gecko-dev/image/imgFrame.cpp

955 lines
26 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "imgFrame.h"
#include "ImageRegion.h"
#include "ShutdownTracker.h"
#include "prenv.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "gfxPrefs.h"
#include "gfxUtils.h"
#include "GeckoProfiler.h"
#include "MainThreadUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Tools.h"
#include "mozilla/gfx/SourceSurfaceRawData.h"
#include "mozilla/layers/SourceSurfaceSharedData.h"
#include "mozilla/layers/SourceSurfaceVolatileData.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "nsMargin.h"
#include "nsThreadUtils.h"
namespace mozilla {
using namespace gfx;
namespace image {
static void
ScopedMapRelease(void* aMap)
{
delete static_cast<DataSourceSurface::ScopedMap*>(aMap);
}
static int32_t
VolatileSurfaceStride(const IntSize& size, SurfaceFormat format)
{
// Stride must be a multiple of four or cairo will complain.
return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
}
static already_AddRefed<DataSourceSurface>
CreateLockedSurface(DataSourceSurface *aSurface,
const IntSize& size,
SurfaceFormat format)
{
// Shared memory is never released until the surface itself is released
if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
RefPtr<DataSourceSurface> surf(aSurface);
return surf.forget();
}
DataSourceSurface::ScopedMap* smap =
new DataSourceSurface::ScopedMap(aSurface, DataSourceSurface::READ_WRITE);
if (smap->IsMapped()) {
// The ScopedMap is held by this DataSourceSurface.
RefPtr<DataSourceSurface> surf =
Factory::CreateWrappingDataSourceSurface(smap->GetData(),
aSurface->Stride(),
size,
format,
&ScopedMapRelease,
static_cast<void*>(smap));
if (surf) {
return surf.forget();
}
}
delete smap;
return nullptr;
}
static bool
ShouldUseHeap(const IntSize& aSize,
int32_t aStride,
bool aIsAnimated)
{
// On some platforms (i.e. Android), a volatile buffer actually keeps a file
// handle active. We would like to avoid too many since we could easily
// exhaust the pool. However, other platforms we do not have the file handle
// problem, and additionally we may avoid a superfluous memset since the
// volatile memory starts out as zero-filled. Hence the knobs below.
// For as long as an animated image is retained, its frames will never be
// released to let the OS purge volatile buffers.
if (aIsAnimated && gfxPrefs::ImageMemAnimatedUseHeap()) {
return true;
}
// Lets us avoid too many small images consuming all of the handles. The
// actual allocation checks for overflow.
int32_t bufferSize = (aStride * aSize.width) / 1024;
if (bufferSize < gfxPrefs::ImageMemVolatileMinThresholdKB()) {
return true;
}
return false;
}
static already_AddRefed<DataSourceSurface>
AllocateBufferForImage(const IntSize& size,
SurfaceFormat format,
bool aIsAnimated = false)
{
int32_t stride = VolatileSurfaceStride(size, format);
if (ShouldUseHeap(size, stride, aIsAnimated)) {
RefPtr<SourceSurfaceAlignedRawData> newSurf =
new SourceSurfaceAlignedRawData();
if (newSurf->Init(size, format, false, 0, stride)) {
return newSurf.forget();
}
}
if (!aIsAnimated && gfxVars::GetUseWebRenderOrDefault()
&& gfxPrefs::ImageMemShared()) {
RefPtr<SourceSurfaceSharedData> newSurf = new SourceSurfaceSharedData();
if (newSurf->Init(size, stride, format)) {
return newSurf.forget();
}
} else {
RefPtr<SourceSurfaceVolatileData> newSurf= new SourceSurfaceVolatileData();
if (newSurf->Init(size, stride, format)) {
return newSurf.forget();
}
}
return nullptr;
}
static bool
ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize, SurfaceFormat aFormat)
{
int32_t stride = aSurface->Stride();
uint8_t* data = aSurface->GetData();
MOZ_ASSERT(data);
if (aFormat == SurfaceFormat::B8G8R8X8) {
// Skia doesn't support RGBX surfaces, so ensure the alpha value is set
// to opaque white. While it would be nice to only do this for Skia,
// imgFrame can run off main thread and past shutdown where
// we might not have gfxPlatform, so just memset everytime instead.
memset(data, 0xFF, stride * aSize.height);
} else if (aSurface->OnHeap()) {
// We only need to memset it if the buffer was allocated on the heap.
