mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-26 06:11:37 +00:00
a8939590de
The bulk of this commit was generated by running: run-clang-tidy.py \ -checks='-*,llvm-namespace-comment' \ -header-filter=^/.../mozilla-central/.* \ -fix
2133 lines
72 KiB
C++
2133 lines
72 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/* vim:set ts=4 sw=4 sts=4 et cin: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// HttpLog.h should generally be included first
|
|
#include "HttpLog.h"
|
|
|
|
// Log on level :5, instead of default :4.
|
|
#undef LOG
|
|
#define LOG(args) LOG5(args)
|
|
#undef LOG_ENABLED
|
|
#define LOG_ENABLED() LOG5_ENABLED()
|
|
|
|
#include "ASpdySession.h"
|
|
#include "mozilla/ChaosMode.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "nsHttpConnection.h"
|
|
#include "nsHttpHandler.h"
|
|
#include "nsHttpPipeline.h"
|
|
#include "nsHttpRequestHead.h"
|
|
#include "nsHttpResponseHead.h"
|
|
#include "nsIOService.h"
|
|
#include "nsISocketTransport.h"
|
|
#include "nsSocketTransportService2.h"
|
|
#include "nsISSLSocketControl.h"
|
|
#include "nsISupportsPriority.h"
|
|
#include "nsPreloadedStream.h"
|
|
#include "nsProxyRelease.h"
|
|
#include "nsSocketTransport2.h"
|
|
#include "nsStringStream.h"
|
|
#include "sslt.h"
|
|
#include "TunnelUtils.h"
|
|
|
|
#ifdef DEBUG
|
|
// defined by the socket transport service while active
|
|
extern PRThread *gSocketThread;
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
namespace net {
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection <public>
|
|
//-----------------------------------------------------------------------------
|
|
|
|
nsHttpConnection::nsHttpConnection()
|
|
: mTransaction(nullptr)
|
|
, mHttpHandler(gHttpHandler)
|
|
, mCallbacksLock("nsHttpConnection::mCallbacksLock")
|
|
, mConsiderReusedAfterInterval(0)
|
|
, mConsiderReusedAfterEpoch(0)
|
|
, mCurrentBytesRead(0)
|
|
, mMaxBytesRead(0)
|
|
, mTotalBytesRead(0)
|
|
, mTotalBytesWritten(0)
|
|
, mContentBytesWritten(0)
|
|
, mConnectedTransport(false)
|
|
, mKeepAlive(true) // assume to keep-alive by default
|
|
, mKeepAliveMask(true)
|
|
, mDontReuse(false)
|
|
, mSupportsPipelining(false) // assume low-grade server
|
|
, mIsReused(false)
|
|
, mCompletedProxyConnect(false)
|
|
, mLastTransactionExpectedNoContent(false)
|
|
, mIdleMonitoring(false)
|
|
, mProxyConnectInProgress(false)
|
|
, mExperienced(false)
|
|
, mInSpdyTunnel(false)
|
|
, mForcePlainText(false)
|
|
, mTrafficStamp(false)
|
|
, mHttp1xTransactionCount(0)
|
|
, mRemainingConnectionUses(0xffffffff)
|
|
, mClassification(nsAHttpTransaction::CLASS_GENERAL)
|
|
, mNPNComplete(false)
|
|
, mSetupSSLCalled(false)
|
|
, mUsingSpdyVersion(0)
|
|
, mPriority(nsISupportsPriority::PRIORITY_NORMAL)
|
|
, mReportedSpdy(false)
|
|
, mEverUsedSpdy(false)
|
|
, mLastHttpResponseVersion(NS_HTTP_VERSION_1_1)
|
|
, mTransactionCaps(0)
|
|
, mResponseTimeoutEnabled(false)
|
|
, mTCPKeepaliveConfig(kTCPKeepaliveDisabled)
|
|
{
|
|
LOG(("Creating nsHttpConnection @%p\n", this));
|
|
|
|
// the default timeout is for when this connection has not yet processed a
|
|
// transaction
|
|
static const PRIntervalTime k5Sec = PR_SecondsToInterval(5);
|
|
mIdleTimeout =
|
|
(k5Sec < gHttpHandler->IdleTimeout()) ? k5Sec : gHttpHandler->IdleTimeout();
|
|
}
|
|
|
|
nsHttpConnection::~nsHttpConnection()
|
|
{
|
|
LOG(("Destroying nsHttpConnection @%p\n", this));
|
|
|
|
if (!mEverUsedSpdy) {
|
|
LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n",
|
|
this, mHttp1xTransactionCount));
|
|
Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
|
|
mHttp1xTransactionCount);
|
|
}
|
|
|
|
if (mTotalBytesRead) {
|
|
uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
|
|
LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n",
|
|
this, totalKBRead, mEverUsedSpdy));
|
|
Telemetry::Accumulate(mEverUsedSpdy ?
|
|
Telemetry::SPDY_KBREAD_PER_CONN :
|
|
Telemetry::HTTP_KBREAD_PER_CONN,
|
|
totalKBRead);
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::Init(nsHttpConnectionInfo *info,
|
|
uint16_t maxHangTime,
|
|
nsISocketTransport *transport,
|
|
nsIAsyncInputStream *instream,
|
|
nsIAsyncOutputStream *outstream,
|
|
bool connectedTransport,
|
|
nsIInterfaceRequestor *callbacks,
|
|
PRIntervalTime rtt)
|
|
{
|
|
LOG(("nsHttpConnection::Init this=%p", this));
|
|
NS_ENSURE_ARG_POINTER(info);
|
|
NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
|
|
|
|
mConnectedTransport = connectedTransport;
|
|
mConnInfo = info;
|
|
mLastWriteTime = mLastReadTime = PR_IntervalNow();
|
|
mSupportsPipelining =
|
|
gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
|
|
mRtt = rtt;
|
|
mMaxHangTime = PR_SecondsToInterval(maxHangTime);
|
|
|
|
mSocketTransport = transport;
|
|
mSocketIn = instream;
|
|
mSocketOut = outstream;
|
|
|
|
// See explanation for non-strictness of this operation in SetSecurityCallbacks.
|
|
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(callbacks, false);
|
|
|
|
mSocketTransport->SetEventSink(this, nullptr);
|
|
mSocketTransport->SetSecurityCallbacks(this);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::StartSpdy(uint8_t spdyVersion)
|
|
{
|
|
LOG(("nsHttpConnection::StartSpdy [this=%p]\n", this));
|
|
|
|
MOZ_ASSERT(!mSpdySession);
|
|
|
|
mUsingSpdyVersion = spdyVersion;
|
|
mEverUsedSpdy = true;
|
|
|
|
if (!mReportedSpdy) {
|
|
mReportedSpdy = true;
|
|
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, true);
|
|
}
|
|
|
|
// Setting the connection as reused allows some transactions that fail
|
|
// with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
|
|
// to handle clean rejections (such as those that arrived after
|
|
// a server goaway was generated).
|
|
mIsReused = true;
|
|
|
|
// If mTransaction is a pipeline object it might represent
|
|
// several requests. If so, we need to unpack that and
|
|
// pack them all into a new spdy session.
|
|
|
|
nsTArray<nsRefPtr<nsAHttpTransaction> > list;
|
|
nsresult rv = mTransaction->TakeSubTransactions(list);
|
|
|
|
if (rv == NS_ERROR_ALREADY_OPENED) {
|
|
// Has the interface for TakeSubTransactions() changed?
|
|
LOG(("TakeSubTransactions somehow called after "
|
|
"nsAHttpTransaction began processing\n"));
|
|
MOZ_ASSERT(false,
|
|
"TakeSubTransactions somehow called after "
|
|
"nsAHttpTransaction began processing");
|
|
mTransaction->Close(NS_ERROR_ABORT);
|
|
return;
|
|
}
|
|
|
|
if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
|
|
// Has the interface for TakeSubTransactions() changed?
|
|
LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
|
|
MOZ_ASSERT(false,
|
|
"unexpected result from "
|
|
"nsAHttpTransaction::TakeSubTransactions()");
|
|
mTransaction->Close(NS_ERROR_ABORT);
|
|
return;
|
|
}
|
|
|
|
if (NeedSpdyTunnel()) {
|
|
LOG3(("nsHttpConnection::StartSpdy %p Connecting To a HTTP/2 "
|
|
"Proxy and Need Connect", this));
|
|
MOZ_ASSERT(mProxyConnectStream);
|
|
|
|
mProxyConnectStream = nullptr;
|
|
mCompletedProxyConnect = true;
|
|
mProxyConnectInProgress = false;
|
|
}
|
|
|
|
mSpdySession = ASpdySession::NewSpdySession(spdyVersion, mSocketTransport);
|
|
bool spdyProxy = mConnInfo->UsingHttpsProxy() && !mTLSFilter;
|
|
if (spdyProxy) {
|
|
nsRefPtr<nsHttpConnectionInfo> wildCardProxyCi;
|
|
mConnInfo->CreateWildCard(getter_AddRefs(wildCardProxyCi));
|
|
gHttpHandler->ConnMgr()->MoveToWildCardConnEntry(mConnInfo,
|
|
wildCardProxyCi, this);
|
|
mConnInfo = wildCardProxyCi;
|
|
}
|
|
|
|
if (NS_FAILED(rv)) { // includes NS_ERROR_NOT_IMPLEMENTED
|
|
MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
|
|
|
|
// This is ok - treat mTransaction as a single real request.
|
|
// Wrap the old http transaction into the new spdy session
|
|
// as the first stream.
