gecko-dev/gfx/2d/DrawTargetSkia.cpp
Andrew Osmond 91b071ed14 Bug 1618345 - Enforce proper color management by splitting gfx::Color into sRGBColor and DeviceColor types. r=jrmuizel
gfx::Color is currently misused in many places. The DrawTargets expect
the color space to be in device space, e.g. what we are actually going
to draw using. Everything sitting above generally deals with sRGB, as
specified in CSS. Sometimes we missed the conversion from sRGB to device
space when issuing draw calls, and similarly sometimes we converted the
color to device space twice.

This patch splits the type in two. sRGBColor and DeviceColor now
represent sRGB and device color spaces respectively. DrawTarget only
accepts DeviceColor, and one can get a DeviceColor from an sRGBColor via
the ToDeviceColor helper API. The reftests now pass with color
management enabled for everything (e.g. CSS) instead of just tagged
raster images.

There will be a follow up patch to enable color management everywhere by
default on all supported platforms.

Differential Revision: https://phabricator.services.mozilla.com/D64771

--HG--
extra : moz-landing-system : lando
2020-03-09 14:16:17 +00:00

1972 lines
67 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetSkia.h"
#include "SourceSurfaceSkia.h"
#include "ScaledFontBase.h"
#include "FilterNodeSoftware.h"
#include "HelpersSkia.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Vector.h"
#include "skia/include/core/SkFont.h"
#include "skia/include/core/SkTextBlob.h"
#include "skia/include/core/SkSurface.h"
#include "skia/include/core/SkTypeface.h"
#include "skia/include/effects/SkGradientShader.h"
#include "skia/include/core/SkColorFilter.h"
#include "skia/include/core/SkRegion.h"
#include "skia/include/effects/SkBlurImageFilter.h"
#include "Blur.h"
#include "Logging.h"
#include "Tools.h"
#include "DataSurfaceHelpers.h"
#include "PathHelpers.h"
#include "SourceSurfaceCapture.h"
#include "Swizzle.h"
#include <algorithm>
#ifdef MOZ_WIDGET_COCOA
# include "BorrowedContext.h"
# include <ApplicationServices/ApplicationServices.h>
# include "ScaledFontMac.h"
# include "CGTextDrawing.h"
#endif
#ifdef XP_WIN
# include "ScaledFontDWrite.h"
#endif
namespace mozilla::gfx {
class GradientStopsSkia : public GradientStops {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStopsSkia, override)
GradientStopsSkia(const std::vector<GradientStop>& aStops, uint32_t aNumStops,
ExtendMode aExtendMode)
: mCount(aNumStops), mExtendMode(aExtendMode) {
if (mCount == 0) {
return;
}
// Skia gradients always require a stop at 0.0 and 1.0, insert these if
// we don't have them.
uint32_t shift = 0;
if (aStops[0].offset != 0) {
mCount++;
shift = 1;
}
if (aStops[aNumStops - 1].offset != 1) {
mCount++;
}
mColors.resize(mCount);
mPositions.resize(mCount);
if (aStops[0].offset != 0) {
mColors[0] = ColorToSkColor(aStops[0].color, 1.0);
mPositions[0] = 0;
}
for (uint32_t i = 0; i < aNumStops; i++) {
mColors[i + shift] = ColorToSkColor(aStops[i].color, 1.0);
mPositions[i + shift] = SkFloatToScalar(aStops[i].offset);
}
if (aStops[aNumStops - 1].offset != 1) {
mColors[mCount - 1] = ColorToSkColor(aStops[aNumStops - 1].color, 1.0);
mPositions[mCount - 1] = SK_Scalar1;
}
}
BackendType GetBackendType() const override { return BackendType::SKIA; }
std::vector<SkColor> mColors;
std::vector<SkScalar> mPositions;
int mCount;
ExtendMode mExtendMode;
};
/**
* When constructing a temporary SkImage via GetSkImageForSurface, we may also
* have to construct a temporary DataSourceSurface, which must live as long as
* the SkImage. We attach this temporary surface to the image's pixelref, so
* that it can be released once the pixelref is freed.
*/
static void ReleaseTemporarySurface(const void* aPixels, void* aContext) {
DataSourceSurface* surf = static_cast<DataSourceSurface*>(aContext);
if (surf) {
surf->Release();
}
}
static void WriteRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return;
}
SwizzleData(aData, aStride, SurfaceFormat::X8R8G8B8_UINT32, aData, aStride,
SurfaceFormat::A8R8G8B8_UINT32, aSize);
}
#ifdef DEBUG
static IntRect CalculateSurfaceBounds(const IntSize& aSize, const Rect* aBounds,
const Matrix* aMatrix) {
IntRect surfaceBounds(IntPoint(0, 0), aSize);
if (!aBounds) {
return surfaceBounds;
}
MOZ_ASSERT(aMatrix);
Matrix inverse(*aMatrix);
if (!inverse.Invert()) {
return surfaceBounds;
}
IntRect bounds;
Rect sampledBounds = inverse.TransformBounds(*aBounds);
if (!sampledBounds.ToIntRect(&bounds)) {
return surfaceBounds;
}
return surfaceBounds.Intersect(bounds);
}
static const int kARGBAlphaOffset =
SurfaceFormat::A8R8G8B8_UINT32 == SurfaceFormat::B8G8R8A8 ? 3 : 0;
static bool VerifyRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
// We should've initialized the data to be opaque already
// On debug builds, verify that this is actually true.