// Otherwise, it's allocated via mmap and refers to a zeroed page and will
// be COW once it's written to.
memset(data, 0, stride * aSize.height);
}
return true;
}
// Returns true if an image of aWidth x aHeight is allowed and legal.
static bool
AllowedImageSize(int32_t aWidth, int32_t aHeight)
{
// reject over-wide or over-tall images
const int32_t k64KLimit = 0x0000FFFF;
if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) {
NS_WARNING("image too big");
return false;
}
// protect against invalid sizes
if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) {
return false;
}
// check to make sure we don't overflow a 32-bit
CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4;
if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
NS_WARNING("width or height too large");
return false;
}
return true;
}
static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize,
const nsIntRect& aFrameRect)
{
if (!AllowedImageSize(aImageSize.width, aImageSize.height)) {
return false;
}
if (!AllowedImageSize(aFrameRect.Width(), aFrameRect.Height())) {
return false;
}
nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height);
if (!imageRect.Contains(aFrameRect)) {
NS_WARNING("Animated image frame does not fit inside bounds of image");
}
return true;
}
imgFrame::imgFrame()
: mMonitor("imgFrame")
, mDecoded(0, 0, 0, 0)
, mLockCount(0)
, mAborted(false)
, mFinished(false)
, mOptimizable(false)
, mTimeout(FrameTimeout::FromRawMilliseconds(100))
, mDisposalMethod(DisposalMethod::NOT_SPECIFIED)
, mBlendMethod(BlendMethod::OVER)
, mPalettedImageData(nullptr)
, mPaletteDepth(0)
, mNonPremult(false)
, mCompositingFailed(false)
{
}
imgFrame::~imgFrame()
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mAborted || AreAllPixelsWritten());
MOZ_ASSERT(mAborted || mFinished);
#endif
free(mPalettedImageData);
mPalettedImageData = nullptr;
}
nsresult
imgFrame::InitForDecoder(const nsIntSize& aImageSize,
const nsIntRect& aRect,
SurfaceFormat aFormat,
uint8_t aPaletteDepth /* = 0 */,
bool aNonPremult /* = false */,
const Maybe<AnimationParams>& aAnimParams /* = Nothing() */)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aImageSize;
mFrameRect = aRect;
if (aAnimParams) {
mBlendRect = aAnimParams->mBlendRect;
mTimeout = aAnimParams->mTimeout;
mBlendMethod = aAnimParams->mBlendMethod;
mDisposalMethod = aAnimParams->mDisposalMethod;
} else {
mBlendRect = aRect;
}
// We only allow a non-trivial frame rect (i.e., a frame rect that doesn't
// cover the entire image) for paletted animation frames. We never draw those
// frames directly; we just use FrameAnimator to composite them and produce a
// BGRA surface that we actually draw. We enforce this here to make sure that
// imgFrame::Draw(), which is responsible for drawing all other kinds of
// frames, never has to deal with a non-trivial frame rect.
if (aPaletteDepth == 0 &&
!mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize))) {
MOZ_ASSERT_UNREACHABLE("Creating a non-paletted imgFrame with a "
"non-trivial frame rect");
return NS_ERROR_FAILURE;
}
mFormat = aFormat;
mPaletteDepth = aPaletteDepth;
mNonPremult = aNonPremult;
if (aPaletteDepth != 0) {
// We're creating for a paletted image.
if (aPaletteDepth > 8) {
NS_WARNING("Should have legal palette depth");
NS_ERROR("This Depth is not supported");
mAborted = true;
return NS_ERROR_FAILURE;
}
// Use the fallible allocator here. Paletted images always use 1 byte per
// pixel, so calculating the amount of memory we need is straightforward.
size_t dataSize = PaletteDataLength() + mFrameRect.Area();
mPalettedImageData = static_cast<uint8_t*>(calloc(dataSize, sizeof(uint8_t)));
if (!mPalettedImageData) {
NS_WARNING("Call to calloc for paletted image data should succeed");
}
NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY);
} else {
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?");
bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0;
mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat, postFirstFrame);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
mLockedSurface = CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
if (!mLockedSurface) {
NS_WARNING("Failed to create LockedSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
}
return NS_OK;
}
nsresult
imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
const nsIntSize& aSize,
const SurfaceFormat aFormat,
SamplingFilter aSamplingFilter,
uint32_t aImageFlags,
gfx::BackendType aBackend)
{
// Assert for properties that should be verified by decoders,
// warn for properties related to bad content.
if (!AllowedImageSize(aSize.width, aSize.height)) {
NS_WARNING("Should have legal image size");
mAborted = true;
return NS_ERROR_FAILURE;
}
mImageSize = aSize;
mFrameRect = IntRect(IntPoint(0, 0), aSize);
mFormat = aFormat;
mPaletteDepth = 0;
RefPtr<DrawTarget> target;
bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
if (canUseDataSurface) {
// It's safe to use data surfaces for content on this platform, so we can
// get away with using volatile buffers.
MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?");
mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat);
if (!mRawSurface) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
mLockedSurface = CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
if (!mLockedSurface) {
NS_WARNING("Failed to create LockedSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) {
NS_WARNING("Could not clear allocated buffer");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
target = gfxPlatform::CreateDrawTargetForData(
mLockedSurface->GetData(),
mFrameRect.Size(),
mLockedSurface->Stride(),
mFormat);
} else {
// We can't use data surfaces for content, so we'll create an offscreen
// surface instead. This means if someone later calls RawAccessRef(), we
// may have to do an expensive readback, but we warned callers about that in
// the documentation for this method.
MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
target = gfxPlatform::GetPlatform()->
CreateDrawTargetForBackend(aBackend, mFrameRect.Size(), mFormat);
} else {
target = gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(mFrameRect.Size(), mFormat);
}
}
if (!target || !target->IsValid()) {
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
// Draw using the drawable the caller provided.
RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target);
MOZ_ASSERT(ctx); // Already checked the draw target above.
gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mFrameRect.Size()),
ImageRegion::Create(ThebesRect(mFrameRect)),
mFormat, aSamplingFilter, aImageFlags);
if (canUseDataSurface && !mLockedSurface) {
NS_WARNING("Failed to create VolatileDataSourceSurface");
mAborted = true;
return NS_ERROR_OUT_OF_MEMORY;
}
if (!canUseDataSurface) {
// We used an offscreen surface, which is an "optimized" surface from
// imgFrame's perspective.
mOptSurface = target->Snapshot();
} else {
FinalizeSurface();
}
// If we reach this point, we should regard ourselves as complete.
mDecoded = GetRect();
mFinished = true;
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(AreAllPixelsWritten());
#endif
return NS_OK;
}
nsresult
imgFrame::Optimize(DrawTarget* aTarget)
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
if (mLockCount > 0 || !mOptimizable) {
// Don't optimize right now.
return NS_OK;
}
// Check whether image optimization is disabled -- not thread safe!
static bool gDisableOptimize = false;
static bool hasCheckedOptimize = false;
if (!hasCheckedOptimize) {
if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
gDisableOptimize = true;
}
hasCheckedOptimize = true;
}
// Don't optimize during shutdown because gfxPlatform may not be available.
if (ShutdownTracker::ShutdownHasStarted()) {
return NS_OK;
}
if (gDisableOptimize) {
return NS_OK;
}
if (mPalettedImageData || mOptSurface) {
return NS_OK;
}
// XXX(seth): It's currently unclear if there's any reason why we can't
// optimize non-premult surfaces. We should look into removing this.
if (mNonPremult) {
return NS_OK;
}
mOptSurface = gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mLockedSurface);
if (mOptSurface == mLockedSurface) {
mOptSurface = nullptr;
}
if (mOptSurface) {
// There's no reason to keep our original surface around if we have an
// optimized surface. Release our reference to it. This will leave
// |mLockedSurface| as the only thing keeping it alive, so it'll get freed
// below.
mRawSurface = nullptr;
}
// Release all strong references to the surface's memory. If the underlying
// surface is volatile, this will allow the operating system to free the
// memory if it needs to.
mLockedSurface = nullptr;
mOptimizable = false;
return NS_OK;
}
DrawableFrameRef
imgFrame::DrawableRef()
{
return DrawableFrameRef(this);
}
RawAccessFrameRef
imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/)
{
return RawAccessFrameRef(this, aOnlyFinished);
}
void
imgFrame::SetRawAccessOnly()
{
AssertImageDataLocked();
// Lock our data and throw away the key.
LockImageData(false);
}
imgFrame::SurfaceWithFormat
imgFrame::SurfaceForDrawing(bool aDoPartialDecode,
bool aDoTile,
ImageRegion& aRegion,
SourceSurface* aSurface)
{
MOZ_ASSERT(NS_IsMainThread());
mMonitor.AssertCurrentThreadOwns();
if (!aDoPartialDecode) {
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
mFormat);
}
gfxRect available = gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(),
mDecoded.Height());
if (aDoTile) {
// Create a temporary surface.