|
|
LOG(("nsHttpConnection::StartSpdy moves single transaction %p "
|
|
"into SpdySession %p\n", mTransaction.get(), mSpdySession.get()));
|
|
rv = AddTransaction(mTransaction, mPriority);
|
|
if (NS_FAILED(rv)) {
|
|
return;
|
|
}
|
|
} else {
|
|
int32_t count = list.Length();
|
|
|
|
LOG(("nsHttpConnection::StartSpdy moving transaction list len=%d "
|
|
"into SpdySession %p\n", count, mSpdySession.get()));
|
|
|
|
if (!count) {
|
|
mTransaction->Close(NS_ERROR_ABORT);
|
|
return;
|
|
}
|
|
|
|
for (int32_t index = 0; index < count; ++index) {
|
|
rv = AddTransaction(list[index], mPriority);
|
|
if (NS_FAILED(rv)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disable TCP Keepalives - use SPDY ping instead.
|
|
rv = DisableTCPKeepalives();
|
|
if (NS_FAILED(rv)) {
|
|
LOG(("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
|
|
"rv[0x%x]", this, rv));
|
|
}
|
|
|
|
mSupportsPipelining = false; // don't use http/1 pipelines with spdy
|
|
mIdleTimeout = gHttpHandler->SpdyTimeout();
|
|
|
|
if (!mTLSFilter) {
|
|
mTransaction = mSpdySession;
|
|
} else {
|
|
mTLSFilter->SetProxiedTransaction(mSpdySession);
|
|
}
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::EnsureNPNComplete()
|
|
{
|
|
// If for some reason the components to check on NPN aren't available,
|
|
// this function will just return true to continue on and disable SPDY
|
|
|
|
MOZ_ASSERT(mSocketTransport);
|
|
if (!mSocketTransport) {
|
|
// this cannot happen
|
|
mNPNComplete = true;
|
|
return true;
|
|
}
|
|
|
|
if (mNPNComplete) {
|
|
return true;
|
|
}
|
|
|
|
nsresult rv;
|
|
nsCOMPtr<nsISupports> securityInfo;
|
|
nsCOMPtr<nsISSLSocketControl> ssl;
|
|
nsAutoCString negotiatedNPN;
|
|
|
|
GetSecurityInfo(getter_AddRefs(securityInfo));
|
|
if (!securityInfo) {
|
|
goto npnComplete;
|
|
}
|
|
|
|
ssl = do_QueryInterface(securityInfo, &rv);
|
|
if (NS_FAILED(rv))
|
|
goto npnComplete;
|
|
|
|
rv = ssl->GetNegotiatedNPN(negotiatedNPN);
|
|
if (rv == NS_ERROR_NOT_CONNECTED) {
|
|
// By writing 0 bytes to the socket the SSL handshake machine is
|
|
// pushed forward.
|
|
uint32_t count = 0;
|
|
rv = mSocketOut->Write("", 0, &count);
|
|
if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) {
|
|
goto npnComplete;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (NS_SUCCEEDED(rv)) {
|
|
LOG(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'%s\n",
|
|
this, mConnInfo->HashKey().get(), negotiatedNPN.get(),
|
|
mTLSFilter ? " [Double Tunnel]" : ""));
|
|
|
|
uint32_t infoIndex;
|
|
const SpdyInformation *info = gHttpHandler->SpdyInfo();
|
|
if (NS_SUCCEEDED(info->GetNPNIndex(negotiatedNPN, &infoIndex))) {
|
|
StartSpdy(info->Version[infoIndex]);
|
|
}
|
|
|
|
Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
|
|
}
|
|
|
|
npnComplete:
|
|
LOG(("nsHttpConnection::EnsureNPNComplete setting complete to true"));
|
|
mNPNComplete = true;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::OnTunnelNudged(TLSFilterTransaction *trans)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
LOG(("nsHttpConnection::OnTunnelNudged %p\n", this));
|
|
if (trans != mTLSFilter) {
|
|
return;
|
|
}
|
|
LOG(("nsHttpConnection::OnTunnelNudged %p Calling OnSocketWritable\n", this));
|
|
OnSocketWritable();
|
|
}
|
|
|
|
// called on the socket thread
|
|
nsresult
|
|
nsHttpConnection::Activate(nsAHttpTransaction *trans, uint32_t caps, int32_t pri)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
LOG(("nsHttpConnection::Activate [this=%p trans=%x caps=%x]\n",
|
|
this, trans, caps));
|
|
|
|
if (!trans->IsNullTransaction())
|
|
mExperienced = true;
|
|
|
|
mTransactionCaps = caps;
|
|
mPriority = pri;
|
|
if (mTransaction && mUsingSpdyVersion) {
|
|
return AddTransaction(trans, pri);
|
|
}
|
|
|
|
NS_ENSURE_ARG_POINTER(trans);
|
|
NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
|
|
|
|
// reset the read timers to wash away any idle time
|
|
mLastWriteTime = mLastReadTime = PR_IntervalNow();
|
|
|
|
// Connection failures are Activated() just like regular transacions.
|
|
// If we don't have a confirmation of a connected socket then test it
|
|
// with a write() to get relevant error code.
|
|
if (!mConnectedTransport) {
|
|
uint32_t count;
|
|
mSocketOutCondition = NS_ERROR_FAILURE;
|
|
if (mSocketOut) {
|
|
mSocketOutCondition = mSocketOut->Write("", 0, &count);
|
|
}
|
|
if (NS_FAILED(mSocketOutCondition) &&
|
|
mSocketOutCondition != NS_BASE_STREAM_WOULD_BLOCK) {
|
|
LOG(("nsHttpConnection::Activate [this=%p] Bad Socket %x\n",
|
|
this, mSocketOutCondition));
|
|
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
|
|
mTransaction = trans;
|
|
CloseTransaction(mTransaction, mSocketOutCondition);
|
|
return mSocketOutCondition;
|
|
}
|
|
}
|
|
|
|
// Update security callbacks
|
|
nsCOMPtr<nsIInterfaceRequestor> callbacks;
|
|
trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
|
|
SetSecurityCallbacks(callbacks);
|
|
SetupSSL();
|
|
|
|
// take ownership of the transaction
|
|
mTransaction = trans;
|
|
|
|
MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
|
|
mIdleMonitoring = false;
|
|
|
|
// set mKeepAlive according to what will be requested
|
|
mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
|
|
|
|
// need to handle HTTP CONNECT tunnels if this is the first time if
|
|
// we are tunneling through a proxy
|
|
nsresult rv = NS_OK;
|
|
if (mConnInfo->UsingConnect() && !mCompletedProxyConnect) {
|
|
rv = SetupProxyConnect();
|
|
if (NS_FAILED(rv))
|
|
goto failed_activation;
|
|
mProxyConnectInProgress = true;
|
|
}
|
|
|
|
// Clear the per activation counter
|
|
mCurrentBytesRead = 0;
|
|
|
|
// The overflow state is not needed between activations
|
|
mInputOverflow = nullptr;
|
|
|
|
mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() &&
|
|
mTransaction->ResponseTimeout() > 0 &&
|
|
mTransaction->ResponseTimeoutEnabled();
|
|
|
|
rv = StartShortLivedTCPKeepalives();
|
|
if (NS_FAILED(rv)) {
|
|
LOG(("nsHttpConnection::Activate [%p] "
|
|
"StartShortLivedTCPKeepalives failed rv[0x%x]",
|
|
this, rv));
|
|
}
|
|
|
|
if (mTLSFilter) {
|
|
mTLSFilter->SetProxiedTransaction(trans);
|
|
mTransaction = mTLSFilter;
|
|
}
|
|
|
|
rv = OnOutputStreamReady(mSocketOut);
|
|
|
|
failed_activation:
|
|
if (NS_FAILED(rv)) {
|
|
mTransaction = nullptr;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::SetupSSL()
|
|
{
|
|
LOG(("nsHttpConnection::SetupSSL %p caps=0x%X %s\n",
|
|
this, mTransactionCaps,mConnInfo->HashKey().get()));
|
|
|
|
if (mSetupSSLCalled) // do only once
|
|
return;
|
|
mSetupSSLCalled = true;
|
|
|
|
if (mNPNComplete)
|
|
return;
|
|
|
|
// we flip this back to false if SetNPNList succeeds at the end
|
|
// of this function
|
|
mNPNComplete = true;
|
|
|
|
if (!mConnInfo->FirstHopSSL() || mForcePlainText) {
|
|
return;
|
|
}
|
|
|
|
// if we are connected to the proxy with TLS, start the TLS
|
|
// flow immediately without waiting for a CONNECT sequence.
|
|
if (mInSpdyTunnel) {
|
|
InitSSLParams(false, true);
|
|
} else {
|
|
bool usingHttpsProxy = mConnInfo->UsingHttpsProxy();
|
|
InitSSLParams(usingHttpsProxy, usingHttpsProxy);
|
|
}
|
|
}
|
|
|
|
// The naming of NPN is historical - this function creates the basic
|
|
// offer list for both NPN and ALPN. ALPN validation callbacks are made
|
|
// now before the handshake is complete, and NPN validation callbacks
|
|
// are made during the handshake.
|
|
nsresult
|
|
nsHttpConnection::SetupNPNList(nsISSLSocketControl *ssl, uint32_t caps)
|
|
{
|
|
nsTArray<nsCString> protocolArray;
|
|
|
|
nsCString npnToken = mConnInfo->GetNPNToken();
|
|
if (npnToken.IsEmpty()) {
|
|
// The first protocol is used as the fallback if none of the
|
|
// protocols supported overlap with the server's list.
