <typename S>
|
|
inline
|
|
Handle(MutableHandle<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
|
|
|
|
const T *address() const { return ptr; }
|
|
const T& get() const { return *ptr; }
|
|
|
|
/*
|
|
* Return a reference so passing a Handle<T> to something that
|
|
* takes a |const T&| is not a GC hazard.
|
|
*/
|
|
operator const T&() const { return get(); }
|
|
T operator->() const { return get(); }
|
|
|
|
bool operator!=(const T &other) const { return *ptr != other; }
|
|
bool operator==(const T &other) const { return *ptr == other; }
|
|
|
|
/* Change this handle to point to the same rooted location RHS does. */
|
|
void repoint(const Handle &rhs) { ptr = rhs.address(); }
|
|
|
|
private:
|
|
Handle() {}
|
|
|
|
enum Disambiguator { DeliberatelyChoosingThisOverload = 42 };
|
|
enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 };
|
|
MOZ_CONSTEXPR Handle(const T *p, Disambiguator, CallerIdentity) : ptr(p) {}
|
|
|
|
const T *ptr;
|
|
|
|
template <typename S> void operator=(S) MOZ_DELETE;
|
|
void operator=(Handle) MOZ_DELETE;
|
|
};
|
|
|
|
/*
|
|
* Similar to a handle, but the underlying storage can be changed. This is
|
|
* useful for outparams.
|
|
*
|
|
* If you want to add additional methods to MutableHandle for a specific
|
|
* specialization, define a MutableHandleBase<T> specialization containing
|
|
* them.
|
|
*/
|
|
template <typename T>
|
|
class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase<T>
|
|
{
|
|
public:
|
|
inline MutableHandle(Rooted<T> *root);
|
|
inline MutableHandle(PersistentRooted<T> *root);
|
|
|
|
private:
|
|
// Disallow true nullptr and emulated nullptr (gcc 4.4/4.5, __null, appears
|
|
// as int/long [32/64-bit]) for overloading purposes.
|
|
template<typename N>
|
|
MutableHandle(N,
|
|
typename mozilla::EnableIf<mozilla::IsNullPointer<N>::value ||
|
|
mozilla::IsSame<N, int>::value ||
|
|
mozilla::IsSame<N, long>::value,
|
|
int>::Type dummy = 0)
|
|
MOZ_DELETE;
|
|
|
|
public:
|
|
void set(T v) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(v));
|
|
*ptr = v;
|
|
}
|
|
|
|
/*
|
|
* This may be called only if the location of the T is guaranteed
|
|
* to be marked (for some reason other than being a Rooted),
|
|
* e.g., if it is guaranteed to be reachable from an implicit root.
|
|
*
|
|
* Create a MutableHandle from a raw location of a T.
|
|
*/
|
|
static MutableHandle fromMarkedLocation(T *p) {
|
|
MutableHandle h;
|
|
h.ptr = p;
|
|
return h;
|
|
}
|
|
|
|
T *address() const { return ptr; }
|
|
const T& get() const { return *ptr; }
|
|
|
|
/*
|
|
* Return a reference so passing a MutableHandle<T> to something that takes
|
|
* a |const T&| is not a GC hazard.
|
|
*/
|
|
operator const T&() const { return get(); }
|
|
T operator->() const { return get(); }
|
|
|
|
private:
|
|
MutableHandle() {}
|
|
|
|
T *ptr;
|
|
|
|
template <typename S> void operator=(S v) MOZ_DELETE;
|
|
void operator=(MutableHandle other) MOZ_DELETE;
|
|
};
|
|
|
|
#ifdef JSGC_GENERATIONAL
|
|
JS_FRIEND_API(void) HeapCellPostBarrier(js::gc::Cell **cellp);
|
|
JS_FRIEND_API(void) HeapCellRelocate(js::gc::Cell **cellp);
|
|
#endif
|
|
|
|
} /* namespace JS */
|
|
|
|
namespace js {
|
|
|
|
/*
|
|
* InternalHandle is a handle to an internal pointer into a gcthing. Use
|
|
* InternalHandle when you have a pointer to a direct field of a gcthing, or
|
|
* when you need a parameter type for something that *may* be a pointer to a
|
|
* direct field of a gcthing.
|
|
*/
|
|
template <typename T>
|
|
class InternalHandle {};
|
|
|
|
template <typename T>
|
|
class InternalHandle<T*>
|
|
{
|
|
void * const *holder;
|
|
size_t offset;
|
|
|
|
public:
|
|
/*
|
|
* Create an InternalHandle using a Handle to the gcthing containing the
|
|
* field in question, and a pointer to the field.