int height = aSize.height;
int width = aSize.width * 4;
for (int row = 0; row < height; ++row) {
for (int column = 0; column < width; column += 4) {
if (aData[column + kARGBAlphaOffset] != 0xFF) {
gfxCriticalError() << "RGBX pixel at (" << column << "," << row
<< ") in " << width << "x" << height
<< " surface is not opaque: " << int(aData[column])
<< "," << int(aData[column + 1]) << ","
<< int(aData[column + 2]) << ","
<< int(aData[column + 3]);
}
}
aData += aStride;
}
return true;
}
// Since checking every pixel is expensive, this only checks the four corners
// and center of a surface that their alpha value is 0xFF.
static bool VerifyRGBXCorners(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
IntRect bounds = CalculateSurfaceBounds(aSize, aBounds, aMatrix);
if (bounds.IsEmpty()) {
return true;
}
const int height = bounds.Height();
const int width = bounds.Width();
const int pixelSize = 4;
MOZ_ASSERT(aSize.width * pixelSize <= aStride);
const int translation = bounds.Y() * aStride + bounds.X() * pixelSize;
const int topLeft = translation;
const int topRight = topLeft + (width - 1) * pixelSize;
const int bottomLeft = translation + (height - 1) * aStride;
const int bottomRight = bottomLeft + (width - 1) * pixelSize;
// Lastly the center pixel
const int middleRowHeight = height / 2;
const int middleRowWidth = (width / 2) * pixelSize;
const int middle = translation + aStride * middleRowHeight + middleRowWidth;
const int offsets[] = {topLeft, topRight, bottomRight, bottomLeft, middle};
for (int offset : offsets) {
if (aData[offset + kARGBAlphaOffset] != 0xFF) {
int row = offset / aStride;
int column = (offset % aStride) / pixelSize;
gfxCriticalError() << "RGBX corner pixel at (" << column << "," << row
<< ") in " << aSize.width << "x" << aSize.height
<< " surface, bounded by "
<< "(" << bounds.X() << "," << bounds.Y() << ","
<< width << "," << height
<< ") is not opaque: " << int(aData[offset]) << ","
<< int(aData[offset + 1]) << ","
<< int(aData[offset + 2]) << ","
<< int(aData[offset + 3]);
}
}
return true;
}
#endif
static sk_sp<SkImage> GetSkImageForSurface(SourceSurface* aSurface,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (!aSurface) {
gfxDebug() << "Creating null Skia image from null SourceSurface";
return nullptr;
}
if (aSurface->GetType() == SurfaceType::CAPTURE) {
SourceSurfaceCapture* capture =
static_cast<SourceSurfaceCapture*>(aSurface);
RefPtr<SourceSurface> resolved = capture->Resolve(BackendType::SKIA);
if (!resolved) {
return nullptr;
}
MOZ_ASSERT(resolved->GetType() != SurfaceType::CAPTURE);
return GetSkImageForSurface(resolved, aBounds, aMatrix);
}
if (aSurface->GetType() == SurfaceType::SKIA) {
return static_cast<SourceSurfaceSkia*>(aSurface)->GetImage();
}
DataSourceSurface* surf = aSurface->GetDataSurface().take();
if (!surf) {
gfxWarning() << "Failed getting DataSourceSurface for Skia image";
return nullptr;
}
// Skia doesn't support RGBX surfaces so ensure that the alpha value is opaque
// white.
MOZ_ASSERT(VerifyRGBXCorners(surf->GetData(), surf->GetSize(), surf->Stride(),
surf->GetFormat(), aBounds, aMatrix));
SkPixmap pixmap(MakeSkiaImageInfo(surf->GetSize(), surf->GetFormat()),
surf->GetData(), surf->Stride());
sk_sp<SkImage> image =
SkImage::MakeFromRaster(pixmap, ReleaseTemporarySurface, surf);
if (!image) {
ReleaseTemporarySurface(nullptr, surf);
gfxDebug() << "Failed making Skia raster image for temporary surface";
}
return image;
}
DrawTargetSkia::DrawTargetSkia()
: mCanvas(nullptr), mSnapshot(nullptr), mSnapshotLock {
"DrawTargetSkia::mSnapshotLock"
}
#ifdef MOZ_WIDGET_COCOA
, mCG(nullptr), mColorSpace(nullptr), mCanvasData(nullptr), mCGSize(0, 0),
mNeedLayer(false)
#endif
{
}
DrawTargetSkia::~DrawTargetSkia() {
if (mSnapshot) {
MutexAutoLock lock(mSnapshotLock);
// We're going to go away, hand our SkSurface to the SourceSurface.
mSnapshot->GiveSurface(mSurface);
}
#ifdef MOZ_WIDGET_COCOA
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
if (mColorSpace) {
CGColorSpaceRelease(mColorSpace);
mColorSpace = nullptr;
}
#endif
}
already_AddRefed<SourceSurface> DrawTargetSkia::Snapshot() {
// Without this lock, this could cause us to get out a snapshot and race with
// Snapshot::~Snapshot() actually destroying itself.
MutexAutoLock lock(mSnapshotLock);
RefPtr<SourceSurfaceSkia> snapshot = mSnapshot;
if (mSurface && !snapshot) {
snapshot = new SourceSurfaceSkia();
sk_sp<SkImage> image;
// If the surface is raster, making a snapshot may trigger a pixel copy.
// Instead, try to directly make a raster image referencing the surface
// pixels.
SkPixmap pixmap;
if (mSurface->peekPixels(&pixmap)) {
image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr);
} else {
image = mSurface->makeImageSnapshot();
}
if (!snapshot->InitFromImage(image, mFormat, this)) {
return nullptr;
}
mSnapshot = snapshot;
}
return snapshot.forget();
}
already_AddRefed<SourceSurface> DrawTargetSkia::GetBackingSurface() {
if (mBackingSurface) {
RefPtr<SourceSurface> snapshot = mBackingSurface;
return snapshot.forget();
}
return Snapshot();
}
bool DrawTargetSkia::LockBits(uint8_t** aData, IntSize* aSize, int32_t* aStride,
SurfaceFormat* aFormat, IntPoint* aOrigin) {
SkImageInfo info;
size_t rowBytes;
SkIPoint origin;
void* pixels = mCanvas->accessTopLayerPixels(&info, &rowBytes, &origin);
if (!pixels ||
// Ensure the layer is at the origin if required.