|
|
// When using ALPN the advertised preferences are protocolArray indicies
|
|
// {1, .., N, 0} in decreasing order.
|
|
// For NPN, In the case of overlap, matching priority is driven by
|
|
// the order of the server's advertisement - with index 0 used when
|
|
// there is no match.
|
|
protocolArray.AppendElement(NS_LITERAL_CSTRING("http/1.1"));
|
|
|
|
if (gHttpHandler->IsSpdyEnabled() &&
|
|
!(caps & NS_HTTP_DISALLOW_SPDY)) {
|
|
LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection"));
|
|
const SpdyInformation *info = gHttpHandler->SpdyInfo();
|
|
for (uint32_t index = SpdyInformation::kCount; index > 0; --index) {
|
|
if (info->ProtocolEnabled(index - 1) &&
|
|
info->ALPNCallbacks[index - 1](ssl)) {
|
|
protocolArray.AppendElement(info->VersionString[index - 1]);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
LOG(("nsHttpConnection::SetupSSL limiting NPN selection to %s",
|
|
npnToken.get()));
|
|
protocolArray.AppendElement(npnToken);
|
|
}
|
|
|
|
nsresult rv = ssl->SetNPNList(protocolArray);
|
|
LOG(("nsHttpConnection::SetupNPNList %p %x\n",this, rv));
|
|
return rv;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::AddTransaction(nsAHttpTransaction *httpTransaction,
|
|
int32_t priority)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
MOZ_ASSERT(mSpdySession && mUsingSpdyVersion,
|
|
"AddTransaction to live http connection without spdy");
|
|
|
|
// If this is a wild card nshttpconnection (i.e. a spdy proxy) then
|
|
// it is important to start the stream using the specific connection
|
|
// info of the transaction to ensure it is routed on the right tunnel
|
|
|
|
nsHttpConnectionInfo *transCI = httpTransaction->ConnectionInfo();
|
|
|
|
bool needTunnel = transCI->UsingHttpsProxy();
|
|
needTunnel = needTunnel && !mTLSFilter;
|
|
needTunnel = needTunnel && transCI->UsingConnect();
|
|
needTunnel = needTunnel && httpTransaction->QueryHttpTransaction();
|
|
|
|
LOG(("nsHttpConnection::AddTransaction for SPDY%s",
|
|
needTunnel ? " over tunnel" : ""));
|
|
|
|
// do a runtime check here just for defense in depth
|
|
if (transCI->GetInsecureScheme() &&
|
|
httpTransaction->RequestHead() && httpTransaction->RequestHead()->IsHTTPS()) {
|
|
LOG(("This Cannot happen - https on insecure scheme tls stream\n"));
|
|
MOZ_ASSERT(false, "https:// on tls insecure scheme");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
if (!mSpdySession->AddStream(httpTransaction, priority,
|
|
needTunnel, mCallbacks)) {
|
|
MOZ_ASSERT(false); // this cannot happen!
|
|
httpTransaction->Close(NS_ERROR_ABORT);
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
ResumeSend();
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::Close(nsresult reason)
|
|
{
|
|
LOG(("nsHttpConnection::Close [this=%p reason=%x]\n", this, reason));
|
|
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
// Ensure TCP keepalive timer is stopped.
|
|
if (mTCPKeepaliveTransitionTimer) {
|
|
mTCPKeepaliveTransitionTimer->Cancel();
|
|
mTCPKeepaliveTransitionTimer = nullptr;
|
|
}
|
|
|
|
if (NS_FAILED(reason)) {
|
|
if (mIdleMonitoring)
|
|
EndIdleMonitoring();
|
|
|
|
mTLSFilter = nullptr;
|
|
|
|
// The connection and security errors clear out alt-svc mappings
|
|
// in case any previously validated ones are now invalid
|
|
if (((reason == NS_ERROR_NET_RESET) ||
|
|
(NS_ERROR_GET_MODULE(reason) == NS_ERROR_MODULE_SECURITY))
|
|
&& mConnInfo) {
|
|
gHttpHandler->ConnMgr()->ClearHostMapping(mConnInfo);
|
|
}
|
|
|
|
if (mSocketTransport) {
|
|
mSocketTransport->SetEventSink(nullptr, nullptr);
|
|
|
|
// If there are bytes sitting in the input queue then read them
|
|
// into a junk buffer to avoid generating a tcp rst by closing a
|
|
// socket with data pending. TLS is a classic case of this where
|
|
// a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
|
|
// Never block to do this and limit it to a small amount of data.
|
|
if (mSocketIn) {
|
|
char buffer[4000];
|
|
uint32_t count, total = 0;
|
|
nsresult rv;
|
|
do {
|
|
rv = mSocketIn->Read(buffer, 4000, &count);
|
|
if (NS_SUCCEEDED(rv))
|
|
total += count;
|
|
}
|
|
while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
|
|
LOG(("nsHttpConnection::Close drained %d bytes\n", total));
|
|
}
|
|
|
|
mSocketTransport->SetSecurityCallbacks(nullptr);
|
|
mSocketTransport->Close(reason);
|
|
if (mSocketOut)
|
|
mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
|
|
}
|
|
mKeepAlive = false;
|
|
}
|
|
}
|
|
|
|
// called on the socket thread
|
|
nsresult
|
|
nsHttpConnection::InitSSLParams(bool connectingToProxy, bool proxyStartSSL)
|
|
{
|
|
LOG(("nsHttpConnection::InitSSLParams [this=%p] connectingToProxy=%d\n",
|
|
this, connectingToProxy));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
nsresult rv;
|
|
nsCOMPtr<nsISupports> securityInfo;
|
|
GetSecurityInfo(getter_AddRefs(securityInfo));
|
|
if (!securityInfo) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
|
|
if (NS_FAILED(rv)){
|
|
return rv;
|
|
}
|
|
|
|
if (proxyStartSSL) {
|
|
rv = ssl->ProxyStartSSL();
|
|
if (NS_FAILED(rv)){
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
if (NS_SUCCEEDED(SetupNPNList(ssl, mTransactionCaps))) {
|
|
LOG(("InitSSLParams Setting up SPDY Negotiation OK"));
|
|
mNPNComplete = false;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::DontReuse()
|
|
{
|
|
mKeepAliveMask = false;
|
|
mKeepAlive = false;
|
|
mDontReuse = true;
|
|
mIdleTimeout = 0;
|
|
if (mSpdySession)
|
|
mSpdySession->DontReuse();
|
|
}
|
|
|
|
// Checked by the Connection Manager before scheduling a pipelined transaction
|
|
bool
|
|
nsHttpConnection::SupportsPipelining()
|
|
{
|
|
if (mTransaction &&
|
|
mTransaction->PipelineDepth() >= mRemainingConnectionUses) {
|
|
LOG(("nsHttpConnection::SupportsPipelining this=%p deny pipeline "
|
|
"because current depth %d exceeds max remaining uses %d\n",
|
|
this, mTransaction->PipelineDepth(), mRemainingConnectionUses));
|
|
return false;
|
|
}
|
|
return mSupportsPipelining && IsKeepAlive() && !mDontReuse;
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::CanReuse()
|
|
{
|
|
if (mDontReuse)
|
|
return false;
|
|
|
|
if ((mTransaction ? mTransaction->PipelineDepth() : 0) >=
|
|
mRemainingConnectionUses) {
|
|
return false;
|
|
}
|
|
|
|
bool canReuse;
|
|
|
|
if (mSpdySession)
|
|
canReuse = mSpdySession->CanReuse();
|
|
else
|
|
canReuse = IsKeepAlive();
|
|
|
|
canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
|
|
|
|
// An idle persistent connection should not have data waiting to be read
|
|
// before a request is sent. Data here is likely a 408 timeout response
|
|
// which we would deal with later on through the restart logic, but that
|
|
// path is more expensive than just closing the socket now.
|
|
|
|
uint64_t dataSize;
|
|
if (canReuse && mSocketIn && !mUsingSpdyVersion && mHttp1xTransactionCount &&
|
|
NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
|
|
LOG(("nsHttpConnection::CanReuse %p %s"
|
|
"Socket not reusable because read data pending (%llu) on it.\n",
|
|
this, mConnInfo->Origin(), dataSize));
|
|
canReuse = false;
|
|
}
|
|
return canReuse;
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::CanDirectlyActivate()
|
|
{
|
|
// return true if a new transaction can be addded to ths connection at any
|
|
// time through Activate(). In practice this means this is a healthy SPDY
|
|
// connection with room for more concurrent streams.
|
|
|
|
return UsingSpdy() && CanReuse() &&
|
|
mSpdySession && mSpdySession->RoomForMoreStreams();
|
|
}
|
|
|
|
PRIntervalTime
|
|
nsHttpConnection::IdleTime()
|
|
{
|
|
return mSpdySession ?
|
|
mSpdySession->IdleTime() : (PR_IntervalNow() - mLastReadTime);
|
|
}
|
|
|
|
// returns the number of seconds left before the allowable idle period
|
|
// expires, or 0 if the period has already expied.
|
|
uint32_t
|
|
nsHttpConnection::TimeToLive()
|
|
{
|
|
if (IdleTime() >= mIdleTimeout)
|
|
return 0;
|
|
uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
|
|
|
|
// a positive amount of time can be rounded to 0. Because 0 is used
|
|
// as the expiration signal, round all values from 0 to 1 up to 1.
|
|
if (!timeToLive)
|
|
timeToLive = 1;
|
|
return timeToLive;
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::IsAlive()
|
|
{
|
|
if (!mSocketTransport || !mConnectedTransport)
|
|
return false;
|
|
|
|
// SocketTransport::IsAlive can run the SSL state machine, so make sure
|
|
// the NPN options are set before that happens.
