gecko-dev/xpcom/threads/PrioritizedEventQueue.cpp
Nathan Froyd ec2a2fe38f Bug 1434856 - move runnable prioritization checks outside of event queue locks; r=erahm
Otherwise, we might enter JS, decide to GC, and deadlock because we were
trying to dispatch tasks to the main thread's event queue while holding
the lock for the event queue.
2018-02-02 13:55:05 -05:00

346 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PrioritizedEventQueue.h"
#include "mozilla/EventQueue.h"
#include "mozilla/ScopeExit.h"
#include "nsThreadManager.h"
#include "nsXPCOMPrivate.h" // for gXPCOMThreadsShutDown
#include "InputEventStatistics.h"
using namespace mozilla;
template<class InnerQueueT>
PrioritizedEventQueue<InnerQueueT>::PrioritizedEventQueue(UniquePtr<InnerQueueT> aHighQueue,
UniquePtr<InnerQueueT> aInputQueue,
UniquePtr<InnerQueueT> aNormalQueue,
UniquePtr<InnerQueueT> aIdleQueue,
already_AddRefed<nsIIdlePeriod> aIdlePeriod)
: mHighQueue(Move(aHighQueue))
, mInputQueue(Move(aInputQueue))
, mNormalQueue(Move(aNormalQueue))
, mIdleQueue(Move(aIdleQueue))
, mIdlePeriod(aIdlePeriod)
{
static_assert(IsBaseOf<AbstractEventQueue, InnerQueueT>::value,
"InnerQueueT must be an AbstractEventQueue subclass");
}
template<class InnerQueueT>
void
PrioritizedEventQueue<InnerQueueT>::PutEvent(already_AddRefed<nsIRunnable>&& aEvent,
EventPriority aPriority,
const MutexAutoLock& aProofOfLock)
{
// Double check the priority with a QI.
RefPtr<nsIRunnable> event(aEvent);
EventPriority priority = aPriority;
if (priority == EventPriority::Input && mInputQueueState == STATE_DISABLED) {
priority = EventPriority::Normal;
}
switch (priority) {
case EventPriority::High:
mHighQueue->PutEvent(event.forget(), priority, aProofOfLock);
break;
case EventPriority::Input:
mInputQueue->PutEvent(event.forget(), priority, aProofOfLock);
break;
case EventPriority::Normal:
mNormalQueue->PutEvent(event.forget(), priority, aProofOfLock);
break;
case EventPriority::Idle:
mIdleQueue->PutEvent(event.forget(), priority, aProofOfLock);
break;
case EventPriority::Count:
MOZ_CRASH("EventPriority::Count isn't a valid priority");
break;
}
}
template<class InnerQueueT>
TimeStamp
PrioritizedEventQueue<InnerQueueT>::GetIdleDeadline()
{
// If we are shutting down, we won't honor the idle period, and we will
// always process idle runnables. This will ensure that the idle queue
// gets exhausted at shutdown time to prevent intermittently leaking
// some runnables inside that queue and even worse potentially leaving
// some important cleanup work unfinished.
if (gXPCOMThreadsShutDown || nsThreadManager::get().GetCurrentThread()->ShuttingDown()) {
return TimeStamp::Now();
}
TimeStamp idleDeadline;
{
// Releasing the lock temporarily since getting the idle period
// might need to lock the timer thread. Unlocking here might make
// us receive an event on the main queue, but we've committed to
// run an idle event anyhow.
MutexAutoUnlock unlock(*mMutex);
mIdlePeriod->GetIdlePeriodHint(&idleDeadline);
}
// If HasPendingEvents() has been called and it has returned true because of
// pending idle events, there is a risk that we may decide here that we aren't
// idle and return null, in which case HasPendingEvents() has effectively
// lied. Since we can't go back and fix the past, we have to adjust what we
// do here and forcefully pick the idle queue task here. Note that this means
// that we are choosing to run a task from the idle queue when we would
// normally decide that we aren't in an idle period, but this can only happen
// if we fall out of the idle period in between the call to HasPendingEvents()
// and here, which should hopefully be quite rare. We are effectively
// choosing to prioritize the sanity of our API semantics over the optimal
// scheduling.