(!aOrigin && !origin.isZero())) {
return false;
}
MarkChanged();
*aData = reinterpret_cast<uint8_t*>(pixels);
*aSize = IntSize(info.width(), info.height());
*aStride = int32_t(rowBytes);
*aFormat = SkiaColorTypeToGfxFormat(info.colorType(), info.alphaType());
if (aOrigin) {
*aOrigin = IntPoint(origin.x(), origin.y());
}
return true;
}
void DrawTargetSkia::ReleaseBits(uint8_t* aData) {}
static void ReleaseImage(const void* aPixels, void* aContext) {
SkImage* image = static_cast<SkImage*>(aContext);
SkSafeUnref(image);
}
static sk_sp<SkImage> ExtractSubset(sk_sp<SkImage> aImage,
const IntRect& aRect) {
SkIRect subsetRect = IntRectToSkIRect(aRect);
if (aImage->bounds() == subsetRect) {
return aImage;
}
// makeSubset is slow, so prefer to use SkPixmap::extractSubset where
// possible.
SkPixmap pixmap, subsetPixmap;
if (aImage->peekPixels(&pixmap) &&
pixmap.extractSubset(&subsetPixmap, subsetRect)) {
// Release the original image reference so only the subset image keeps it
// alive.
return SkImage::MakeFromRaster(subsetPixmap, ReleaseImage,
aImage.release());
}
return aImage->makeSubset(subsetRect);
}
static void FreeBitmapPixels(void* aBuf, void*) { sk_free(aBuf); }
static bool ExtractAlphaBitmap(const sk_sp<SkImage>& aImage,
SkBitmap* aResultBitmap) {
SkImageInfo info = SkImageInfo::MakeA8(aImage->width(), aImage->height());
// Skia does not fully allocate the last row according to stride.
// Since some of our algorithms (i.e. blur) depend on this, we must allocate
// the bitmap pixels manually.
size_t stride = SkAlign4(info.minRowBytes());
CheckedInt<size_t> size = stride;
size *= info.height();
if (size.isValid()) {
void* buf = sk_malloc_flags(size.value(), 0);
if (buf) {
SkBitmap bitmap;
if (bitmap.installPixels(info, buf, stride, FreeBitmapPixels, nullptr) &&
aImage->readPixels(bitmap.info(), bitmap.getPixels(),
bitmap.rowBytes(), 0, 0)) {
*aResultBitmap = bitmap;
return true;
}
}
}
gfxWarning() << "Failed reading alpha pixels for Skia bitmap";
return false;
}
static sk_sp<SkImage> ExtractAlphaForSurface(SourceSurface* aSurface) {
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return nullptr;
}
if (image->isAlphaOnly()) {
return image;
}
SkBitmap bitmap;
if (!ExtractAlphaBitmap(image, &bitmap)) {
return nullptr;
}
// Mark the bitmap immutable so that it will be shared rather than copied.
bitmap.setImmutable();
return SkImage::MakeFromBitmap(bitmap);
}
static void SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern,
Float aAlpha = 1.0,
const SkMatrix* aMatrix = nullptr,
const Rect* aBounds = nullptr) {
switch (aPattern.GetType()) {
case PatternType::COLOR: {
DeviceColor color = static_cast<const ColorPattern&>(aPattern).mColor;
aPaint.setColor(ColorToSkColor(color, aAlpha));
break;
}
case PatternType::LINEAR_GRADIENT: {
const LinearGradientPattern& pat =
static_cast<const LinearGradientPattern&>(aPattern);
GradientStopsSkia* stops =
static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 || !pat.mBegin.IsFinite() ||
!pat.mEnd.IsFinite() || pat.mBegin == pat.mEnd) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x),
SkFloatToScalar(pat.mBegin.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x),
SkFloatToScalar(pat.mEnd.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeLinear(
points, &stops->mColors.front(), &stops->mPositions.front(),
stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::RADIAL_GRADIENT: {
const RadialGradientPattern& pat =
static_cast<const RadialGradientPattern&>(aPattern);
GradientStopsSkia* stops =
static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 || !pat.mCenter1.IsFinite() ||
!IsFinite(pat.mRadius1) || !pat.mCenter2.IsFinite() ||
!IsFinite(pat.mRadius2) ||
(pat.mCenter1 == pat.mCenter2 && pat.mRadius1 == pat.mRadius2)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x),
SkFloatToScalar(pat.mCenter1.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x),
SkFloatToScalar(pat.mCenter2.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeTwoPointConical(
points[0], SkFloatToScalar(pat.mRadius1), points[1],
SkFloatToScalar(pat.mRadius2), &stops->mColors.front(),
&stops->mPositions.front(), stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::CONIC_GRADIENT: {
const ConicGradientPattern& pat =
static_cast<const ConicGradientPattern&>(aPattern);
GradientStopsSkia* stops =
static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 || !pat.mCenter.IsFinite() ||
!IsFinite(pat.mAngle)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
SkScalar cx = SkFloatToScalar(pat.mCenter.x);
SkScalar cy = SkFloatToScalar(pat.mCenter.y);
// Skia's sweep gradient angles are relative to the x-axis, not the
// y-axis.