|
|
SetupSSL();
|
|
|
|
bool alive;
|
|
nsresult rv = mSocketTransport->IsAlive(&alive);
|
|
if (NS_FAILED(rv))
|
|
alive = false;
|
|
|
|
//#define TEST_RESTART_LOGIC
|
|
#ifdef TEST_RESTART_LOGIC
|
|
if (!alive) {
|
|
LOG(("pretending socket is still alive to test restart logic\n"));
|
|
alive = true;
|
|
}
|
|
#endif
|
|
|
|
return alive;
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::SupportsPipelining(nsHttpResponseHead *responseHead)
|
|
{
|
|
// SPDY supports infinite parallelism, so no need to pipeline.
|
|
if (mUsingSpdyVersion)
|
|
return false;
|
|
|
|
// assuming connection is HTTP/1.1 with keep-alive enabled
|
|
if (mConnInfo->UsingHttpProxy() && !mConnInfo->UsingConnect()) {
|
|
// XXX check for bad proxy servers...
|
|
return true;
|
|
}
|
|
|
|
// check for bad origin servers
|
|
const char *val = responseHead->PeekHeader(nsHttp::Server);
|
|
|
|
// If there is no server header we will assume it should not be banned
|
|
// as facebook and some other prominent sites do this
|
|
if (!val)
|
|
return true;
|
|
|
|
// The blacklist is indexed by the first character. All of these servers are
|
|
// known to return their identifier as the first thing in the server string,
|
|
// so we can do a leading match.
|
|
|
|
static const char *bad_servers[26][6] = {
|
|
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // a - d
|
|
{ "EFAServer/", nullptr }, // e
|
|
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // f - i
|
|
{ nullptr }, { nullptr }, { nullptr }, // j - l
|
|
{ "Microsoft-IIS/4.", "Microsoft-IIS/5.", nullptr }, // m
|
|
{ "Netscape-Enterprise/3.", "Netscape-Enterprise/4.",
|
|
"Netscape-Enterprise/5.", "Netscape-Enterprise/6.", nullptr }, // n
|
|
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // o - r
|
|
{ nullptr }, { nullptr }, { nullptr }, { nullptr }, // s - v
|
|
{ "WebLogic 3.", "WebLogic 4.","WebLogic 5.", "WebLogic 6.",
|
|
"Winstone Servlet Engine v0.", nullptr }, // w
|
|
{ nullptr }, { nullptr }, { nullptr } // x - z
|
|
};
|
|
|
|
int index = val[0] - 'A'; // the whole table begins with capital letters
|
|
if ((index >= 0) && (index <= 25))
|
|
{
|
|
for (int i = 0; bad_servers[index][i] != nullptr; i++) {
|
|
if (!PL_strncmp (val, bad_servers[index][i], strlen (bad_servers[index][i]))) {
|
|
LOG(("looks like this server does not support pipelining"));
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::RedBannedServer, this , 0);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ok, let's allow pipelining to this server
|
|
return true;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsAHttpConnection compatible methods
|
|
//----------------------------------------------------------------------------
|
|
|
|
nsresult
|
|
nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction *trans,
|
|
nsHttpRequestHead *requestHead,
|
|
nsHttpResponseHead *responseHead,
|
|
bool *reset)
|
|
{
|
|
LOG(("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p response-head=%p]\n",
|
|
this, trans, responseHead));
|
|
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
NS_ENSURE_ARG_POINTER(trans);
|
|
MOZ_ASSERT(responseHead, "No response head?");
|
|
|
|
if (mInSpdyTunnel) {
|
|
responseHead->SetHeader(nsHttp::X_Firefox_Spdy_Proxy,
|
|
NS_LITERAL_CSTRING("true"));
|
|
}
|
|
|
|
// we won't change our keep-alive policy unless the server has explicitly
|
|
// told us to do so.
|
|
|
|
// inspect the connection headers for keep-alive info provided the
|
|
// transaction completed successfully. In the case of a non-sensical close
|
|
// and keep-alive favor the close out of conservatism.
|
|
|
|
bool explicitKeepAlive = false;
|
|
bool explicitClose = responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
|
|
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
|
|
if (!explicitClose)
|
|
explicitKeepAlive = responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
|
|
responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
|
|
|
|
// deal with 408 Server Timeouts
|
|
uint16_t responseStatus = responseHead->Status();
|
|
static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000);
|
|
if (responseStatus == 408) {
|
|
// If this error could be due to a persistent connection reuse then
|
|
// we pass an error code of NS_ERROR_NET_RESET to
|
|
// trigger the transaction 'restart' mechanism. We tell it to reset its
|
|
// response headers so that it will be ready to receive the new response.
|
|
if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) {
|
|
Close(NS_ERROR_NET_RESET);
|
|
*reset = true;
|
|
return NS_OK;
|
|
}
|
|
|
|
// timeouts that are not caused by persistent connection reuse should
|
|
// not be retried for browser compatibility reasons. bug 907800. The
|
|
// server driven close is implicit in the 408.
|
|
explicitClose = true;
|
|
explicitKeepAlive = false;
|
|
}
|
|
|
|
// reset to default (the server may have changed since we last checked)
|
|
mSupportsPipelining = false;
|
|
|
|
if ((responseHead->Version() < NS_HTTP_VERSION_1_1) ||
|
|
(requestHead->Version() < NS_HTTP_VERSION_1_1)) {
|
|
// HTTP/1.0 connections are by default NOT persistent
|
|
if (explicitKeepAlive)
|
|
mKeepAlive = true;
|
|
else
|
|
mKeepAlive = false;
|
|
|
|
// We need at least version 1.1 to use pipelines
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::RedVersionTooLow, this, 0);
|
|
}
|
|
else {
|
|
// HTTP/1.1 connections are by default persistent
|
|
if (explicitClose) {
|
|
mKeepAlive = false;
|
|
|
|
// persistent connections are required for pipelining to work - if
|
|
// this close was not pre-announced then generate the negative
|
|
// BadExplicitClose feedback
|
|
if (mRemainingConnectionUses > 1)
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::BadExplicitClose, this, 0);
|
|
}
|
|
else {
|
|
mKeepAlive = true;
|
|
|
|
// Do not support pipelining when we are establishing
|
|
// an SSL tunnel though an HTTP proxy. Pipelining support
|
|
// determination must be based on comunication with the
|
|
// target server in this case. See bug 422016 for futher
|
|
// details.
|
|
if (!mProxyConnectStream)
|
|
mSupportsPipelining = SupportsPipelining(responseHead);
|
|
}
|
|
}
|
|
mKeepAliveMask = mKeepAlive;
|
|
|
|
// Update the pipelining status in the connection info object
|
|
// and also read it back. It is possible the ci status is
|
|
// locked to false if pipelining has been banned on this ci due to
|
|
// some kind of observed flaky behavior
|
|
if (mSupportsPipelining) {
|
|
// report the pipelining-compatible header to the connection manager
|
|
// as positive feedback. This will undo 1 penalty point the host
|
|
// may have accumulated in the past.
|
|
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::NeutralExpectedOK, this, 0);
|
|
|
|
mSupportsPipelining =
|
|
gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
|
|
}
|
|
|
|
// If this connection is reserved for revalidations and we are
|
|
// receiving a document that failed revalidation then switch the
|
|
// classification to general to avoid pipelining more revalidations behind
|
|
// it.
|
|
if (mClassification == nsAHttpTransaction::CLASS_REVALIDATION &&
|
|
responseStatus != 304) {
|
|
mClassification = nsAHttpTransaction::CLASS_GENERAL;
|
|
}
|
|
|
|
// if this connection is persistent, then the server may send a "Keep-Alive"
|
|
// header specifying the maximum number of times the connection can be
|
|
// reused as well as the maximum amount of time the connection can be idle
|
|
// before the server will close it. we ignore the max reuse count, because
|
|
// a "keep-alive" connection is by definition capable of being reused, and
|
|
// we only care about being able to reuse it once. if a timeout is not
|
|
// specified then we use our advertized timeout value.
|
|
bool foundKeepAliveMax = false;
|
|
if (mKeepAlive) {
|
|
const char *val = responseHead->PeekHeader(nsHttp::Keep_Alive);
|
|
|
|
if (!mUsingSpdyVersion) {
|
|
const char *cp = PL_strcasestr(val, "timeout=");
|
|
if (cp)
|
|
mIdleTimeout = PR_SecondsToInterval((uint32_t) atoi(cp + 8));
|
|
else
|
|
mIdleTimeout = gHttpHandler->IdleTimeout();
|
|
|
|
cp = PL_strcasestr(val, "max=");
|
|
if (cp) {
|
|
int val = atoi(cp + 4);
|
|
if (val > 0) {
|
|
foundKeepAliveMax = true;
|
|
mRemainingConnectionUses = static_cast<uint32_t>(val);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
mIdleTimeout = gHttpHandler->SpdyTimeout();
|
|
}
|
|
|
|
LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n",
|
|
this, PR_IntervalToSeconds(mIdleTimeout)));
|
|
}
|
|
|
|
if (!foundKeepAliveMax && mRemainingConnectionUses && !mUsingSpdyVersion)
|
|
--mRemainingConnectionUses;
|
|
|
|
// If we're doing a proxy connect, we need to check whether or not
|
|
// it was successful. If so, we have to reset the transaction and step-up
|
|
// the socket connection if using SSL. Finally, we have to wake up the
|
|
// socket write request.