|
|
*/
|
|
template<typename H>
|
|
InternalHandle(const JS::Handle<H> &handle, T *field)
|
|
: holder((void**)handle.address()), offset(uintptr_t(field) - uintptr_t(handle.get()))
|
|
{}
|
|
|
|
/*
|
|
* Create an InternalHandle to a field within a Rooted<>.
|
|
*/
|
|
template<typename R>
|
|
InternalHandle(const JS::Rooted<R> &root, T *field)
|
|
: holder((void**)root.address()), offset(uintptr_t(field) - uintptr_t(root.get()))
|
|
{}
|
|
|
|
InternalHandle(const InternalHandle<T*>& other)
|
|
: holder(other.holder), offset(other.offset) {}
|
|
|
|
T *get() const { return reinterpret_cast<T*>(uintptr_t(*holder) + offset); }
|
|
|
|
const T &operator*() const { return *get(); }
|
|
T *operator->() const { return get(); }
|
|
|
|
static InternalHandle<T*> fromMarkedLocation(T *fieldPtr) {
|
|
return InternalHandle(fieldPtr);
|
|
}
|
|
|
|
private:
|
|
/*
|
|
* Create an InternalHandle to something that is not a pointer to a
|
|
* gcthing, and so does not need to be rooted in the first place. Use these
|
|
* InternalHandles to pass pointers into functions that also need to accept
|
|
* regular InternalHandles to gcthing fields.
|
|
*
|
|
* Make this private to prevent accidental misuse; this is only for
|
|
* fromMarkedLocation().
|
|
*/
|
|
InternalHandle(T *field)
|
|
: holder(reinterpret_cast<void * const *>(&js::NullPtr::constNullValue)),
|
|
offset(uintptr_t(field))
|
|
{}
|
|
|
|
void operator=(InternalHandle<T*> other) MOZ_DELETE;
|
|
};
|
|
|
|
/*
|
|
* By default, pointers should use the inheritance hierarchy to find their
|
|
* ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that
|
|
* Rooted<T> may be used without the class definition being available.
|
|
*/
|
|
template <typename T>
|
|
struct RootKind<T *>
|
|
{
|
|
static ThingRootKind rootKind() { return T::rootKind(); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct GCMethods<T *>
|
|
{
|
|
static T *initial() { return nullptr; }
|
|
static ThingRootKind kind() { return RootKind<T *>::rootKind(); }
|
|
static bool poisoned(T *v) { return JS::IsPoisonedPtr(v); }
|
|
static bool needsPostBarrier(T *v) { return v; }
|
|
#ifdef JSGC_GENERATIONAL
|
|
static void postBarrier(T **vp) {
|
|
JS::HeapCellPostBarrier(reinterpret_cast<js::gc::Cell **>(vp));
|
|
}
|
|
static void relocate(T **vp) {
|
|
JS::HeapCellRelocate(reinterpret_cast<js::gc::Cell **>(vp));
|
|
}
|
|
#endif
|
|
};
|
|
|
|
#ifdef JS_DEBUG
|
|
/* This helper allows us to assert that Rooted<T> is scoped within a request. */
|
|
extern JS_PUBLIC_API(bool)
|
|
IsInRequest(JSContext *cx);
|
|
#endif
|
|
|
|
} /* namespace js */
|
|
|
|
namespace JS {
|
|
|
|
/*
|
|
* Local variable of type T whose value is always rooted. This is typically
|
|
* used for local variables, or for non-rooted values being passed to a
|
|
* function that requires a handle, e.g. Foo(Root<T>(cx, x)).
|
|
*
|
|
* If you want to add additional methods to Rooted for a specific
|
|
* specialization, define a RootedBase<T> specialization containing them.