if (!mHasPendingEventsPromisedIdleEvent &&
(!idleDeadline || idleDeadline < TimeStamp::Now())) {
return TimeStamp();
}
if (mHasPendingEventsPromisedIdleEvent && !idleDeadline) {
// If HasPendingEvents() has been called and it has returned true, but we're no
// longer in the idle period, we must return a valid timestamp to pretend that
// we are still in the idle period.
return TimeStamp::Now();
}
return idleDeadline;
}
template<class InnerQueueT>
EventPriority
PrioritizedEventQueue<InnerQueueT>::SelectQueue(bool aUpdateState,
const MutexAutoLock& aProofOfLock)
{
bool highPending = !mHighQueue->IsEmpty(aProofOfLock);
bool normalPending = !mNormalQueue->IsEmpty(aProofOfLock);
size_t inputCount = mInputQueue->Count(aProofOfLock);
if (aUpdateState &&
mInputQueueState == STATE_ENABLED &&
mInputHandlingStartTime.IsNull() &&
inputCount > 0) {
mInputHandlingStartTime =
InputEventStatistics::Get()
.GetInputHandlingStartTime(inputCount);
}
// We check the different queues in the following order. The conditions we use
// are meant to avoid starvation and to ensure that we don't process an event
// at the wrong time.
//
// HIGH: if mProcessHighPriorityQueue
// INPUT: if inputCount > 0 && TimeStamp::Now() > mInputHandlingStartTime
// NORMAL: if normalPending
//
// If we still don't have an event, then we take events from the queues
// in the following order:
//
// HIGH
// INPUT
// IDLE: if GetIdleDeadline()
//
// If we don't get an event in this pass, then we return null since no events
// are ready.
// This variable determines which queue we will take an event from.
EventPriority queue;
if (mProcessHighPriorityQueue) {
queue = EventPriority::High;
} else if (inputCount > 0 && (mInputQueueState == STATE_FLUSHING ||
(mInputQueueState == STATE_ENABLED &&
!mInputHandlingStartTime.IsNull() &&
TimeStamp::Now() > mInputHandlingStartTime))) {
queue = EventPriority::Input;
} else if (normalPending) {
MOZ_ASSERT(mInputQueueState != STATE_FLUSHING,
"Shouldn't consume normal event when flusing input events");
queue = EventPriority::Normal;
} else if (highPending) {
queue = EventPriority::High;
} else if (inputCount > 0 && mInputQueueState != STATE_SUSPEND) {
MOZ_ASSERT(mInputQueueState != STATE_DISABLED,
"Shouldn't consume input events when the input queue is disabled");
queue = EventPriority::Input;
} else {
// We may not actually return an idle event in this case.
queue = EventPriority::Idle;
}
MOZ_ASSERT_IF(queue == EventPriority::Input,
mInputQueueState != STATE_DISABLED && mInputQueueState != STATE_SUSPEND);
if (aUpdateState) {
mProcessHighPriorityQueue = highPending;
}
return queue;
}
template<class InnerQueueT>
already_AddRefed<nsIRunnable>
PrioritizedEventQueue<InnerQueueT>::GetEvent(EventPriority* aPriority,
const MutexAutoLock& aProofOfLock)
{
MakeScopeExit([&] {
mHasPendingEventsPromisedIdleEvent = false;
});
#ifndef RELEASE_OR_BETA
// Clear mNextIdleDeadline so that it is possible to determine that
// we're running an idle runnable in ProcessNextEvent.
*mNextIdleDeadline = TimeStamp();
#endif
EventPriority queue = SelectQueue(true, aProofOfLock);
if (aPriority) {
*aPriority = queue;
}
if (queue == EventPriority::High) {
nsCOMPtr<nsIRunnable> event = mHighQueue->GetEvent(aPriority, aProofOfLock);
MOZ_ASSERT(event);
mInputHandlingStartTime = TimeStamp();
mProcessHighPriorityQueue = false;
return event.forget();
}
if (queue == EventPriority::Input) {
nsCOMPtr<nsIRunnable> event = mInputQueue->GetEvent(aPriority, aProofOfLock);
MOZ_ASSERT(event);
return event.forget();
}
if (queue == EventPriority::Normal) {
nsCOMPtr<nsIRunnable> event = mNormalQueue->GetEvent(aPriority, aProofOfLock);
return event.forget();
}
// If we get here, then all queues except idle are empty.