Float angle = (pat.mAngle * 180.0 / M_PI) - 90.0;
if (angle != 0.0) {
mat.preRotate(angle, cx, cy);
}
SkTileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
sk_sp<SkShader> shader = SkGradientShader::MakeSweep(
cx, cy, &stops->mColors.front(), &stops->mPositions.front(),
stops->mCount, mode, 360 * pat.mStartOffset, 360 * pat.mEndOffset,
0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::SURFACE: {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
sk_sp<SkImage> image =
GetSkImageForSurface(pat.mSurface, aBounds, &pat.mMatrix);
if (!image) {
aPaint.setColor(SK_ColorTRANSPARENT);
break;
}
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
if (!pat.mSamplingRect.IsEmpty()) {
image = ExtractSubset(image, pat.mSamplingRect);
mat.preTranslate(pat.mSamplingRect.X(), pat.mSamplingRect.Y());
}
SkTileMode xTile = ExtendModeToTileMode(pat.mExtendMode, Axis::X_AXIS);
SkTileMode yTile = ExtendModeToTileMode(pat.mExtendMode, Axis::Y_AXIS);
aPaint.setShader(image->makeShader(xTile, yTile, &mat));
if (pat.mSamplingFilter == SamplingFilter::POINT) {
aPaint.setFilterQuality(kNone_SkFilterQuality);
}
break;
}
}
}
static inline Rect GetClipBounds(SkCanvas* aCanvas) {
// Use a manually transformed getClipDeviceBounds instead of
// getClipBounds because getClipBounds inflates the the bounds
// by a pixel in each direction to compensate for antialiasing.
SkIRect deviceBounds;
if (!aCanvas->getDeviceClipBounds(&deviceBounds)) {
return Rect();
}
SkMatrix inverseCTM;
if (!aCanvas->getTotalMatrix().invert(&inverseCTM)) {
return Rect();
}
SkRect localBounds;
inverseCTM.mapRect(&localBounds, SkRect::Make(deviceBounds));
return SkRectToRect(localBounds);
}
struct AutoPaintSetup {
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Pattern& aPattern, const Rect* aMaskBounds = nullptr,
const SkMatrix* aMatrix = nullptr,
const Rect* aSourceBounds = nullptr)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, false);
SetPaintPattern(mPaint, aPattern, mAlpha, aMatrix, aSourceBounds);
}
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds = nullptr, bool aForceGroup = false)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, aForceGroup);
}
~AutoPaintSetup() {
if (mNeedsRestore) {
mCanvas->restore();
}
}
void Init(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds, bool aForceGroup) {
mPaint.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
mCanvas = aCanvas;
// TODO: Can we set greyscale somehow?
if (aOptions.mAntialiasMode != AntialiasMode::NONE) {
mPaint.setAntiAlias(true);
} else {
mPaint.setAntiAlias(false);
}
bool needsGroup =
aForceGroup ||
(!IsOperatorBoundByMask(aOptions.mCompositionOp) &&
(!aMaskBounds || !aMaskBounds->Contains(GetClipBounds(aCanvas))));
// TODO: We could skip the temporary for operator_source and just
// clear the clip rect. The other operators would be harder
// but could be worth it to skip pushing a group.
if (needsGroup) {
mPaint.setBlendMode(SkBlendMode::kSrcOver);
SkPaint temp;
temp.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
temp.setAlpha(ColorFloatToByte(aOptions.mAlpha));
// TODO: Get a rect here
SkCanvas::SaveLayerRec rec(nullptr, &temp,
SkCanvas::kPreserveLCDText_SaveLayerFlag);
mCanvas->saveLayer(rec);
mNeedsRestore = true;
} else {
mPaint.setAlpha(ColorFloatToByte(aOptions.mAlpha));
mAlpha = aOptions.mAlpha;
}
mPaint.setFilterQuality(kLow_SkFilterQuality);
}
// TODO: Maybe add an operator overload to access this easier?
SkPaint mPaint;
bool mNeedsRestore;
SkCanvas* mCanvas;
Float mAlpha;
};
void DrawTargetSkia::Flush() { mCanvas->flush(); }
void DrawTargetSkia::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
if (aSource.IsEmpty()) {
return;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
SkRect destRect = RectToSkRect(aDest);
SkRect sourceRect = RectToSkRect(aSource);
bool forceGroup =
image->isAlphaOnly() && aOptions.mCompositionOp != CompositionOp::OP_OVER;
AutoPaintSetup paint(mCanvas, aOptions, &aDest, forceGroup);
if (aSurfOptions.mSamplingFilter == SamplingFilter::POINT) {
paint.mPaint.setFilterQuality(kNone_SkFilterQuality);
}
mCanvas->drawImageRect(image, sourceRect, destRect, &paint.mPaint);
}
DrawTargetType DrawTargetSkia::GetType() const {
return DrawTargetType::SOFTWARE_RASTER;
}
void DrawTargetSkia::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
FilterNodeSoftware* filter = static_cast<FilterNodeSoftware*>(aNode);
filter->Draw(this, aSourceRect, aDestPoint, aOptions);
}
void DrawTargetSkia::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const DeviceColor& aColor,
const Point& aOffset, Float aSigma,
CompositionOp aOperator) {
if (aSurface->GetSize().IsEmpty()) {
return;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
mCanvas->save();
mCanvas->resetMatrix();
SkPaint paint;
paint.setBlendMode(GfxOpToSkiaOp(aOperator));
// bug 1201272
// We can't use the SkDropShadowImageFilter here because it applies the xfer
// mode first to render the bitmap to a temporary layer, and then implicitly
// uses src-over to composite the resulting shadow.
// The canvas spec, however, states that the composite op must be used to
// composite the resulting shadow, so we must instead use a SkBlurImageFilter
// to blur the image ourselves.
