mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-23 12:51:06 +00:00
e926717534
This lets AudioDriftCorrection handle situations where it's about to overflow the buffer. Be it because of unexpectedly high drift, very high input latency or an increased target buffering level. Differential Revision: https://phabricator.services.mozilla.com/D188184
607 lines
20 KiB
C++
607 lines
20 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "AudioRingBuffer.h"
|
|
|
|
#include "MediaData.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "mozilla/PodOperations.h"
|
|
|
|
namespace mozilla {
|
|
|
|
/**
|
|
* RingBuffer is used to preallocate a buffer of a specific size in bytes and
|
|
* then to use it for writing and reading values without requiring re-allocation
|
|
* or memory moving. Note that re-allocations can happen if the length of the
|
|
* buffer is explicitly set to something larger than is already allocated.
|
|
* Also note that the total byte size of the buffer modulo the size of the
|
|
* chosen type must be zero. The RingBuffer has been created with audio sample
|
|
* values types in mind which are integer or float. However, it can be used with
|
|
* any trivial type. It is _not_ thread-safe! The constructor can be called on
|
|
* any thread but the reads and write must happen on the same thread, which can
|
|
* be different than the construction thread.
|
|
*/
|
|
template <typename T>
|
|
class RingBuffer final {
|
|
public:
|
|
explicit RingBuffer(AlignedByteBuffer&& aMemoryBuffer)
|
|
: mStorage(ConvertToSpan(aMemoryBuffer)),
|
|
mMemoryBuffer(std::move(aMemoryBuffer)) {
|
|
MOZ_ASSERT(std::is_trivial<T>::value);
|
|
}
|
|
|
|
/**
|
|
* Write `aSamples` number of zeros in the buffer, before any existing data.
|
|
*/
|
|
uint32_t PrependSilence(uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples);
|
|
return Prepend(Span<T>(), aSamples);
|
|
}
|
|
|
|
/**
|
|
* Write `aSamples` number of zeros in the buffer.
|
|
*/
|
|
uint32_t WriteSilence(uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples);
|
|
return Write(Span<T>(), aSamples);
|
|
}
|
|
|
|
/**
|
|
* Copy `aBuffer` to the RingBuffer.
|
|
*/
|
|
uint32_t Write(const Span<const T>& aBuffer) {
|
|
MOZ_ASSERT(!aBuffer.IsEmpty());
|
|
return Write(aBuffer, aBuffer.Length());
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Copy `aSamples` number of elements from `aBuffer` to the beginning of the
|
|
* RingBuffer. If `aBuffer` is empty prepend `aSamples` of zeros.
|
|
*/
|
|
uint32_t Prepend(const Span<const T>& aBuffer, uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples > 0);
|
|
MOZ_ASSERT(aBuffer.IsEmpty() || aBuffer.Length() == aSamples);
|
|
|
|
if (IsFull()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toWrite = std::min(AvailableWrite(), aSamples);
|
|
uint32_t part2 = std::min(mReadIndex, toWrite);
|
|
uint32_t part1 = toWrite - part2;
|
|
|
|
Span<T> part2Buffer = mStorage.Subspan(mReadIndex - part2, part2);
|
|
Span<T> part1Buffer = mStorage.Subspan(Capacity() - part1, part1);
|
|
|
|
if (!aBuffer.IsEmpty()) {
|
|
Span<const T> fromPart1 = aBuffer.To(part1);
|
|
Span<const T> fromPart2 = aBuffer.Subspan(part1, part2);
|
|
|
|
CopySpan(part1Buffer, fromPart1);
|
|
CopySpan(part2Buffer, fromPart2);
|
|
} else {
|
|
// aBuffer is empty, prepend zeros.
|
|
PodZero(part1Buffer.Elements(), part1Buffer.Length());
|
|
PodZero(part2Buffer.Elements(), part2Buffer.Length());
|
|
}
|
|
|
|
mReadIndex = NextIndex(mReadIndex, Capacity() - toWrite);
|
|
|
|
return toWrite;
|
|
}
|
|
|
|
/**
|
|
* Copy `aSamples` number of elements from `aBuffer` to the RingBuffer. If
|
|
* `aBuffer` is empty append `aSamples` of zeros.