|
|
if (mProxyConnectStream) {
|
|
MOZ_ASSERT(!mUsingSpdyVersion,
|
|
"SPDY NPN Complete while using proxy connect stream");
|
|
mProxyConnectStream = nullptr;
|
|
bool isHttps =
|
|
mTransaction ? mTransaction->ConnectionInfo()->EndToEndSSL() :
|
|
mConnInfo->EndToEndSSL();
|
|
|
|
if (responseStatus == 200) {
|
|
LOG(("proxy CONNECT succeeded! endtoendssl=%d\n", isHttps));
|
|
*reset = true;
|
|
nsresult rv;
|
|
if (isHttps) {
|
|
if (mConnInfo->UsingHttpsProxy()) {
|
|
LOG(("%p new TLSFilterTransaction %s %d\n",
|
|
this, mConnInfo->Origin(), mConnInfo->OriginPort()));
|
|
SetupSecondaryTLS();
|
|
}
|
|
|
|
rv = InitSSLParams(false, true);
|
|
LOG(("InitSSLParams [rv=%x]\n", rv));
|
|
}
|
|
mCompletedProxyConnect = true;
|
|
mProxyConnectInProgress = false;
|
|
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
|
|
// XXX what if this fails -- need to handle this error
|
|
MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
|
|
}
|
|
else {
|
|
LOG(("proxy CONNECT failed! endtoendssl=%d\n", isHttps));
|
|
mTransaction->SetProxyConnectFailed();
|
|
}
|
|
}
|
|
|
|
const char *upgradeReq = requestHead->PeekHeader(nsHttp::Upgrade);
|
|
// Don't use persistent connection for Upgrade unless there's an auth failure:
|
|
// some proxies expect to see auth response on persistent connection.
|
|
if (upgradeReq && responseStatus != 401 && responseStatus != 407) {
|
|
LOG(("HTTP Upgrade in play - disable keepalive\n"));
|
|
DontReuse();
|
|
}
|
|
|
|
if (responseStatus == 101) {
|
|
const char *upgradeResp = responseHead->PeekHeader(nsHttp::Upgrade);
|
|
if (!upgradeReq || !upgradeResp ||
|
|
!nsHttp::FindToken(upgradeResp, upgradeReq,
|
|
HTTP_HEADER_VALUE_SEPS)) {
|
|
LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
|
|
upgradeReq, upgradeResp));
|
|
Close(NS_ERROR_ABORT);
|
|
}
|
|
else {
|
|
LOG(("HTTP Upgrade Response to %s\n", upgradeResp));
|
|
}
|
|
}
|
|
|
|
mLastHttpResponseVersion = responseHead->Version();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
bool
|
|
nsHttpConnection::IsReused()
|
|
{
|
|
if (mIsReused)
|
|
return true;
|
|
if (!mConsiderReusedAfterInterval)
|
|
return false;
|
|
|
|
// ReusedAfter allows a socket to be consider reused only after a certain
|
|
// interval of time has passed
|
|
return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
|
|
mConsiderReusedAfterInterval;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds)
|
|
{
|
|
mConsiderReusedAfterEpoch = PR_IntervalNow();
|
|
mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::TakeTransport(nsISocketTransport **aTransport,
|
|
nsIAsyncInputStream **aInputStream,
|
|
nsIAsyncOutputStream **aOutputStream)
|
|
{
|
|
if (mUsingSpdyVersion)
|
|
return NS_ERROR_FAILURE;
|
|
if (mTransaction && !mTransaction->IsDone())
|
|
return NS_ERROR_IN_PROGRESS;
|
|
if (!(mSocketTransport && mSocketIn && mSocketOut))
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
|
|
if (mInputOverflow)
|
|
mSocketIn = mInputOverflow.forget();
|
|
|
|
// Change TCP Keepalive frequency to long-lived if currently short-lived.
|
|
if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
|
|
if (mTCPKeepaliveTransitionTimer) {
|
|
mTCPKeepaliveTransitionTimer->Cancel();
|
|
mTCPKeepaliveTransitionTimer = nullptr;
|
|
}
|
|
nsresult rv = StartLongLivedTCPKeepalives();
|
|
LOG(("nsHttpConnection::TakeTransport [%p] calling "
|
|
"StartLongLivedTCPKeepalives", this));
|
|
if (NS_FAILED(rv)) {
|
|
LOG(("nsHttpConnection::TakeTransport [%p] "
|
|
"StartLongLivedTCPKeepalives failed rv[0x%x]", this, rv));
|
|
}
|
|
}
|
|
|
|
mSocketTransport->SetSecurityCallbacks(nullptr);
|
|
mSocketTransport->SetEventSink(nullptr, nullptr);
|
|
|
|
// The nsHttpConnection will go away soon, so if there is a TLS Filter
|
|
// being used (e.g. for wss CONNECT tunnel from a proxy connected to
|
|
// via https) that filter needs to take direct control of the
|
|
// streams
|
|
if (mTLSFilter) {
|
|
nsCOMPtr<nsIAsyncInputStream> ref1(mSocketIn);
|
|
nsCOMPtr<nsIAsyncOutputStream> ref2(mSocketOut);
|
|
mTLSFilter->newIODriver(ref1, ref2,
|
|
getter_AddRefs(mSocketIn),
|
|
getter_AddRefs(mSocketOut));
|
|
mTLSFilter = nullptr;
|
|
}
|
|
|
|
mSocketTransport.forget(aTransport);
|
|
mSocketIn.forget(aInputStream);
|
|
mSocketOut.forget(aOutputStream);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t
|
|
nsHttpConnection::ReadTimeoutTick(PRIntervalTime now)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
// make sure timer didn't tick before Activate()
|
|
if (!mTransaction)
|
|
return UINT32_MAX;
|
|
|
|
// Spdy implements some timeout handling using the SPDY ping frame.
|
|
if (mSpdySession) {
|
|
return mSpdySession->ReadTimeoutTick(now);
|
|
}
|
|
|
|
uint32_t nextTickAfter = UINT32_MAX;
|
|
// Timeout if the response is taking too long to arrive.
|
|
if (mResponseTimeoutEnabled) {
|
|
NS_WARN_IF_FALSE(gHttpHandler->ResponseTimeoutEnabled(),
|
|
"Timing out a response, but response timeout is disabled!");
|
|
|
|
PRIntervalTime initialResponseDelta = now - mLastWriteTime;
|
|
|
|
if (initialResponseDelta > mTransaction->ResponseTimeout()) {
|
|
LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
|
|
PR_IntervalToMilliseconds(initialResponseDelta),
|
|
PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
|
|
|
|
mResponseTimeoutEnabled = false;
|
|
|
|
// This will also close the connection
|
|
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
|
|
return UINT32_MAX;
|
|
}
|
|
nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
|
|
PR_IntervalToSeconds(initialResponseDelta);
|
|
nextTickAfter = std::max(nextTickAfter, 1U);
|
|
}
|
|
|
|
if (!gHttpHandler->GetPipelineRescheduleOnTimeout())
|
|
return nextTickAfter;
|
|
|
|
PRIntervalTime delta = now - mLastReadTime;
|
|
|
|
// we replicate some of the checks both here and in OnSocketReadable() as
|
|
// they will be discovered under different conditions. The ones here
|
|
// will generally be discovered if we are totally hung and OSR does
|
|
// not get called at all, however OSR discovers them with lower latency
|
|
// if the issue is just very slow (but not stalled) reading.
|
|
//
|
|
// Right now we only take action if pipelining is involved, but this would
|
|
// be the place to add general read timeout handling if it is desired.
|
|
|
|
uint32_t pipelineDepth = mTransaction->PipelineDepth();
|
|
if (pipelineDepth > 1) {
|
|
// if we have pipelines outstanding (not just an idle connection)
|
|
// then get a fairly quick tick
|
|
nextTickAfter = 1;
|
|
}
|
|
|
|
if (delta >= gHttpHandler->GetPipelineRescheduleTimeout() &&
|
|
pipelineDepth > 1) {
|
|
|
|
// this just reschedules blocked transactions. no transaction
|
|
// is aborted completely.
|
|
LOG(("cancelling pipeline due to a %ums stall - depth %d\n",
|
|
PR_IntervalToMilliseconds(delta), pipelineDepth));
|
|
|
|
nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
|
|
MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
|
|
// code this defensively for the moment and check for null in opt build
|
|
// This will reschedule blocked members of the pipeline, but the
|
|
// blocking transaction (i.e. response 0) will not be changed.
|
|
if (pipeline) {
|
|
pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
|
|
LOG(("Rescheduling the head of line blocked members of a pipeline "
|
|
"because reschedule-timeout idle interval exceeded"));
|
|
}
|
|
}
|
|
|
|
if (delta < gHttpHandler->GetPipelineTimeout())
|
|
return nextTickAfter;
|
|
|
|
if (pipelineDepth <= 1 && !mTransaction->PipelinePosition())
|
|
return nextTickAfter;
|
|
|
|
// nothing has transpired on this pipelined socket for many
|
|
// seconds. Call that a total stall and close the transaction.
|
|
// There is a chance the transaction will be restarted again
|
|
// depending on its state.. that will come back araound
|
|
// without pipelining on, so this won't loop.