SkPaint shadowPaint;
shadowPaint.setBlendMode(GfxOpToSkiaOp(aOperator));
auto shadowDest = IntPoint::Round(aDest + aOffset);
SkBitmap blurMask;
if (ExtractAlphaBitmap(image, &blurMask)) {
// Prefer using our own box blur instead of Skia's. It currently performs
// much better than SkBlurImageFilter or SkBlurMaskFilter on the CPU.
AlphaBoxBlur blur(Rect(0, 0, blurMask.width(), blurMask.height()),
int32_t(blurMask.rowBytes()), aSigma, aSigma);
blur.Blur(reinterpret_cast<uint8_t*>(blurMask.getPixels()));
blurMask.notifyPixelsChanged();
shadowPaint.setColor(ColorToSkColor(aColor, 1.0f));
mCanvas->drawBitmap(blurMask, shadowDest.x, shadowDest.y, &shadowPaint);
} else {
sk_sp<SkImageFilter> blurFilter(
SkBlurImageFilter::Make(aSigma, aSigma, nullptr));
sk_sp<SkColorFilter> colorFilter(SkColorFilters::Blend(
ColorToSkColor(aColor, 1.0f), SkBlendMode::kSrcIn));
shadowPaint.setImageFilter(blurFilter);
shadowPaint.setColorFilter(colorFilter);
mCanvas->drawImage(image, shadowDest.x, shadowDest.y, &shadowPaint);
}
if (aSurface->GetFormat() != SurfaceFormat::A8) {
// Composite the original image after the shadow
auto dest = IntPoint::Round(aDest);
mCanvas->drawImage(image, dest.x, dest.y, &paint);
}
mCanvas->restore();
}
void DrawTargetSkia::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
// The sprite blitting path in Skia can be faster than the shader blitter for
// operators other than source (or source-over with opaque surface). So, when
// possible/beneficial, route to DrawSurface which will use the sprite
// blitter.
if (aPattern.GetType() == PatternType::SURFACE &&
aOptions.mCompositionOp != CompositionOp::OP_SOURCE) {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
// Verify there is a valid surface and a pattern matrix without skew.
if (pat.mSurface &&
(aOptions.mCompositionOp != CompositionOp::OP_OVER ||
GfxFormatToSkiaAlphaType(pat.mSurface->GetFormat()) !=
kOpaque_SkAlphaType) &&
!pat.mMatrix.HasNonAxisAlignedTransform()) {
// Bound the sampling to smaller of the bounds or the sampling rect.
IntRect srcRect(IntPoint(0, 0), pat.mSurface->GetSize());
if (!pat.mSamplingRect.IsEmpty()) {
srcRect = srcRect.Intersect(pat.mSamplingRect);
}
// Transform the destination rectangle by the inverse of the pattern
// matrix so that it is in pattern space like the source rectangle.
Rect patRect = aRect - pat.mMatrix.GetTranslation();
patRect.Scale(1.0f / pat.mMatrix._11, 1.0f / pat.mMatrix._22);
// Verify the pattern rectangle will not tile or clamp.
if (!patRect.IsEmpty() && srcRect.Contains(RoundedOut(patRect))) {
// The pattern is a surface with an axis-aligned source rectangle
// fitting entirely in its bounds, so just treat it as a DrawSurface.
DrawSurface(pat.mSurface, aRect, patRect,
DrawSurfaceOptions(pat.mSamplingFilter), aOptions);
return;
}
}
}
MarkChanged();
SkRect rect = RectToSkRect(aRect);
AutoPaintSetup paint(mCanvas, aOptions, aPattern, &aRect, nullptr, &aRect);
mCanvas->drawRect(rect, paint.mPaint);
}
void DrawTargetSkia::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
MOZ_ASSERT(aPath, "Null path");
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
static Double DashPeriodLength(const StrokeOptions& aStrokeOptions) {
Double length = 0;
for (size_t i = 0; i < aStrokeOptions.mDashLength; i++) {
length += aStrokeOptions.mDashPattern[i];
}
if (aStrokeOptions.mDashLength & 1) {
// "If an odd number of values is provided, then the list of values is
// repeated to yield an even number of values."
// Double the length.
length += length;
}
return length;
}
static inline Double RoundDownToMultiple(Double aValue, Double aFactor) {
return floor(aValue / aFactor) * aFactor;
}
static Rect UserSpaceStrokeClip(const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Matrix inverse = aTransform;
if (!inverse.Invert()) {
return Rect();
}
Rect deviceClip(aDeviceClip);
deviceClip.Inflate(MaxStrokeExtents(aStrokeOptions, aTransform));
return inverse.TransformBounds(deviceClip);
}
static Rect ShrinkClippedStrokedRect(const Rect& aStrokedRect,
const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Rect userSpaceStrokeClip =
UserSpaceStrokeClip(aDeviceClip, aTransform, aStrokeOptions);
RectDouble strokedRectDouble(aStrokedRect.X(), aStrokedRect.Y(),
aStrokedRect.Width(), aStrokedRect.Height());
RectDouble intersection = strokedRectDouble.Intersect(
RectDouble(userSpaceStrokeClip.X(), userSpaceStrokeClip.Y(),
userSpaceStrokeClip.Width(), userSpaceStrokeClip.Height()));
Double dashPeriodLength = DashPeriodLength(aStrokeOptions);
if (intersection.IsEmpty() || dashPeriodLength == 0.0f) {
return Rect(intersection.X(), intersection.Y(), intersection.Width(),
intersection.Height());
}
// Reduce the rectangle side lengths in multiples of the dash period length
// so that the visible dashes stay in the same place.