|
|
*/
|
|
template <typename T>
|
|
class MOZ_STACK_CLASS Rooted : public js::RootedBase<T>
|
|
{
|
|
/* Note: CX is a subclass of either ContextFriendFields or PerThreadDataFriendFields. */
|
|
template <typename CX>
|
|
void init(CX *cx) {
|
|
#ifdef JSGC_TRACK_EXACT_ROOTS
|
|
js::ThingRootKind kind = js::GCMethods<T>::kind();
|
|
this->stack = &cx->thingGCRooters[kind];
|
|
this->prev = *stack;
|
|
*stack = reinterpret_cast<Rooted<void*>*>(this);
|
|
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(ptr));
|
|
#endif
|
|
}
|
|
|
|
public:
|
|
Rooted(JSContext *cx
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(js::GCMethods<T>::initial())
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
#ifdef JS_DEBUG
|
|
MOZ_ASSERT(js::IsInRequest(cx));
|
|
#endif
|
|
init(js::ContextFriendFields::get(cx));
|
|
}
|
|
|
|
Rooted(JSContext *cx, T initial
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(initial)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
#ifdef JS_DEBUG
|
|
MOZ_ASSERT(js::IsInRequest(cx));
|
|
#endif
|
|
init(js::ContextFriendFields::get(cx));
|
|
}
|
|
|
|
Rooted(js::ContextFriendFields *cx
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(js::GCMethods<T>::initial())
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(cx);
|
|
}
|
|
|
|
Rooted(js::ContextFriendFields *cx, T initial
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(initial)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(cx);
|
|
}
|
|
|
|
Rooted(js::PerThreadDataFriendFields *pt
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(js::GCMethods<T>::initial())
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(pt);
|
|
}
|
|
|
|
Rooted(js::PerThreadDataFriendFields *pt, T initial
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(initial)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(pt);
|
|
}
|
|
|
|
Rooted(JSRuntime *rt
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(js::GCMethods<T>::initial())
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(js::PerThreadDataFriendFields::getMainThread(rt));
|
|
}
|
|
|
|
Rooted(JSRuntime *rt, T initial
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(initial)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
init(js::PerThreadDataFriendFields::getMainThread(rt));
|
|
}
|
|
|
|
// Note that we need to let the compiler generate the default destructor in
|
|
// non-exact-rooting builds because of a bug in the instrumented PGO builds
|
|
// using MSVC, see bug 915735 for more details.
|
|
#ifdef JSGC_TRACK_EXACT_ROOTS
|
|
~Rooted() {
|
|
MOZ_ASSERT(*stack == reinterpret_cast<Rooted<void*>*>(this));
|
|
*stack = prev;
|
|
}
|
|
#endif
|
|
|
|
#ifdef JSGC_TRACK_EXACT_ROOTS
|
|
Rooted<T> *previous() { return prev; }
|
|
#endif
|
|
|
|
/*
|
|
* Important: Return a reference here so passing a Rooted<T> to
|
|
* something that takes a |const T&| is not a GC hazard.
|
|
*/
|
|
operator const T&() const { return ptr; }
|
|
T operator->() const { return ptr; }
|
|
T *address() { return &ptr; }
|
|
const T *address() const { return &ptr; }
|
|
T &get() { return ptr; }
|
|
const T &get() const { return ptr; }
|
|
|
|
T &operator=(T value) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(value));
|
|
ptr = value;
|
|
return ptr;
|
|
}
|
|
|
|
T &operator=(const Rooted &value) {
|
|
ptr = value;
|
|
return ptr;
|
|
}
|
|
|
|
void set(T value) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(value));
|
|
ptr = value;
|
|
}
|
|
|
|
bool operator!=(const T &other) const { return ptr != other; }
|
|
bool operator==(const T &other) const { return ptr == other; }
|
|
|
|
private:
|
|
#ifdef JSGC_TRACK_EXACT_ROOTS
|
|
Rooted<void*> **stack, *prev;
|
|
#endif
|
|
|
|
/*
|
|
* |ptr| must be the last field in Rooted because the analysis treats all
|
|
* Rooted as Rooted<void*> during the analysis. See bug 829372.
|
|
*/
|
|
T ptr;
|
|
|
|
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
|
|
|
|
Rooted(const Rooted &) MOZ_DELETE;
|
|
};
|
|
|
|
} /* namespace JS */
|
|
|
|
namespace js {
|
|
|
|
/*
|
|
* Augment the generic Rooted<T> interface when T = JSObject* with
|
|
* class-querying and downcasting operations.
|
|
*
|
|
* Given a Rooted<JSObject*> obj, one can view
|
|
* Handle<StringObject*> h = obj.as<StringObject*>();
|
|
* as an optimization of
|
|
* Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
|
|
* Handle<StringObject*> h = rooted;
|
|
*/
|
|
template <>
|
|
class RootedBase<JSObject*>
|
|
{
|
|
public:
|
|
template <class U>
|
|
JS::Handle<U*> as() const;
|
|
};
|
|
|
|
|
|
/*
|
|
* RootedGeneric<T> allows a class to instantiate its own Rooted type by
|
|
* including the following two methods:
|
|
*
|
|
* static inline js::ThingRootKind rootKind() { return js::THING_ROOT_CUSTOM; }
|
|
* void trace(JSTracer *trc);
|
|
*
|
|
* The trace() method must trace all of the class's fields.