|
|
*/
|
|
uint32_t Write(const Span<const T>& aBuffer, uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples > 0);
|
|
MOZ_ASSERT(aBuffer.IsEmpty() || aBuffer.Length() == aSamples);
|
|
|
|
if (IsFull()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toWrite = std::min(AvailableWrite(), aSamples);
|
|
uint32_t part1 = std::min(Capacity() - mWriteIndex, toWrite);
|
|
uint32_t part2 = toWrite - part1;
|
|
|
|
Span<T> part1Buffer = mStorage.Subspan(mWriteIndex, part1);
|
|
Span<T> part2Buffer = mStorage.To(part2);
|
|
|
|
if (!aBuffer.IsEmpty()) {
|
|
Span<const T> fromPart1 = aBuffer.To(part1);
|
|
Span<const T> fromPart2 = aBuffer.Subspan(part1, part2);
|
|
|
|
CopySpan(part1Buffer, fromPart1);
|
|
CopySpan(part2Buffer, fromPart2);
|
|
} else {
|
|
// The aBuffer is empty, append zeros.
|
|
PodZero(part1Buffer.Elements(), part1Buffer.Length());
|
|
PodZero(part2Buffer.Elements(), part2Buffer.Length());
|
|
}
|
|
|
|
mWriteIndex = NextIndex(mWriteIndex, toWrite);
|
|
|
|
return toWrite;
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* Copy `aSamples` number of elements from `aBuffer` to the RingBuffer. The
|
|
* `aBuffer` does not change.
|
|
*/
|
|
uint32_t Write(const RingBuffer& aBuffer, uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples);
|
|
|
|
if (IsFull()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toWriteThis = std::min(AvailableWrite(), aSamples);
|
|
uint32_t toReadThat = std::min(aBuffer.AvailableRead(), toWriteThis);
|
|
uint32_t part1 =
|
|
std::min(aBuffer.Capacity() - aBuffer.mReadIndex, toReadThat);
|
|
uint32_t part2 = toReadThat - part1;
|
|
|
|
Span<T> part1Buffer = aBuffer.mStorage.Subspan(aBuffer.mReadIndex, part1);
|
|
DebugOnly<uint32_t> ret = Write(part1Buffer);
|
|
MOZ_ASSERT(ret == part1);
|
|
if (part2) {
|
|
Span<T> part2Buffer = aBuffer.mStorage.To(part2);
|
|
ret = Write(part2Buffer);
|
|
MOZ_ASSERT(ret == part2);
|
|
}
|
|
|
|
return toReadThat;
|
|
}
|
|
|
|
/**
|
|
* Copy `aBuffer.Length()` number of elements from RingBuffer to `aBuffer`.
|
|
*/
|
|
uint32_t Read(const Span<T>& aBuffer) {
|
|
MOZ_ASSERT(!aBuffer.IsEmpty());
|
|
MOZ_ASSERT(aBuffer.size() <= std::numeric_limits<uint32_t>::max());
|
|
|
|
if (IsEmpty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toRead = std::min<uint32_t>(AvailableRead(), aBuffer.Length());
|
|
uint32_t part1 = std::min(Capacity() - mReadIndex, toRead);
|
|
uint32_t part2 = toRead - part1;
|
|
|
|
Span<T> part1Buffer = mStorage.Subspan(mReadIndex, part1);
|
|
Span<T> part2Buffer = mStorage.To(part2);
|
|
|
|
Span<T> toPart1 = aBuffer.To(part1);
|
|
Span<T> toPart2 = aBuffer.Subspan(part1, part2);
|
|
|
|
CopySpan(toPart1, part1Buffer);
|
|
CopySpan(toPart2, part2Buffer);
|
|
|
|
mReadIndex = NextIndex(mReadIndex, toRead);
|
|
|
|
return toRead;
|
|
}
|
|
|
|
/**
|
|
* Provide `aCallable` that will be called with the internal linear read
|
|
* buffers and the number of samples available for reading. The `aCallable`
|
|
* will be called at most 2 times. The `aCallable` must return the number of
|
|
* samples that have been actually read. If that number is smaller than the
|
|
* available number of samples, provided in the argument, the `aCallable` will
|
|
* not be called again. The RingBuffer's available read samples will be
|
|
* decreased by the number returned from the `aCallable`.