MarginDouble insetBy = strokedRectDouble - intersection;
insetBy.top = RoundDownToMultiple(insetBy.top, dashPeriodLength);
insetBy.right = RoundDownToMultiple(insetBy.right, dashPeriodLength);
insetBy.bottom = RoundDownToMultiple(insetBy.bottom, dashPeriodLength);
insetBy.left = RoundDownToMultiple(insetBy.left, dashPeriodLength);
strokedRectDouble.Deflate(insetBy);
return Rect(strokedRectDouble.X(), strokedRectDouble.Y(),
strokedRectDouble.Width(), strokedRectDouble.Height());
}
void DrawTargetSkia::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
// Stroking large rectangles with dashes is expensive with Skia (fixed
// overhead based on the number of dashes, regardless of whether the dashes
// are visible), so we try to reduce the size of the stroked rectangle as
// much as possible before passing it on to Skia.
Rect rect = aRect;
if (aStrokeOptions.mDashLength > 0 && !rect.IsEmpty()) {
IntRect deviceClip(IntPoint(0, 0), mSize);
SkIRect clipBounds;
if (mCanvas->getDeviceClipBounds(&clipBounds)) {
deviceClip = SkIRectToIntRect(clipBounds);
}
rect =
ShrinkClippedStrokedRect(rect, deviceClip, mTransform, aStrokeOptions);
if (rect.IsEmpty()) {
return;
}
}
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawRect(RectToSkRect(rect), paint.mPaint);
}
void DrawTargetSkia::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawLine(SkFloatToScalar(aStart.x), SkFloatToScalar(aStart.y),
SkFloatToScalar(aEnd.x), SkFloatToScalar(aEnd.y),
paint.mPaint);
}
void DrawTargetSkia::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
MarkChanged();
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
#ifdef MOZ_WIDGET_COCOA
static inline CGAffineTransform GfxMatrixToCGAffineTransform(const Matrix& m) {
CGAffineTransform t;
t.a = m._11;
t.b = m._12;
t.c = m._21;
t.d = m._22;
t.tx = m._31;
t.ty = m._32;
return t;
}
/***
* We have to do a lot of work to draw glyphs with CG because
* CG assumes that the origin of rects are in the bottom left
* while every other DrawTarget assumes the top left is the origin.
* This means we have to transform the CGContext to have rects
* actually be applied in top left fashion. We do this by:
*
* 1) Translating the context up by the height of the canvas
* 2) Flipping the context by the Y axis so it's upside down.
*
* These two transforms put the origin in the top left.
* Transforms are better understood thinking about them from right to left order
* (mathematically).
*
* Consider a point we want to draw at (0, 10) in normal cartesian planes with
* a box of (100, 100). in CG terms, this would be at (0, 10).
* Positive Y values point up.
* In our DrawTarget terms, positive Y values point down, so (0, 10) would be
* at (0, 90) in cartesian plane terms. That means our point at (0, 10) in
* DrawTarget terms should end up at (0, 90). How does this work with the
* current transforms?
*
* Going right to left with the transforms, a CGPoint of (0, 10) has cartesian
* coordinates of (0, 10). The first flip of the Y axis puts the point now at
* (0, -10); Next, we translate the context up by the size of the canvas
* (Positive Y values go up in CG coordinates but down in our draw target
* coordinates). Since our canvas size is (100, 100), the resulting coordinate
* becomes (0, 90), which is what we expect from our DrawTarget code. These two
* transforms put the CG context equal to what every other DrawTarget expects.
*
* Next, we need two more transforms for actual text. IF we left the transforms
* as is, the text would be drawn upside down, so we need another flip of the Y
* axis to draw the text right side up. However, with only the flip, the text
* would be drawn in the wrong place. Thus we also have to invert the Y position
* of the glyphs to get them in the right place.
*
* Thus we have the following transforms:
* 1) Translation of the context up
* 2) Flipping the context around the Y axis
* 3) Flipping the context around the Y axis
* 4) Inverting the Y position of each glyph
*
* We cannot cancel out (2) and (3) as we have to apply the clips and transforms
* of DrawTargetSkia between (2) and (3).
*
* Consider the example letter P, drawn at (0, 20) in CG coordinates in a
* (100, 100) rect.
* Again, going right to left of the transforms. We'd get:
*
* 1) The letter P drawn at (0, -20) due to the inversion of the Y axis
* 2) The letter P upside down (b) at (0, 20) due to the second flip
* 3) The letter P right side up at (0, -20) due to the first flip
* 4) The letter P right side up at (0, 80) due to the translation
*
* tl;dr - CGRects assume origin is bottom left, DrawTarget rects assume top
* left.
*/
static bool SetupCGContext(DrawTargetSkia* aDT, CGContextRef aCGContext,
SkCanvas* aCanvas, const IntPoint& aOrigin,
const IntSize& aSize, bool aClipped) {
// DrawTarget expects the origin to be at the top left, but CG
// expects it to be at the bottom left. Transform to set the origin to
// the top left. Have to set this before we do anything else.
// This is transform (1) up top
CGContextTranslateCTM(aCGContext, -aOrigin.x, aOrigin.y + aSize.height);
// Transform (2) from the comments.
CGContextScaleCTM(aCGContext, 1, -1);
// Want to apply clips BEFORE the transform since the transform
// will apply to the clips we apply.