|
|
|
|
LOG(("canceling transaction stalled for %ums on a pipeline "
|
|
"of depth %d and scheduled originally at pos %d\n",
|
|
PR_IntervalToMilliseconds(delta),
|
|
pipelineDepth, mTransaction->PipelinePosition()));
|
|
|
|
// This will also close the connection
|
|
CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::UpdateTCPKeepalive(nsITimer *aTimer, void *aClosure)
|
|
{
|
|
MOZ_ASSERT(aTimer);
|
|
MOZ_ASSERT(aClosure);
|
|
|
|
nsHttpConnection *self = static_cast<nsHttpConnection*>(aClosure);
|
|
|
|
if (NS_WARN_IF(self->mUsingSpdyVersion)) {
|
|
return;
|
|
}
|
|
|
|
// Do not reduce keepalive probe frequency for idle connections.
|
|
if (self->mIdleMonitoring) {
|
|
return;
|
|
}
|
|
|
|
nsresult rv = self->StartLongLivedTCPKeepalives();
|
|
if (NS_FAILED(rv)) {
|
|
LOG(("nsHttpConnection::UpdateTCPKeepalive [%p] "
|
|
"StartLongLivedTCPKeepalives failed rv[0x%x]",
|
|
self, rv));
|
|
}
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::GetSecurityInfo(nsISupports **secinfo)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
LOG(("nsHttpConnection::GetSecurityInfo trans=%p tlsfilter=%p socket=%p\n",
|
|
mTransaction.get(), mTLSFilter.get(), mSocketTransport.get()));
|
|
|
|
if (mTransaction &&
|
|
NS_SUCCEEDED(mTransaction->GetTransactionSecurityInfo(secinfo))) {
|
|
return;
|
|
}
|
|
|
|
if (mTLSFilter &&
|
|
NS_SUCCEEDED(mTLSFilter->GetTransactionSecurityInfo(secinfo))) {
|
|
return;
|
|
}
|
|
|
|
if (mSocketTransport &&
|
|
NS_SUCCEEDED(mSocketTransport->GetSecurityInfo(secinfo))) {
|
|
return;
|
|
}
|
|
|
|
*secinfo = nullptr;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks)
|
|
{
|
|
MutexAutoLock lock(mCallbacksLock);
|
|
// This is called both on and off the main thread. For JS-implemented
|
|
// callbacks, we requires that the call happen on the main thread, but
|
|
// for C++-implemented callbacks we don't care. Use a pointer holder with
|
|
// strict checking disabled.
|
|
mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(aCallbacks, false);
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::PushBack(const char *data, uint32_t length)
|
|
{
|
|
LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
|
|
|
|
if (mInputOverflow) {
|
|
NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::ResumeSend()
|
|
{
|
|
LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
|
|
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
if (mSocketOut)
|
|
return mSocketOut->AsyncWait(this, 0, 0, nullptr);
|
|
|
|
NS_NOTREACHED("no socket output stream");
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::ResumeRecv()
|
|
{
|
|
LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
|
|
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
// the mLastReadTime timestamp is used for finding slowish readers
|
|
// and can be pretty sensitive. For that reason we actually reset it
|
|
// when we ask to read (resume recv()) so that when we get called back
|
|
// with actual read data in OnSocketReadable() we are only measuring
|
|
// the latency between those two acts and not all the processing that
|
|
// may get done before the ResumeRecv() call
|
|
mLastReadTime = PR_IntervalNow();
|
|
|
|
if (mSocketIn)
|
|
return mSocketIn->AsyncWait(this, 0, 0, nullptr);
|
|
|
|
NS_NOTREACHED("no socket input stream");
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
|
|
class nsHttpConnectionForceIO : public nsRunnable
|
|
{
|
|
public:
|
|
nsHttpConnectionForceIO(nsHttpConnection *aConn, bool doRecv)
|
|
: mConn(aConn)
|
|
, mDoRecv(doRecv)
|
|
{}
|
|
|
|
NS_IMETHOD Run()
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
if (mDoRecv) {
|
|
if (!mConn->mSocketIn)
|
|
return NS_OK;
|
|
return mConn->OnInputStreamReady(mConn->mSocketIn);
|
|
}
|
|
if (!mConn->mSocketOut)
|
|
return NS_OK;
|
|
return mConn->OnOutputStreamReady(mConn->mSocketOut);
|
|
}
|
|
private:
|
|
nsRefPtr<nsHttpConnection> mConn;
|
|
bool mDoRecv;
|
|
};
|
|
|
|
// trigger an asynchronous read
|
|
nsresult
|
|
nsHttpConnection::ForceRecv()
|
|
{
|
|
LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
return NS_DispatchToCurrentThread(new nsHttpConnectionForceIO(this, true));
|
|
}
|
|
|
|
// trigger an asynchronous write
|
|
nsresult
|
|
nsHttpConnection::ForceSend()
|
|
{
|
|
LOG(("nsHttpConnection::ForceSend [this=%p]\n", this));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
if (mTLSFilter) {
|
|
return mTLSFilter->NudgeTunnel(this);
|
|
}
|
|
|
|
return NS_DispatchToCurrentThread(new nsHttpConnectionForceIO(this, false));
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::BeginIdleMonitoring()
|
|
{
|
|
LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
|
|
MOZ_ASSERT(!mUsingSpdyVersion, "Idle monitoring of spdy not allowed");
|
|
|
|
LOG(("Entering Idle Monitoring Mode [this=%p]", this));
|
|
mIdleMonitoring = true;
|
|
if (mSocketIn)
|
|
mSocketIn->AsyncWait(this, 0, 0, nullptr);
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::EndIdleMonitoring()
|
|
{
|
|
LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
|
|
|
|
if (mIdleMonitoring) {
|
|
LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
|
|
mIdleMonitoring = false;
|
|
if (mSocketIn)
|
|
mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
nsHttpConnection::Version()
|
|
{
|
|
return mUsingSpdyVersion ? mUsingSpdyVersion : mLastHttpResponseVersion;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection <private>
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void
|
|
nsHttpConnection::CloseTransaction(nsAHttpTransaction *trans, nsresult reason)
|
|
{
|
|
LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%p reason=%x]\n",
|
|
this, trans, reason));
|
|
|
|
MOZ_ASSERT((trans == mTransaction) ||
|
|
(mTLSFilter && mTLSFilter->Transaction() == trans));
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
if (mCurrentBytesRead > mMaxBytesRead)
|
|
mMaxBytesRead = mCurrentBytesRead;
|
|
|
|
// mask this error code because its not a real error.
|
|
if (reason == NS_BASE_STREAM_CLOSED)
|
|
reason = NS_OK;
|
|
|
|
if (mUsingSpdyVersion) {
|
|
DontReuse();
|
|
// if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
|
|
mUsingSpdyVersion = 0;
|
|
mSpdySession = nullptr;
|
|
}
|
|
|
|
if (mTransaction) {
|
|
mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
|
|
|
|
mTransaction->Close(reason);
|
|
mTransaction = nullptr;
|
|
}
|
|
|
|
{
|
|
MutexAutoLock lock(mCallbacksLock);
|
|
mCallbacks = nullptr;
|
|
}
|
|
|
|
if (NS_FAILED(reason) && (reason != NS_BINDING_RETARGETED)) {
|
|
Close(reason);
|
|
}
|
|
|
|
// flag the connection as reused here for convenience sake. certainly
|
|
// it might be going away instead ;-)
|
|
mIsReused = true;
|
|
}
|
|
|
|
NS_METHOD
|
|
nsHttpConnection::ReadFromStream(nsIInputStream *input,
|
|
void *closure,
|
|
const char *buf,
|
|
uint32_t offset,
|
|
uint32_t count,
|
|
uint32_t *countRead)
|
|
{
|
|
// thunk for nsIInputStream instance
|
|
nsHttpConnection *conn = (nsHttpConnection *) closure;
|
|
return conn->OnReadSegment(buf, count, countRead);
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::OnReadSegment(const char *buf,
|
|
uint32_t count,
|
|
uint32_t *countRead)
|
|
{
|
|
if (count == 0) {
|
|
// some ReadSegments implementations will erroneously call the writer
|
|
// to consume 0 bytes worth of data. we must protect against this case
|
|
// or else we'd end up closing the socket prematurely.
|
|
NS_ERROR("bad ReadSegments implementation");
|
|
return NS_ERROR_FAILURE; // stop iterating
|
|
}
|
|
|
|
nsresult rv = mSocketOut->Write(buf, count, countRead);
|
|
if (NS_FAILED(rv))
|
|
mSocketOutCondition = rv;
|
|
else if (*countRead == 0)
|
|
mSocketOutCondition = NS_BASE_STREAM_CLOSED;
|
|
else {
|
|
mLastWriteTime = PR_IntervalNow();
|
|
mSocketOutCondition = NS_OK; // reset condition
|
|
if (!mProxyConnectInProgress)
|
|
mTotalBytesWritten += *countRead;
|
|
}
|
|
|
|
return mSocketOutCondition;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::OnSocketWritable()
|
|
{
|
|
LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n",
|
|
this, mConnInfo->Origin()));
|
|
|
|
nsresult rv;
|
|
uint32_t transactionBytes;
|
|
bool again = true;
|
|
|
|
do {
|
|
rv = mSocketOutCondition = NS_OK;
|
|
transactionBytes = 0;
|
|
|
|
// The SSL handshake must be completed before the transaction->readsegments()
|
|
// processing can proceed because we need to know how to format the
|
|
// request differently for http/1, http/2, spdy, etc.. and that is
|
|
// negotiated with NPN/ALPN in the SSL handshake.