|
|
*
|
|
* The important aspects of this method are that first, it makes it possible
|
|
* to avoid extra copies to an intermediates buffer, and second, each buffer
|
|
* provided to `aCallable is a linear piece of memory which can be used
|
|
* directly to a resampler for example.
|
|
*
|
|
* In general, the problem with ring buffers is that they cannot provide one
|
|
* linear chunk of memory so extra copies, to a linear buffer, are often
|
|
* needed. This method bridge that gap by breaking the ring buffer's
|
|
* internal read memory into linear pieces and making it available through
|
|
* the `aCallable`. In the body of the `aCallable` those buffers can be used
|
|
* directly without any copy or intermediate steps.
|
|
*/
|
|
uint32_t ReadNoCopy(
|
|
std::function<uint32_t(const Span<const T>&)>&& aCallable) {
|
|
if (IsEmpty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t part1 = std::min(Capacity() - mReadIndex, AvailableRead());
|
|
uint32_t part2 = AvailableRead() - part1;
|
|
|
|
Span<T> part1Buffer = mStorage.Subspan(mReadIndex, part1);
|
|
uint32_t toRead = aCallable(part1Buffer);
|
|
MOZ_ASSERT(toRead <= part1);
|
|
|
|
if (toRead == part1 && part2) {
|
|
Span<T> part2Buffer = mStorage.To(part2);
|
|
toRead += aCallable(part2Buffer);
|
|
MOZ_ASSERT(toRead <= part1 + part2);
|
|
}
|
|
|
|
mReadIndex = NextIndex(mReadIndex, toRead);
|
|
|
|
return toRead;
|
|
}
|
|
|
|
/**
|
|
* Remove the next `aSamples` number of samples from the ring buffer.
|
|
*/
|
|
uint32_t Discard(uint32_t aSamples) {
|
|
MOZ_ASSERT(aSamples);
|
|
|
|
if (IsEmpty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toDiscard = std::min(AvailableRead(), aSamples);
|
|
mReadIndex = NextIndex(mReadIndex, toDiscard);
|
|
|
|
return toDiscard;
|
|
}
|
|
|
|
/**
|
|
* Empty the ring buffer.
|
|
*/
|
|
uint32_t Clear() {
|
|
if (IsEmpty()) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t toDiscard = AvailableRead();
|
|
mReadIndex = NextIndex(mReadIndex, toDiscard);
|
|
|
|
return toDiscard;
|
|
}
|
|
|
|
/**
|
|
* Set the ring buffer to the requested size. NB: In bytes.
|
|
*
|
|
* Re-allocates memory if a larger buffer is requested than what is already
|
|
* allocated.
|
|
*/
|
|
bool SetLengthBytes(uint32_t aLengthBytes) {
|
|
MOZ_ASSERT(aLengthBytes % sizeof(T) == 0,
|
|
"Length in bytes is not a whole number of samples");
|
|
|
|
uint32_t lengthSamples = aLengthBytes / sizeof(T);
|
|
uint32_t oldLengthSamples = Capacity();
|
|
uint32_t availableRead = AvailableRead();
|
|
if (!mMemoryBuffer.SetLength(aLengthBytes)) {
|
|
return false;
|
|
}
|
|
|
|
// mStorage may now have been deallocated.
|
|
mStorage = ConvertToSpan(mMemoryBuffer);
|
|
if (mWriteIndex < mReadIndex) {
|
|
// The old data wrapped around the end of the (old) buffer. It needs to be
|
|
// moved so it is continuous.
|
|
const uint32_t toMove = mWriteIndex;
|
|
|
|
// The bit that goes between the old and the new end of the buffer.
|
|
const uint32_t toMove1 =
|
|
std::min(lengthSamples - oldLengthSamples, toMove);
|
|
{
|
|
// [0, toMove1) -> [oldLength, oldLength + toMove1).
|
|
Span<T> from1 = mStorage.Subspan(0, toMove1);
|
|
Span<T> to1 = mStorage.Subspan(oldLengthSamples, toMove1);
|
|
PodMove(to1.Elements(), from1.Elements(), toMove1);
|
|
}
|
|
|
|
// The last bit of data that starts at 0. Could be empty.
|
|
const uint32_t toMove2 = toMove - toMove1;
|
|
{
|
|
// [toMove1, toMove) -> [0, toMove2).