if (aClipped) {
SkRegion clipRegion;
aCanvas->temporary_internal_getRgnClip(&clipRegion);
Vector<CGRect, 8> rects;
for (SkRegion::Iterator it(clipRegion); !it.done(); it.next()) {
const SkIRect& rect = it.rect();
if (!rects.append(
CGRectMake(rect.x(), rect.y(), rect.width(), rect.height()))) {
break;
}
}
if (rects.length()) {
CGContextClipToRects(aCGContext, rects.begin(), rects.length());
}
}
CGContextConcatCTM(aCGContext,
GfxMatrixToCGAffineTransform(aDT->GetTransform()));
return true;
}
static bool SetupCGGlyphs(CGContextRef aCGContext, const GlyphBuffer& aBuffer,
Vector<CGGlyph, 32>& aGlyphs,
Vector<CGPoint, 32>& aPositions) {
// Flip again so we draw text in right side up. Transform (3) from the top
CGContextScaleCTM(aCGContext, 1, -1);
if (!aGlyphs.resizeUninitialized(aBuffer.mNumGlyphs) ||
!aPositions.resizeUninitialized(aBuffer.mNumGlyphs)) {
gfxDevCrash(LogReason::GlyphAllocFailedCG)
<< "glyphs/positions allocation failed";
return false;
}
for (unsigned int i = 0; i < aBuffer.mNumGlyphs; i++) {
aGlyphs[i] = aBuffer.mGlyphs[i].mIndex;
// Flip the y coordinates so that text ends up in the right spot after the
// (3) flip Inversion from (4) in the comments.
aPositions[i] = CGPointMake(aBuffer.mGlyphs[i].mPosition.x,
-aBuffer.mGlyphs[i].mPosition.y);
}
return true;
}
// End long comment about transforms. SetupCGContext and SetupCGGlyphs should
// stay next to each other.
// The context returned from this method will have the origin
// in the top left and will have applied all the neccessary clips
// and transforms to the CGContext. See the comment above
// SetupCGContext.
CGContextRef DrawTargetSkia::BorrowCGContext(const DrawOptions& aOptions) {
// Since we can't replay Skia clips, we have to use a layer if we have a
// complex clip. After saving a layer, the SkCanvas queries for needing a
// layer change so save if we pushed a layer.
mNeedLayer = !mCanvas->isClipEmpty() && !mCanvas->isClipRect();
if (mNeedLayer) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
SkCanvas::SaveLayerRec rec(nullptr, &paint,
SkCanvas::kInitWithPrevious_SaveLayerFlag);
mCanvas->saveLayer(rec);
}
uint8_t* data = nullptr;
int32_t stride;
SurfaceFormat format;
IntSize size;
IntPoint origin;
if (!LockBits(&data, &size, &stride, &format, &origin)) {
NS_WARNING("Could not lock skia bits to wrap CG around");
return nullptr;
}
if (!mNeedLayer && (data == mCanvasData) && mCG && (mCGSize == size)) {
// If our canvas data still points to the same data,
// we can reuse the CG Context
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, true);
return mCG;
}
if (!mColorSpace) {
mColorSpace = (format == SurfaceFormat::A8) ? CGColorSpaceCreateDeviceGray()
: CGColorSpaceCreateDeviceRGB();
}
if (mCG) {
// Release the old CG context since it's no longer valid.
CGContextRelease(mCG);
}
mCanvasData = data;
mCGSize = size;
uint32_t bitmapInfo =
(format == SurfaceFormat::A8)
? kCGImageAlphaOnly
: kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Host;
mCG = CGBitmapContextCreateWithData(
mCanvasData, mCGSize.width, mCGSize.height, 8, /* bits per component */
stride, mColorSpace, bitmapInfo, NULL, /* Callback when released */
NULL);
if (!mCG) {
if (mNeedLayer) {
mCanvas->restore();
}
ReleaseBits(mCanvasData);
NS_WARNING("Could not create bitmap around skia data\n");
return nullptr;
}
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSetShouldSmoothFonts(mCG, true);
CGContextSetTextDrawingMode(mCG, kCGTextFill);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, !mNeedLayer);
return mCG;
}
void DrawTargetSkia::ReturnCGContext(CGContextRef aCGContext) {
MOZ_ASSERT(aCGContext == mCG);
ReleaseBits(mCanvasData);
CGContextRestoreGState(aCGContext);
if (mNeedLayer) {
// A layer was used for clipping and is about to be popped by the restore.
// Make sure the CG context referencing it is released first so the popped
// layer doesn't accidentally get used.
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
mCanvas->restore();
}
}
CGContextRef BorrowedCGContext::BorrowCGContextFromDrawTarget(DrawTarget* aDT) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
return skiaDT->BorrowCGContext(DrawOptions());
}
void BorrowedCGContext::ReturnCGContextToDrawTarget(DrawTarget* aDT,
CGContextRef cg) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
skiaDT->ReturnCGContext(cg);
return;
}
static void SetFontColor(CGContextRef aCGContext, CGColorSpaceRef aColorSpace,
const Pattern& aPattern) {
const DeviceColor& color = static_cast<const ColorPattern&>(aPattern).mColor;
CGColorRef textColor = ColorToCGColor(aColorSpace, color);
CGContextSetFillColorWithColor(aCGContext, textColor);
CGColorRelease(textColor);
}
/***
* We need this to support subpixel AA text on OS X in two cases:
* text in DrawTargets that are not opaque and text over vibrant backgrounds.
* Skia normally doesn't support subpixel AA text on transparent backgrounds.
* To get around this, we have to wrap the Skia bytes with a CGContext and ask
* CG to draw the text.
* In vibrancy cases, we have to use a private API,
* CGContextSetFontSmoothingBackgroundColor, which sets the expected
* background color the text will draw onto so that CG can render the text
* properly. After that, we have to go back and fixup the pixels
* such that their alpha values are correct.