// Give this surface an alpha channel because there are
// transparent pixels in the padding or undecoded area
RefPtr<DrawTarget> target =
gfxPlatform::GetPlatform()->
CreateOffscreenContentDrawTarget(mImageSize, SurfaceFormat::B8G8R8A8);
if (!target) {
return SurfaceWithFormat();
}
SurfacePattern pattern(aSurface,
aRegion.GetExtendMode(),
Matrix::Translation(mDecoded.X(), mDecoded.Y()));
target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
RefPtr<SourceSurface> newsurf = target->Snapshot();
return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
target->GetFormat());
}
// Not tiling, and we have a surface, so we can account for
// a partial decode just by twiddling parameters.
aRegion = aRegion.Intersect(available);
IntSize availableSize(mDecoded.Width(), mDecoded.Height());
return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
mFormat);
}
bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
SamplingFilter aSamplingFilter, uint32_t aImageFlags,
float aOpacity)
{
AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);
MOZ_ASSERT(NS_IsMainThread());
NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
NS_ASSERTION(!aRegion.IsRestricted() ||
!aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
"We must be allowed to sample *some* source pixels!");
MOZ_ASSERT(mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize)),
"Directly drawing an image with a non-trivial frame rect!");
if (mPalettedImageData) {
MOZ_ASSERT_UNREACHABLE("Directly drawing a paletted image!");
return false;
}
MonitorAutoLock lock(mMonitor);
// Possibly convert this image into a GPU texture, this may also cause our
// mLockedSurface to be released and the OS to release the underlying memory.
Optimize(aContext->GetDrawTarget());
bool doPartialDecode = !AreAllPixelsWritten();
RefPtr<SourceSurface> surf = GetSourceSurfaceInternal();
if (!surf) {
return false;
}
gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
bool doTile = !imageRect.Contains(aRegion.Rect()) &&
!(aImageFlags & imgIContainer::FLAG_CLAMP);
ImageRegion region(aRegion);
SurfaceWithFormat surfaceResult =
SurfaceForDrawing(doPartialDecode, doTile, region, surf);
if (surfaceResult.IsValid()) {
gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
imageRect.Size(), region, surfaceResult.mFormat,
aSamplingFilter, aImageFlags, aOpacity);
}
return true;
}
nsresult
imgFrame::ImageUpdated(const nsIntRect& aUpdateRect)
{
MonitorAutoLock lock(mMonitor);
return ImageUpdatedInternal(aUpdateRect);
}
nsresult
imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect)
{
mMonitor.AssertCurrentThreadOwns();
mDecoded.UnionRect(mDecoded, aUpdateRect);
// Clamp to the frame rect to ensure that decoder bugs don't result in a
// decoded rect that extends outside the bounds of the frame rect.
mDecoded.IntersectRect(mDecoded, mFrameRect);
// Update our invalidation counters for any consumers watching for changes
// in the surface.
if (mRawSurface) {
mRawSurface->Invalidate();
}
if (mLockedSurface && mRawSurface != mLockedSurface) {
mLockedSurface->Invalidate();
}
return NS_OK;
}
void
imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
bool aFinalize /* = true */)
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
ImageUpdatedInternal(GetRect());
if (aFinalize) {
FinalizeSurfaceInternal();
}
mFinished = true;
// The image is now complete, wake up anyone who's waiting.
mMonitor.NotifyAll();
}
uint32_t
imgFrame::GetImageBytesPerRow() const
{
mMonitor.AssertCurrentThreadOwns();
if (mRawSurface) {
return mFrameRect.Width() * BytesPerPixel(mFormat);
}
if (mPaletteDepth) {
return mFrameRect.Width();
}
return 0;
}
uint32_t
imgFrame::GetImageDataLength() const
{
return GetImageBytesPerRow() * mFrameRect.Height();
}
void
imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const
{
MonitorAutoLock lock(mMonitor);
GetImageDataInternal(aData, aLength);
}
void
imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const
{
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
if (mLockedSurface) {
// TODO: This is okay for now because we only realloc shared surfaces on
// the main thread after decoding has finished, but if animations want to
// read frame data off the main thread, we will need to reconsider this.