|
|
|
|
if (mConnInfo->UsingHttpsProxy() && !EnsureNPNComplete()) {
|
|
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
|
|
} else if (mProxyConnectStream) {
|
|
// If we're need an HTTP/1 CONNECT tunnel through a proxy
|
|
// send it before doing the SSL handshake
|
|
LOG((" writing CONNECT request stream\n"));
|
|
rv = mProxyConnectStream->ReadSegments(ReadFromStream, this,
|
|
nsIOService::gDefaultSegmentSize,
|
|
&transactionBytes);
|
|
} else if (!EnsureNPNComplete()) {
|
|
mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
|
|
} else {
|
|
|
|
// for non spdy sessions let the connection manager know
|
|
if (!mReportedSpdy) {
|
|
mReportedSpdy = true;
|
|
MOZ_ASSERT(!mEverUsedSpdy);
|
|
gHttpHandler->ConnMgr()->ReportSpdyConnection(this, false);
|
|
}
|
|
|
|
LOG((" writing transaction request stream\n"));
|
|
mProxyConnectInProgress = false;
|
|
rv = mTransaction->ReadSegments(this, nsIOService::gDefaultSegmentSize,
|
|
&transactionBytes);
|
|
mContentBytesWritten += transactionBytes;
|
|
}
|
|
|
|
LOG(("nsHttpConnection::OnSocketWritable %p "
|
|
"ReadSegments returned [rv=%x read=%u sock-cond=%x]\n",
|
|
this, rv, transactionBytes, mSocketOutCondition));
|
|
|
|
// XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
|
|
if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
|
|
rv = NS_OK;
|
|
transactionBytes = 0;
|
|
}
|
|
|
|
if (NS_FAILED(rv)) {
|
|
// if the transaction didn't want to write any more data, then
|
|
// wait for the transaction to call ResumeSend.
|
|
if (rv == NS_BASE_STREAM_WOULD_BLOCK)
|
|
rv = NS_OK;
|
|
again = false;
|
|
} else if (NS_FAILED(mSocketOutCondition)) {
|
|
if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) {
|
|
if (mTLSFilter) {
|
|
LOG((" blocked tunnel (handshake?)\n"));
|
|
rv = mTLSFilter->NudgeTunnel(this);
|
|
} else {
|
|
rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
|
|
}
|
|
} else {
|
|
rv = mSocketOutCondition;
|
|
}
|
|
again = false;
|
|
} else if (!transactionBytes) {
|
|
rv = NS_OK;
|
|
|
|
if (mTransaction) { // in case the ReadSegments stack called CloseTransaction()
|
|
//
|
|
// at this point we've written out the entire transaction, and now we
|
|
// must wait for the server's response. we manufacture a status message
|
|
// here to reflect the fact that we are waiting. this message will be
|
|
// trumped (overwritten) if the server responds quickly.
|
|
//
|
|
mTransaction->OnTransportStatus(mSocketTransport,
|
|
NS_NET_STATUS_WAITING_FOR,
|
|
0);
|
|
|
|
rv = ResumeRecv(); // start reading
|
|
}
|
|
again = false;
|
|
}
|
|
// write more to the socket until error or end-of-request...
|
|
} while (again);
|
|
|
|
return rv;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::OnWriteSegment(char *buf,
|
|
uint32_t count,
|
|
uint32_t *countWritten)
|
|
{
|
|
if (count == 0) {
|
|
// some WriteSegments implementations will erroneously call the reader
|
|
// to provide 0 bytes worth of data. we must protect against this case
|
|
// or else we'd end up closing the socket prematurely.
|
|
NS_ERROR("bad WriteSegments implementation");
|
|
return NS_ERROR_FAILURE; // stop iterating
|
|
}
|
|
|
|
if (ChaosMode::isActive(ChaosMode::IOAmounts) &&
|
|
ChaosMode::randomUint32LessThan(2)) {
|
|
// read 1...count bytes
|
|
count = ChaosMode::randomUint32LessThan(count) + 1;
|
|
}
|
|
|
|
nsresult rv = mSocketIn->Read(buf, count, countWritten);
|
|
if (NS_FAILED(rv))
|
|
mSocketInCondition = rv;
|
|
else if (*countWritten == 0)
|
|
mSocketInCondition = NS_BASE_STREAM_CLOSED;
|
|
else
|
|
mSocketInCondition = NS_OK; // reset condition
|
|
|
|
return mSocketInCondition;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::OnSocketReadable()
|
|
{
|
|
LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
|
|
|
|
PRIntervalTime now = PR_IntervalNow();
|
|
PRIntervalTime delta = now - mLastReadTime;
|
|
|
|
// Reset mResponseTimeoutEnabled to stop response timeout checks.
|
|
mResponseTimeoutEnabled = false;
|
|
|
|
if (mKeepAliveMask && (delta >= mMaxHangTime)) {
|
|
LOG(("max hang time exceeded!\n"));
|
|
// give the handler a chance to create a new persistent connection to
|
|
// this host if we've been busy for too long.
|
|
mKeepAliveMask = false;
|
|
gHttpHandler->ProcessPendingQ(mConnInfo);
|
|
}
|
|
|
|
// Look for data being sent in bursts with large pauses. If the pauses
|
|
// are caused by server bottlenecks such as think-time, disk i/o, or
|
|
// cpu exhaustion (as opposed to network latency) then we generate negative
|
|
// pipelining feedback to prevent head of line problems
|
|
|
|
// Reduce the estimate of the time since last read by up to 1 RTT to
|
|
// accommodate exhausted sender TCP congestion windows or minor I/O delays.
|
|
|
|
if (delta > mRtt)
|
|
delta -= mRtt;
|
|
else
|
|
delta = 0;
|
|
|
|
static const PRIntervalTime k400ms = PR_MillisecondsToInterval(400);
|
|
|
|
if (delta >= (mRtt + gHttpHandler->GetPipelineRescheduleTimeout())) {
|
|
LOG(("Read delta ms of %u causing slow read major "
|
|
"event and pipeline cancellation",
|
|
PR_IntervalToMilliseconds(delta)));
|
|
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::BadSlowReadMajor, this, 0);
|
|
|
|
if (gHttpHandler->GetPipelineRescheduleOnTimeout() &&
|
|
mTransaction->PipelineDepth() > 1) {
|
|
nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
|
|
MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
|
|
// code this defensively for the moment and check for null
|
|
// This will reschedule blocked members of the pipeline, but the
|
|
// blocking transaction (i.e. response 0) will not be changed.
|
|
if (pipeline) {
|
|
pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
|
|
LOG(("Rescheduling the head of line blocked members of a "
|
|
"pipeline because reschedule-timeout idle interval "
|
|
"exceeded"));
|
|
}
|
|
}
|
|
}
|
|
else if (delta > k400ms) {
|
|
gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
|
|
mConnInfo, nsHttpConnectionMgr::BadSlowReadMinor, this, 0);
|
|
}
|
|
|
|
mLastReadTime = now;
|
|
|
|
nsresult rv;
|
|
uint32_t n;
|
|
bool again = true;
|
|
|
|
do {
|
|
if (!mProxyConnectInProgress && !mNPNComplete) {
|
|
// Unless we are setting up a tunnel via CONNECT, prevent reading
|
|
// from the socket until the results of NPN
|
|
// negotiation are known (which is determined from the write path).
|
|
// If the server speaks SPDY it is likely the readable data here is
|
|
// a spdy settings frame and without NPN it would be misinterpreted
|
|
// as HTTP/*
|
|
|
|
LOG(("nsHttpConnection::OnSocketReadable %p return due to inactive "
|
|
"tunnel setup but incomplete NPN state\n", this));
|
|
rv = NS_OK;
|
|
break;
|
|
}
|
|
|
|
rv = mTransaction->WriteSegments(this, nsIOService::gDefaultSegmentSize, &n);
|
|
if (NS_FAILED(rv)) {
|
|
// if the transaction didn't want to take any more data, then
|
|
// wait for the transaction to call ResumeRecv.
|
|
if (rv == NS_BASE_STREAM_WOULD_BLOCK)
|
|
rv = NS_OK;
|
|
again = false;
|
|
}
|
|
else {
|
|
mCurrentBytesRead += n;
|
|
mTotalBytesRead += n;
|
|
if (NS_FAILED(mSocketInCondition)) {
|
|
// continue waiting for the socket if necessary...
|
|
if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK)
|
|
rv = ResumeRecv();
|
|
else
|
|
rv = mSocketInCondition;
|
|
again = false;
|
|
}
|
|
}
|
|
// read more from the socket until error...
|
|
} while (again);
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::SetupSecondaryTLS()
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
MOZ_ASSERT(!mTLSFilter);
|
|
LOG(("nsHttpConnection %p SetupSecondaryTLS %s %d\n",
|
|
this, mConnInfo->Origin(), mConnInfo->OriginPort()));
|
|
|
|
nsHttpConnectionInfo *ci = nullptr;
|
|
if (mTransaction) {
|
|
ci = mTransaction->ConnectionInfo();
|
|
}
|
|
if (!ci) {
|
|
ci = mConnInfo;
|
|
}
|
|
MOZ_ASSERT(ci);
|
|
|
|
mTLSFilter = new TLSFilterTransaction(mTransaction,
|
|
ci->Origin(), ci->OriginPort(), this, this);
|
|
|
|
if (mTransaction) {
|
|
mTransaction = mTLSFilter;
|
|
}
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::SetInSpdyTunnel(bool arg)
|
|
{
|
|
MOZ_ASSERT(mTLSFilter);
|
|
mInSpdyTunnel = arg;
|
|
|
|
// don't setup another tunnel :)
|
|
mProxyConnectStream = nullptr;
|
|
mCompletedProxyConnect = true;
|
|
mProxyConnectInProgress = false;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::MakeConnectString(nsAHttpTransaction *trans,
|
|
nsHttpRequestHead *request,
|
|
nsACString &result)
|
|
{
|
|
result.Truncate();
|
|
if (!trans->ConnectionInfo()) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsHttpHandler::GenerateHostPort(
|
|
nsDependentCString(trans->ConnectionInfo()->Origin()),
|
|
trans->ConnectionInfo()->OriginPort(), result);
|
|
|
|
// CONNECT host:port HTTP/1.1
|
|
request->SetMethod(NS_LITERAL_CSTRING("CONNECT"));
|
|
request->SetVersion(gHttpHandler->HttpVersion());
|
|
request->SetRequestURI(result);
|
|
request->SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent());
|
|
|
|
// a CONNECT is always persistent
|
|
request->SetHeader(nsHttp::Proxy_Connection, NS_LITERAL_CSTRING("keep-alive"));
|
|
request->SetHeader(nsHttp::Connection, NS_LITERAL_CSTRING("keep-alive"));
|
|
|
|
// all HTTP/1.1 requests must include a Host header (even though it
|
|
// may seem redundant in this case; see bug 82388).