|
|
*
|
|
* Implementation:
|
|
*
|
|
* RootedGeneric<T> works by placing a pointer to its 'rooter' field into the
|
|
* usual list of rooters when it is instantiated. When marking, it backs up
|
|
* from this pointer to find a vtable containing a type-appropriate trace()
|
|
* method.
|
|
*/
|
|
template <typename GCType>
|
|
class JS_PUBLIC_API(RootedGeneric)
|
|
{
|
|
public:
|
|
JS::Rooted<GCType> rooter;
|
|
|
|
RootedGeneric(js::ContextFriendFields *cx)
|
|
: rooter(cx)
|
|
{
|
|
}
|
|
|
|
RootedGeneric(js::ContextFriendFields *cx, const GCType &initial)
|
|
: rooter(cx, initial)
|
|
{
|
|
}
|
|
|
|
virtual inline void trace(JSTracer *trc);
|
|
|
|
operator const GCType&() const { return rooter.get(); }
|
|
GCType operator->() const { return rooter.get(); }
|
|
};
|
|
|
|
template <typename GCType>
|
|
inline void RootedGeneric<GCType>::trace(JSTracer *trc)
|
|
{
|
|
rooter->trace(trc);
|
|
}
|
|
|
|
// We will instantiate RootedGeneric<void*> in RootMarking.cpp, and MSVC will
|
|
// notice that void*s have no trace() method defined on them and complain (even
|
|
// though it's never called.) MSVC's complaint is not unreasonable, so
|
|
// specialize for void*.
|
|
template <>
|
|
inline void RootedGeneric<void*>::trace(JSTracer *trc)
|
|
{
|
|
MOZ_ASSUME_UNREACHABLE("RootedGeneric<void*>::trace()");
|
|
}
|
|
|
|
/* Interface substitute for Rooted<T> which does not root the variable's memory. */
|
|
template <typename T>
|
|
class FakeRooted : public RootedBase<T>
|
|
{
|
|
public:
|
|
template <typename CX>
|
|
FakeRooted(CX *cx
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(GCMethods<T>::initial())
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
}
|
|
|
|
template <typename CX>
|
|
FakeRooted(CX *cx, T initial
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: ptr(initial)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
}
|
|
|
|
operator T() const { return ptr; }
|
|
T operator->() const { return ptr; }
|
|
T *address() { return &ptr; }
|
|
const T *address() const { return &ptr; }
|
|
T &get() { return ptr; }
|
|
const T &get() const { return ptr; }
|
|
|
|
FakeRooted<T> &operator=(T value) {
|
|
MOZ_ASSERT(!GCMethods<T>::poisoned(value));
|
|
ptr = value;
|
|
return *this;
|
|
}
|
|
|
|
FakeRooted<T> &operator=(const FakeRooted<T> &other) {
|
|
MOZ_ASSERT(!GCMethods<T>::poisoned(other.ptr));
|
|
ptr = other.ptr;
|
|
return *this;
|
|
}
|
|
|
|
bool operator!=(const T &other) const { return ptr != other; }
|
|
bool operator==(const T &other) const { return ptr == other; }
|
|
|
|
private:
|
|
T ptr;
|
|
|
|
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
|
|
|
|
FakeRooted(const FakeRooted &) MOZ_DELETE;
|
|
};
|
|
|
|
/* Interface substitute for MutableHandle<T> which is not required to point to rooted memory. */
|
|
template <typename T>
|
|
class FakeMutableHandle : public js::MutableHandleBase<T>
|
|
{
|
|
public:
|
|
FakeMutableHandle(T *t) {
|
|
ptr = t;
|
|
}
|
|
|
|
FakeMutableHandle(FakeRooted<T> *root) {
|
|
ptr = root->address();
|
|
}
|
|
|
|
void set(T v) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(v));
|
|
*ptr = v;
|
|
}
|
|
|
|
T *address() const { return ptr; }
|
|
T get() const { return *ptr; }
|
|
|
|
operator T() const { return get(); }
|
|
T operator->() const { return get(); }
|
|
|
|
private:
|
|
FakeMutableHandle() {}
|
|
|
|
T *ptr;
|
|
|
|
template <typename S>
|
|
void operator=(S v) MOZ_DELETE;
|
|
|
|
void operator=(const FakeMutableHandle<T>& other) MOZ_DELETE;
|
|
};
|
|
|
|
/*
|
|
* Types for a variable that either should or shouldn't be rooted, depending on
|
|
* the template parameter allowGC. Used for implementing functions that can
|
|
* operate on either rooted or unrooted data.