|
|
Span<T> from2 = mStorage.Subspan(toMove1, toMove2);
|
|
Span<T> to2 = mStorage.Subspan(0, toMove2);
|
|
PodMove(to2.Elements(), from2.Elements(), toMove2);
|
|
}
|
|
|
|
mWriteIndex = NextIndex(mReadIndex, availableRead);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the full capacity of the ring buffer is being used. When
|
|
* full any attempt to write more samples to the ring buffer will fail.
|
|
*/
|
|
bool IsFull() const { return (mWriteIndex + 1) % Capacity() == mReadIndex; }
|
|
|
|
/**
|
|
* Returns true if the ring buffer is empty. When empty any attempt to read
|
|
* more samples from the ring buffer will fail.
|
|
*/
|
|
bool IsEmpty() const { return mWriteIndex == mReadIndex; }
|
|
|
|
/**
|
|
* The number of samples available for writing.
|
|
*/
|
|
uint32_t AvailableWrite() const {
|
|
/* We subtract one element here to always keep at least one sample
|
|
* free in the buffer, to distinguish between full and empty array. */
|
|
uint32_t rv = mReadIndex - mWriteIndex - 1;
|
|
if (mWriteIndex >= mReadIndex) {
|
|
rv += Capacity();
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* The number of samples available for reading.
|
|
*/
|
|
uint32_t AvailableRead() const {
|
|
if (mWriteIndex >= mReadIndex) {
|
|
return mWriteIndex - mReadIndex;
|
|
}
|
|
return mWriteIndex + Capacity() - mReadIndex;
|
|
}
|
|
|
|
/**
|
|
* The number of samples this ring buffer can hold.
|
|
*/
|
|
uint32_t Capacity() const { return mStorage.Length(); }
|
|
|
|
private:
|
|
uint32_t NextIndex(uint32_t aIndex, uint32_t aStep) const {
|
|
MOZ_ASSERT(aStep < Capacity());
|
|
MOZ_ASSERT(aIndex < Capacity());
|
|
return (aIndex + aStep) % Capacity();
|
|
}
|
|
|
|
Span<T> ConvertToSpan(const AlignedByteBuffer& aOther) const {
|
|
MOZ_ASSERT(aOther.Length() % sizeof(T) == 0);
|
|
return Span<T>(reinterpret_cast<T*>(aOther.Data()),
|
|
aOther.Length() / sizeof(T));
|
|
}
|
|
|
|
void CopySpan(Span<T>& aTo, const Span<const T>& aFrom) {
|
|
MOZ_ASSERT(aTo.Length() == aFrom.Length());
|
|
std::copy(aFrom.cbegin(), aFrom.cend(), aTo.begin());
|
|
}
|
|
|
|
private:
|
|
uint32_t mReadIndex = 0;
|
|
uint32_t mWriteIndex = 0;
|
|
/* Points to the mMemoryBuffer. */
|
|
Span<T> mStorage;
|
|
/* The actual allocated memory set from outside. It is set in the ctor and it
|
|
* is not used again. It is here to control the lifetime of the memory. The
|
|
* memory is accessed through the mStorage. The idea is that the memory used
|
|
* from the RingBuffer can be pre-allocated. Note that a re-allocation will
|
|
* happen if the length in bytes is set to something larger than is already
|
|
* allocated. */
|
|
AlignedByteBuffer mMemoryBuffer;
|
|
};
|
|
|
|
/** AudioRingBuffer **/
|
|
|
|
/* The private members of AudioRingBuffer. */
|
|
class AudioRingBuffer::AudioRingBufferPrivate {
|
|
public:
|
|
AudioSampleFormat mSampleFormat = AUDIO_FORMAT_SILENCE;
|
|
Maybe<RingBuffer<float>> mFloatRingBuffer;
|
|
Maybe<RingBuffer<int16_t>> mIntRingBuffer;
|
|
Maybe<AlignedByteBuffer> mBackingBuffer;
|
|
};
|
|
|
|
AudioRingBuffer::AudioRingBuffer(uint32_t aSizeInBytes)
|
|
: mPtr(MakeUnique<AudioRingBufferPrivate>()) {
|
|
mPtr->mBackingBuffer.emplace(aSizeInBytes);
|
|
MOZ_ASSERT(mPtr->mBackingBuffer);
|
|
}
|
|
|
|
AudioRingBuffer::~AudioRingBuffer() = default;
|
|
|
|
void AudioRingBuffer::SetSampleFormat(AudioSampleFormat aFormat) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_SILENCE);
|
|
MOZ_ASSERT(aFormat == AUDIO_FORMAT_S16 || aFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
MOZ_ASSERT(mPtr->mBackingBuffer);
|
|
|
|
mPtr->mSampleFormat = aFormat;
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
mPtr->mIntRingBuffer.emplace(mPtr->mBackingBuffer.extract());
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return;
|
|
}
|
|
mPtr->mFloatRingBuffer.emplace(mPtr->mBackingBuffer.extract());
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Write(const Span<const float>& aBuffer) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mFloatRingBuffer->Write(aBuffer);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Write(const Span<const int16_t>& aBuffer) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mIntRingBuffer->Write(aBuffer);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Write(const AudioRingBuffer& aBuffer,