|
|
request->SetHeader(nsHttp::Host, result);
|
|
|
|
const char *val = trans->RequestHead()->PeekHeader(nsHttp::Proxy_Authorization);
|
|
if (val) {
|
|
// we don't know for sure if this authorization is intended for the
|
|
// SSL proxy, so we add it just in case.
|
|
request->SetHeader(nsHttp::Proxy_Authorization, nsDependentCString(val));
|
|
}
|
|
|
|
result.Truncate();
|
|
request->Flatten(result, false);
|
|
result.AppendLiteral("\r\n");
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::SetupProxyConnect()
|
|
{
|
|
LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this));
|
|
NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
|
|
MOZ_ASSERT(!mUsingSpdyVersion,
|
|
"SPDY NPN Complete while using proxy connect stream");
|
|
|
|
nsAutoCString buf;
|
|
nsHttpRequestHead request;
|
|
nsresult rv = MakeConnectString(mTransaction, &request, buf);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream), buf);
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::StartShortLivedTCPKeepalives()
|
|
{
|
|
if (mUsingSpdyVersion) {
|
|
return NS_OK;
|
|
}
|
|
MOZ_ASSERT(mSocketTransport);
|
|
if (!mSocketTransport) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsresult rv = NS_OK;
|
|
int32_t idleTimeS = -1;
|
|
int32_t retryIntervalS = -1;
|
|
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
|
|
// Set the idle time.
|
|
idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
|
|
LOG(("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
|
|
"idle time[%ds].", this, idleTimeS));
|
|
|
|
retryIntervalS =
|
|
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
|
|
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
rv = mSocketTransport->SetKeepaliveEnabled(true);
|
|
mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
|
|
} else {
|
|
rv = mSocketTransport->SetKeepaliveEnabled(false);
|
|
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
|
|
}
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
// Start a timer to move to long-lived keepalive config.
|
|
if(!mTCPKeepaliveTransitionTimer) {
|
|
mTCPKeepaliveTransitionTimer =
|
|
do_CreateInstance("@mozilla.org/timer;1");
|
|
}
|
|
|
|
if (mTCPKeepaliveTransitionTimer) {
|
|
int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
|
|
|
|
// Adjust |time| to ensure a full set of keepalive probes can be sent
|
|
// at the end of the short-lived phase.
|
|
if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
|
|
if (NS_WARN_IF(!gSocketTransportService)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
int32_t probeCount = -1;
|
|
rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return rv;
|
|
}
|
|
if (NS_WARN_IF(probeCount <= 0)) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
// Add time for final keepalive probes, and 2 seconds for a buffer.
|
|
time += ((probeCount) * retryIntervalS) - (time % idleTimeS) + 2;
|
|
}
|
|
mTCPKeepaliveTransitionTimer->InitWithFuncCallback(
|
|
nsHttpConnection::UpdateTCPKeepalive,
|
|
this,
|
|
(uint32_t)time*1000,
|
|
nsITimer::TYPE_ONE_SHOT);
|
|
} else {
|
|
NS_WARNING("nsHttpConnection::StartShortLivedTCPKeepalives failed to "
|
|
"create timer.");
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::StartLongLivedTCPKeepalives()
|
|
{
|
|
MOZ_ASSERT(!mUsingSpdyVersion, "Don't use TCP Keepalive with SPDY!");
|
|
if (NS_WARN_IF(mUsingSpdyVersion)) {
|
|
return NS_OK;
|
|
}
|
|
MOZ_ASSERT(mSocketTransport);
|
|
if (!mSocketTransport) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsresult rv = NS_OK;
|
|
if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
|
|
// Increase the idle time.
|
|
int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
|
|
LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
|
|
this, idleTimeS));
|
|
|
|
int32_t retryIntervalS =
|
|
std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
|
|
rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
// Ensure keepalive is enabled, if current status is disabled.
|
|
if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
|
|
rv = mSocketTransport->SetKeepaliveEnabled(true);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
}
|
|
mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
|
|
} else {
|
|
rv = mSocketTransport->SetKeepaliveEnabled(false);
|
|
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
|
|
}
|
|
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsHttpConnection::DisableTCPKeepalives()
|
|
{
|
|
MOZ_ASSERT(mSocketTransport);
|
|
if (!mSocketTransport) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
|
|
if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
|
|
nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
|
|
}
|
|
if (mTCPKeepaliveTransitionTimer) {
|
|
mTCPKeepaliveTransitionTimer->Cancel();
|
|
mTCPKeepaliveTransitionTimer = nullptr;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsISupports
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMPL_ISUPPORTS(nsHttpConnection,
|
|
nsIInputStreamCallback,
|
|
nsIOutputStreamCallback,
|
|
nsITransportEventSink,
|
|
nsIInterfaceRequestor)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsIInputStreamCallback
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// called on the socket transport thread
|
|
NS_IMETHODIMP
|
|
nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream *in)
|
|
{
|
|
MOZ_ASSERT(in == mSocketIn, "unexpected stream");
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
|
|
if (mIdleMonitoring) {
|
|
MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
|
|
|
|
// The only read event that is protocol compliant for an idle connection
|
|
// is an EOF, which we check for with CanReuse(). If the data is
|
|
// something else then just ignore it and suspend checking for EOF -
|
|
// our normal timers or protocol stack are the place to deal with
|
|
// any exception logic.
|
|
|
|
if (!CanReuse()) {
|
|
LOG(("Server initiated close of idle conn %p\n", this));
|
|
gHttpHandler->ConnMgr()->CloseIdleConnection(this);
|
|
return NS_OK;
|
|
}
|
|
|
|
LOG(("Input data on idle conn %p, but not closing yet\n", this));
|
|
return NS_OK;
|
|
}
|
|
|
|
// if the transaction was dropped...
|
|
if (!mTransaction) {
|
|
LOG((" no transaction; ignoring event\n"));
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult rv = OnSocketReadable();
|
|
if (NS_FAILED(rv))
|
|
CloseTransaction(mTransaction, rv);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsIOutputStreamCallback
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMETHODIMP
|
|
nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream *out)
|
|
{
|
|
MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
|
|
MOZ_ASSERT(out == mSocketOut, "unexpected socket");
|
|
|
|
// if the transaction was dropped...
|
|
if (!mTransaction) {
|
|
LOG((" no transaction; ignoring event\n"));
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult rv = OnSocketWritable();
|
|
if (NS_FAILED(rv))
|
|
CloseTransaction(mTransaction, rv);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsITransportEventSink
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMETHODIMP
|
|
nsHttpConnection::OnTransportStatus(nsITransport *trans,
|
|
nsresult status,
|
|
int64_t progress,
|
|
int64_t progressMax)
|
|
{
|
|
if (mTransaction)
|
|
mTransaction->OnTransportStatus(trans, status, progress);
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsHttpConnection::nsIInterfaceRequestor
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// not called on the socket transport thread
|
|
NS_IMETHODIMP
|
|
nsHttpConnection::GetInterface(const nsIID &iid, void **result)
|
|
{
|
|
// NOTE: This function is only called on the UI thread via sync proxy from
|
|
// the socket transport thread. If that weren't the case, then we'd
|
|
// have to worry about the possibility of mTransaction going away
|
|
// part-way through this function call. See CloseTransaction.
|
|
|
|
// NOTE - there is a bug here, the call to getinterface is proxied off the
|
|
// nss thread, not the ui thread as the above comment says. So there is
|
|
// indeed a chance of mTransaction going away. bug 615342
|
|
|
|
MOZ_ASSERT(PR_GetCurrentThread() != gSocketThread);
|
|
|
|
nsCOMPtr<nsIInterfaceRequestor> callbacks;
|
|
{
|
|
MutexAutoLock lock(mCallbacksLock);
|
|
callbacks = mCallbacks;
|
|
}
|
|
if (callbacks)
|
|
return callbacks->GetInterface(iid, result);
|
|
return NS_ERROR_NO_INTERFACE;
|
|
}
|
|
|
|
void
|
|
nsHttpConnection::CheckForTraffic(bool check)
|
|
{
|
|
if (check) {
|
|
if (mSpdySession) {
|
|
// Send a ping to verify it is still alive
|
|
mSpdySession->SendPing();
|
|
} else {
|
|
// If not SPDY, Store snapshot amount of data right now
|
|
mTrafficCount = mTotalBytesWritten + mTotalBytesRead;
|
|
mTrafficStamp = true;
|
|
}
|
|
} else {
|
|
// mark it as not checked
|
|
mTrafficStamp = false;
|
|
}
|
|
}
|
|
|
|
} // namespace net
|
|
} // namespace mozilla
|