|
|
*
|
|
* The toHandle() and toMutableHandle() functions are for calling functions
|
|
* which require handle types and are only called in the CanGC case. These
|
|
* allow the calling code to type check.
|
|
*/
|
|
enum AllowGC {
|
|
NoGC = 0,
|
|
CanGC = 1
|
|
};
|
|
template <typename T, AllowGC allowGC>
|
|
class MaybeRooted
|
|
{
|
|
};
|
|
|
|
template <typename T> class MaybeRooted<T, CanGC>
|
|
{
|
|
public:
|
|
typedef JS::Handle<T> HandleType;
|
|
typedef JS::Rooted<T> RootType;
|
|
typedef JS::MutableHandle<T> MutableHandleType;
|
|
|
|
static inline JS::Handle<T> toHandle(HandleType v) {
|
|
return v;
|
|
}
|
|
|
|
static inline JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
|
|
return v;
|
|
}
|
|
};
|
|
|
|
template <typename T> class MaybeRooted<T, NoGC>
|
|
{
|
|
public:
|
|
typedef T HandleType;
|
|
typedef FakeRooted<T> RootType;
|
|
typedef FakeMutableHandle<T> MutableHandleType;
|
|
|
|
static inline JS::Handle<T> toHandle(HandleType v) {
|
|
MOZ_ASSUME_UNREACHABLE("Bad conversion");
|
|
}
|
|
|
|
static inline JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
|
|
MOZ_ASSUME_UNREACHABLE("Bad conversion");
|
|
}
|
|
};
|
|
|
|
} /* namespace js */
|
|
|
|
namespace JS {
|
|
|
|
template <typename T> template <typename S>
|
|
inline
|
|
Handle<T>::Handle(const Rooted<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
|
|
{
|
|
ptr = reinterpret_cast<const T *>(root.address());
|
|
}
|
|
|
|
template <typename T> template <typename S>
|
|
inline
|
|
Handle<T>::Handle(const PersistentRooted<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
|
|
{
|
|
ptr = reinterpret_cast<const T *>(root.address());
|
|
}
|
|
|
|
template <typename T> template <typename S>
|
|
inline
|
|
Handle<T>::Handle(MutableHandle<S> &root,
|
|
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
|
|
{
|
|
ptr = reinterpret_cast<const T *>(root.address());
|
|
}
|
|
|
|
template <typename T>
|
|
inline
|
|
MutableHandle<T>::MutableHandle(Rooted<T> *root)
|
|
{
|
|
static_assert(sizeof(MutableHandle<T>) == sizeof(T *),
|
|
"MutableHandle must be binary compatible with T*.");
|
|
ptr = root->address();
|
|
}
|
|
|
|
template <typename T>
|
|
inline
|
|
MutableHandle<T>::MutableHandle(PersistentRooted<T> *root)
|
|
{
|
|
static_assert(sizeof(MutableHandle<T>) == sizeof(T *),
|
|
"MutableHandle must be binary compatible with T*.");
|
|
ptr = root->address();
|
|
}
|
|
|
|
/*
|
|
* A copyable, assignable global GC root type with arbitrary lifetime, an
|
|
* infallible constructor, and automatic unrooting on destruction.
|
|
*
|
|
* These roots can be used in heap-allocated data structures, so they are not
|
|
* associated with any particular JSContext or stack. They are registered with
|
|
* the JSRuntime itself, without locking, so they require a full JSContext to be
|
|
* constructed, not one of its more restricted superclasses.
|
|
*
|
|
* Note that you must not use an PersistentRooted in an object owned by a JS
|
|
* object:
|
|
*
|
|
* Whenever one object whose lifetime is decided by the GC refers to another
|
|
* such object, that edge must be traced only if the owning JS object is traced.
|
|
* This applies not only to JS objects (which obviously are managed by the GC)
|
|
* but also to C++ objects owned by JS objects.