|
|
uint32_t aSamples) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->Write(aBuffer.mPtr->mIntRingBuffer.ref(),
|
|
aSamples);
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->Write(aBuffer.mPtr->mFloatRingBuffer.ref(),
|
|
aSamples);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::PrependSilence(uint32_t aSamples) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->PrependSilence(aSamples);
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->PrependSilence(aSamples);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::WriteSilence(uint32_t aSamples) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->WriteSilence(aSamples);
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->WriteSilence(aSamples);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Read(const Span<float>& aBuffer) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mFloatRingBuffer->Read(aBuffer);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Read(const Span<int16_t>& aBuffer) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mIntRingBuffer->Read(aBuffer);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::ReadNoCopy(
|
|
std::function<uint32_t(const Span<const float>&)>&& aCallable) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mFloatRingBuffer->ReadNoCopy(std::move(aCallable));
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::ReadNoCopy(
|
|
std::function<uint32_t(const Span<const int16_t>&)>&& aCallable) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
return mPtr->mIntRingBuffer->ReadNoCopy(std::move(aCallable));
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Discard(uint32_t aSamples) {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->Discard(aSamples);
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->Discard(aSamples);
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Clear() {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
MOZ_ASSERT(mPtr->mIntRingBuffer);
|
|
return mPtr->mIntRingBuffer->Clear();
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
MOZ_ASSERT(mPtr->mFloatRingBuffer);
|
|
return mPtr->mFloatRingBuffer->Clear();
|
|
}
|
|
|
|
bool AudioRingBuffer::SetLengthBytes(uint32_t aLengthBytes) {
|
|
if (mPtr->mFloatRingBuffer) {
|
|
return mPtr->mFloatRingBuffer->SetLengthBytes(aLengthBytes);
|
|
}
|
|
if (mPtr->mIntRingBuffer) {
|
|
return mPtr->mIntRingBuffer->SetLengthBytes(aLengthBytes);
|
|
}
|
|
if (mPtr->mBackingBuffer) {
|
|
return mPtr->mBackingBuffer->SetLength(aLengthBytes);
|
|
}
|
|
MOZ_ASSERT_UNREACHABLE("Unexpected");
|
|
return true;
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::Capacity() const {
|
|
if (mPtr->mFloatRingBuffer) {
|
|
return mPtr->mFloatRingBuffer->Capacity();
|
|
}
|
|
if (mPtr->mIntRingBuffer) {
|
|
return mPtr->mIntRingBuffer->Capacity();
|
|
}
|
|
MOZ_ASSERT_UNREACHABLE("Unexpected");
|
|
return 0;
|
|
}
|
|
|
|
bool AudioRingBuffer::IsFull() const {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->IsFull();
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->IsFull();
|
|
}
|
|
|
|
bool AudioRingBuffer::IsEmpty() const {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->IsEmpty();
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->IsEmpty();
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::AvailableWrite() const {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->AvailableWrite();
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->AvailableWrite();
|
|
}
|
|
|
|
uint32_t AudioRingBuffer::AvailableRead() const {
|
|
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
|
|
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
|
|
MOZ_ASSERT(!mPtr->mBackingBuffer);
|
|
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
|
|
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
|
|
return mPtr->mIntRingBuffer->AvailableRead();
|
|
}
|
|
MOZ_ASSERT(!mPtr->mIntRingBuffer);
|
|
return mPtr->mFloatRingBuffer->AvailableRead();
|
|
}
|
|
|
|
} // namespace mozilla
|