*aData = mLockedSurface->GetData();
MOZ_ASSERT(*aData,
"mLockedSurface is non-null, but GetData is null in GetImageData");
} else if (mPalettedImageData) {
*aData = mPalettedImageData + PaletteDataLength();
MOZ_ASSERT(*aData,
"mPalettedImageData is non-null, but result is null in GetImageData");
} else {
MOZ_ASSERT(false,
"Have neither mLockedSurface nor mPalettedImageData in GetImageData");
*aData = nullptr;
}
*aLength = GetImageDataLength();
}
uint8_t*
imgFrame::GetImageData() const
{
uint8_t* data;
uint32_t length;
GetImageData(&data, &length);
return data;
}
bool
imgFrame::GetIsPaletted() const
{
return mPalettedImageData != nullptr;
}
void
imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const
{
AssertImageDataLocked();
if (!mPalettedImageData) {
*aPalette = nullptr;
*length = 0;
} else {
*aPalette = (uint32_t*) mPalettedImageData;
*length = PaletteDataLength();
}
}
uint32_t*
imgFrame::GetPaletteData() const
{
uint32_t* data;
uint32_t length;
GetPaletteData(&data, &length);
return data;
}
uint8_t*
imgFrame::LockImageData(bool aOnlyFinished)
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
if (mLockCount < 0 || (aOnlyFinished && !mFinished)) {
return nullptr;
}
uint8_t* data;
if (mPalettedImageData) {
data = mPalettedImageData;
} else if (mLockedSurface) {
data = mLockedSurface->GetData();
} else {
data = nullptr;
}
// If the raw data is still available, we should get a valid pointer for it.
if (!data) {
MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
return nullptr;
}
++mLockCount;
return data;
}
void
imgFrame::AssertImageDataLocked() const
{
#ifdef DEBUG
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
#endif
}
nsresult
imgFrame::UnlockImageData()
{
MonitorAutoLock lock(mMonitor);
MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
if (mLockCount <= 0) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted,
"Should have Finish()'d or aborted before unlocking");
mLockCount--;
return NS_OK;
}
void
imgFrame::SetOptimizable()
{
AssertImageDataLocked();
MonitorAutoLock lock(mMonitor);
mOptimizable = true;
}
void
imgFrame::FinalizeSurface()
{
MonitorAutoLock lock(mMonitor);
FinalizeSurfaceInternal();
}
void
imgFrame::FinalizeSurfaceInternal()
{
mMonitor.AssertCurrentThreadOwns();
// Not all images will have mRawSurface to finalize (i.e. paletted images).
if (!mRawSurface || mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
return;
}
auto sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
sharedSurf->Finalize();
}
already_AddRefed<SourceSurface>
imgFrame::GetSourceSurface()
{
MonitorAutoLock lock(mMonitor);
return GetSourceSurfaceInternal();
}
already_AddRefed<SourceSurface>
imgFrame::GetSourceSurfaceInternal()
{
mMonitor.AssertCurrentThreadOwns();
if (mOptSurface) {
if (mOptSurface->IsValid()) {
RefPtr<SourceSurface> surf(mOptSurface);
return surf.forget();
} else {
mOptSurface = nullptr;
}
}
if (mLockedSurface) {
RefPtr<SourceSurface> surf(mLockedSurface);
return surf.forget();
}
if (!mRawSurface) {
return nullptr;
}
return CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat);
}
void
imgFrame::Abort()
{
MonitorAutoLock lock(mMonitor);
mAborted = true;
// Wake up anyone who's waiting.
mMonitor.NotifyAll();
}
bool
imgFrame::IsAborted() const
{
MonitorAutoLock lock(mMonitor);
return mAborted;
}
bool
imgFrame::IsFinished() const
{
MonitorAutoLock lock(mMonitor);
return mFinished;
}
void
imgFrame::WaitUntilFinished() const
{
MonitorAutoLock lock(mMonitor);
while (true) {
// Return if we're aborted or complete.
if (mAborted || mFinished) {
return;
}
// Not complete yet, so we'll have to wait.
mMonitor.Wait();
}
}
bool
imgFrame::AreAllPixelsWritten() const
{
mMonitor.AssertCurrentThreadOwns();
return mDecoded.IsEqualInterior(mFrameRect);
}
bool imgFrame::GetCompositingFailed() const
{
MOZ_ASSERT(NS_IsMainThread());
return mCompositingFailed;
}
void
imgFrame::SetCompositingFailed(bool val)
{
MOZ_ASSERT(NS_IsMainThread());
mCompositingFailed = val;
}
void
imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut,
size_t& aExtHandlesOut) const
{
MonitorAutoLock lock(mMonitor);
if (mPalettedImageData) {
aHeapSizeOut += aMallocSizeOf(mPalettedImageData);
}
if (mLockedSurface) {
aHeapSizeOut += aMallocSizeOf(mLockedSurface);
}
if (mOptSurface) {
aHeapSizeOut += aMallocSizeOf(mOptSurface);
}
if (mRawSurface) {
aHeapSizeOut += aMallocSizeOf(mRawSurface);
mRawSurface->AddSizeOfExcludingThis(aMallocSizeOf, aHeapSizeOut,
aNonHeapSizeOut, aExtHandlesOut);
}
}
} // namespace image
} // namespace mozilla