MOZ_ASSERT(queue == EventPriority::Idle);
if (mIdleQueue->IsEmpty(aProofOfLock)) {
MOZ_ASSERT(!mHasPendingEventsPromisedIdleEvent);
return nullptr;
}
TimeStamp idleDeadline = GetIdleDeadline();
if (!idleDeadline) {
return nullptr;
}
nsCOMPtr<nsIRunnable> event = mIdleQueue->GetEvent(aPriority, aProofOfLock);
if (event) {
nsCOMPtr<nsIIdleRunnable> idleEvent = do_QueryInterface(event);
if (idleEvent) {
idleEvent->SetDeadline(idleDeadline);
}
#ifndef RELEASE_OR_BETA
// Store the next idle deadline to be able to determine budget use
// in ProcessNextEvent.
*mNextIdleDeadline = idleDeadline;
#endif
}
return event.forget();
}
template<class InnerQueueT>
bool
PrioritizedEventQueue<InnerQueueT>::IsEmpty(const MutexAutoLock& aProofOfLock)
{
// Just check IsEmpty() on the sub-queues. Don't bother checking the idle
// deadline since that only determines whether an idle event is ready or not.
return mHighQueue->IsEmpty(aProofOfLock)
&& mInputQueue->IsEmpty(aProofOfLock)
&& mNormalQueue->IsEmpty(aProofOfLock)
&& mIdleQueue->IsEmpty(aProofOfLock);
}
template<class InnerQueueT>
bool
PrioritizedEventQueue<InnerQueueT>::HasReadyEvent(const MutexAutoLock& aProofOfLock)
{
mHasPendingEventsPromisedIdleEvent = false;
EventPriority queue = SelectQueue(false, aProofOfLock);
if (queue == EventPriority::High) {
return mHighQueue->HasReadyEvent(aProofOfLock);
} else if (queue == EventPriority::Input) {
return mInputQueue->HasReadyEvent(aProofOfLock);
} else if (queue == EventPriority::Normal) {
return mNormalQueue->HasReadyEvent(aProofOfLock);
}
MOZ_ASSERT(queue == EventPriority::Idle);
// If we get here, then both the high and normal queues are empty.
if (mIdleQueue->IsEmpty(aProofOfLock)) {
return false;
}
TimeStamp idleDeadline = GetIdleDeadline();
if (idleDeadline && mIdleQueue->HasReadyEvent(aProofOfLock)) {
mHasPendingEventsPromisedIdleEvent = true;
return true;
}
return false;
}
template<class InnerQueueT>
size_t
PrioritizedEventQueue<InnerQueueT>::Count(const MutexAutoLock& aProofOfLock) const
{
MOZ_CRASH("unimplemented");
}
template<class InnerQueueT>
void
PrioritizedEventQueue<InnerQueueT>::EnableInputEventPrioritization(const MutexAutoLock& aProofOfLock)
{
MOZ_ASSERT(mInputQueueState == STATE_DISABLED);
mInputQueueState = STATE_ENABLED;
mInputHandlingStartTime = TimeStamp();
}
template<class InnerQueueT>
void
PrioritizedEventQueue<InnerQueueT>::
FlushInputEventPrioritization(const MutexAutoLock& aProofOfLock)
{
MOZ_ASSERT(mInputQueueState == STATE_ENABLED || mInputQueueState == STATE_SUSPEND);
mInputQueueState =
mInputQueueState == STATE_ENABLED ? STATE_FLUSHING : STATE_SUSPEND;
}
template<class InnerQueueT>
void
PrioritizedEventQueue<InnerQueueT>::
SuspendInputEventPrioritization(const MutexAutoLock& aProofOfLock)
{
MOZ_ASSERT(mInputQueueState == STATE_ENABLED || mInputQueueState == STATE_FLUSHING);
mInputQueueState = STATE_SUSPEND;
}
template<class InnerQueueT>
void
PrioritizedEventQueue<InnerQueueT>::
ResumeInputEventPrioritization(const MutexAutoLock& aProofOfLock)
{
MOZ_ASSERT(mInputQueueState == STATE_SUSPEND);
mInputQueueState = STATE_ENABLED;
}
namespace mozilla {
template class PrioritizedEventQueue<EventQueue>;
template class PrioritizedEventQueue<LabeledEventQueue>;
}