|
|
*
|
|
* If you put a PersistentRooted in such a C++ object, that is almost certainly
|
|
* a leak. When a GC begins, the referent of the PersistentRooted is treated as
|
|
* live, unconditionally (because a PersistentRooted is a *root*), even if the
|
|
* JS object that owns it is unreachable. If there is any path from that
|
|
* referent back to the JS object, then the C++ object containing the
|
|
* PersistentRooted will not be destructed, and the whole blob of objects will
|
|
* not be freed, even if there are no references to them from the outside.
|
|
*
|
|
* In the context of Firefox, this is a severe restriction: almost everything in
|
|
* Firefox is owned by some JS object or another, so using PersistentRooted in
|
|
* such objects would introduce leaks. For these kinds of edges, Heap<T> or
|
|
* TenuredHeap<T> would be better types. It's up to the implementor of the type
|
|
* containing Heap<T> or TenuredHeap<T> members to make sure their referents get
|
|
* marked when the object itself is marked.
|
|
*/
|
|
template<typename T>
|
|
class PersistentRooted : private mozilla::LinkedListElement<PersistentRooted<T> > {
|
|
friend class mozilla::LinkedList<PersistentRooted>;
|
|
friend class mozilla::LinkedListElement<PersistentRooted>;
|
|
|
|
friend class js::gc::PersistentRootedMarker<T>;
|
|
|
|
void registerWithRuntime(JSRuntime *rt) {
|
|
JS::shadow::Runtime *srt = JS::shadow::Runtime::asShadowRuntime(rt);
|
|
srt->getPersistentRootedList<T>().insertBack(this);
|
|
}
|
|
|
|
public:
|
|
PersistentRooted(JSContext *cx) : ptr(js::GCMethods<T>::initial())
|
|
{
|
|
registerWithRuntime(js::GetRuntime(cx));
|
|
}
|
|
|
|
PersistentRooted(JSContext *cx, T initial) : ptr(initial)
|
|
{
|
|
registerWithRuntime(js::GetRuntime(cx));
|
|
}
|
|
|
|
PersistentRooted(JSRuntime *rt) : ptr(js::GCMethods<T>::initial())
|
|
{
|
|
registerWithRuntime(rt);
|
|
}
|
|
|
|
PersistentRooted(JSRuntime *rt, T initial) : ptr(initial)
|
|
{
|
|
registerWithRuntime(rt);
|
|
}
|
|
|
|
PersistentRooted(PersistentRooted &rhs) : ptr(rhs.ptr)
|
|
{
|
|
/*
|
|
* Copy construction takes advantage of the fact that the original
|
|
* is already inserted, and simply adds itself to whatever list the
|
|
* original was on - no JSRuntime pointer needed.
|
|
*/
|
|
rhs.setNext(this);
|
|
}
|
|
|
|
/*
|
|
* Important: Return a reference here so passing a Rooted<T> to
|
|
* something that takes a |const T&| is not a GC hazard.
|
|
*/
|
|
operator const T&() const { return ptr; }
|
|
T operator->() const { return ptr; }
|
|
T *address() { return &ptr; }
|
|
const T *address() const { return &ptr; }
|
|
T &get() { return ptr; }
|
|
const T &get() const { return ptr; }
|
|
|
|
T &operator=(T value) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(value));
|
|
ptr = value;
|
|
return ptr;
|
|
}
|
|
|
|
T &operator=(const PersistentRooted &value) {
|
|
ptr = value;
|
|
return ptr;
|
|
}
|
|
|
|
void set(T value) {
|
|
MOZ_ASSERT(!js::GCMethods<T>::poisoned(value));
|
|
ptr = value;
|
|
}
|
|
|
|
bool operator!=(const T &other) const { return ptr != other; }
|
|
bool operator==(const T &other) const { return ptr == other; }
|
|
|
|
private:
|
|
T ptr;
|
|
};
|
|
|
|
} /* namespace JS */
|
|
|
|
namespace js {
|
|
|
|
/* Base class for automatic read-only object rooting during compilation. */
|
|
class CompilerRootNode
|
|
{
|
|
protected:
|
|
CompilerRootNode(js::gc::Cell *ptr) : next(nullptr), ptr_(ptr) {}
|
|
|
|
public:
|
|
void **address() { return (void **)&ptr_; }
|
|
|
|
public:
|
|
CompilerRootNode *next;
|
|
|
|
protected:
|
|
js::gc::Cell *ptr_;
|
|
};
|
|
|
|
} /* namespace js */
|
|
|
|
#endif /* js_RootingAPI_h */
|