*/
bool DrawTargetSkia::FillGlyphsWithCG(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
MOZ_ASSERT(aFont->GetType() == FontType::MAC);
MOZ_ASSERT(aPattern.GetType() == PatternType::COLOR);
CGContextRef cgContext = BorrowCGContext(aOptions);
if (!cgContext) {
return false;
}
Vector<CGGlyph, 32> glyphs;
Vector<CGPoint, 32> positions;
if (!SetupCGGlyphs(cgContext, aBuffer, glyphs, positions)) {
ReturnCGContext(cgContext);
return false;
}
ScaledFontMac* macFont = static_cast<ScaledFontMac*>(aFont);
SetFontSmoothingBackgroundColor(cgContext, mColorSpace,
macFont->FontSmoothingBackgroundColor());
SetFontColor(cgContext, mColorSpace, aPattern);
if (ScaledFontMac::CTFontDrawGlyphsPtr != nullptr) {
ScaledFontMac::CTFontDrawGlyphsPtr(macFont->mCTFont, glyphs.begin(),
positions.begin(), aBuffer.mNumGlyphs,
cgContext);
} else {
CGContextSetFont(cgContext, macFont->mFont);
CGContextSetFontSize(cgContext, macFont->mSize);
CGContextShowGlyphsAtPositions(cgContext, glyphs.begin(), positions.begin(),
aBuffer.mNumGlyphs);
}
// Calculate the area of the text we just drew
auto* bboxes = new CGRect[aBuffer.mNumGlyphs];
CTFontGetBoundingRectsForGlyphs(macFont->mCTFont, kCTFontDefaultOrientation,
glyphs.begin(), bboxes, aBuffer.mNumGlyphs);
CGRect extents =
ComputeGlyphsExtents(bboxes, positions.begin(), aBuffer.mNumGlyphs, 1.0f);
delete[] bboxes;
CGAffineTransform cgTransform = CGContextGetCTM(cgContext);
extents = CGRectApplyAffineTransform(extents, cgTransform);
// Have to round it out to ensure we fully cover all pixels
Rect rect(extents.origin.x, extents.origin.y, extents.size.width,
extents.size.height);
rect.RoundOut();
extents = CGRectMake(rect.x, rect.y, rect.width, rect.height);
EnsureValidPremultipliedData(cgContext, extents);
ReturnCGContext(cgContext);
return true;
}
static bool HasFontSmoothingBackgroundColor(ScaledFont* aFont) {
// This should generally only be true if we have a popup context menu
if (aFont && aFont->GetType() == FontType::MAC) {
DeviceColor fontSmoothingBackgroundColor =
static_cast<ScaledFontMac*>(aFont)->FontSmoothingBackgroundColor();
return fontSmoothingBackgroundColor.a > 0;
}
return false;
}
static bool ShouldUseCGToFillGlyphs(ScaledFont* aFont,
const Pattern& aPattern) {
return HasFontSmoothingBackgroundColor(aFont) &&
aPattern.GetType() == PatternType::COLOR;
}
#endif
static bool CanDrawFont(ScaledFont* aFont) {
switch (aFont->GetType()) {
case FontType::FREETYPE:
case FontType::FONTCONFIG:
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
return true;
default:
return false;
}
}
void DrawTargetSkia::DrawGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions* aStrokeOptions,
const DrawOptions& aOptions) {
if (!CanDrawFont(aFont)) {
return;
}
MarkChanged();
#ifdef MOZ_WIDGET_COCOA
if (!aStrokeOptions && ShouldUseCGToFillGlyphs(aFont, aPattern)) {
if (FillGlyphsWithCG(aFont, aBuffer, aPattern, aOptions)) {
return;
}
}
#endif
ScaledFontBase* skiaFont = static_cast<ScaledFontBase*>(aFont);
SkTypeface* typeface = skiaFont->GetSkTypeface();
if (!typeface) {
return;
}
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (aStrokeOptions && !StrokeOptionsToPaint(paint.mPaint, *aStrokeOptions)) {
return;
}
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
bool aaEnabled = aaMode != AntialiasMode::NONE;
paint.mPaint.setAntiAlias(aaEnabled);
SkFont font(sk_ref_sp(typeface), SkFloatToScalar(skiaFont->mSize));
bool useSubpixelAA =
GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT || aaMode == AntialiasMode::SUBPIXEL);
font.setEdging(useSubpixelAA ? SkFont::Edging::kSubpixelAntiAlias
: (aaEnabled ? SkFont::Edging::kAntiAlias
: SkFont::Edging::kAlias));
skiaFont->SetupSkFontDrawOptions(font);
// Limit the amount of internal batch allocations Skia does.
const uint32_t kMaxGlyphBatchSize = 8192;
for (uint32_t offset = 0; offset < aBuffer.mNumGlyphs;) {
uint32_t batchSize =
std::min(aBuffer.mNumGlyphs - offset, kMaxGlyphBatchSize);
SkTextBlobBuilder builder;
auto runBuffer = builder.allocRunPos(font, batchSize);
for (uint32_t i = 0; i < batchSize; i++, offset++) {
runBuffer.glyphs[i] = aBuffer.mGlyphs[offset].mIndex;
runBuffer.points()[i] = PointToSkPoint(aBuffer.mGlyphs[offset].mPosition);
}
sk_sp<SkTextBlob> text = builder.make();
mCanvas->drawTextBlob(text, 0, 0, paint.mPaint);
}
}
void DrawTargetSkia::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, nullptr, aOptions);
}
void DrawTargetSkia::StrokeGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, &aStrokeOptions, aOptions);
}
void DrawTargetSkia::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
SkIRect maskBounds;
if (!mCanvas->getDeviceClipBounds(&maskBounds)) {
return;
}
SkPoint maskOrigin;
maskOrigin.iset(maskBounds.fLeft, maskBounds.fTop);
SkMatrix maskMatrix = mCanvas->getTotalMatrix();
maskMatrix.postTranslate(-maskOrigin.fX, -maskOrigin.fY);
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aSource, nullptr, &maskMatrix);
SkPaint maskPaint;
SetPaintPattern(maskPaint, aMask);
SkBitmap maskBitmap;
if (!maskBitmap.tryAllocPixelsFlags(
SkImageInfo::MakeA8(maskBounds.width(), maskBounds.height()),
SkBitmap::kZeroPixels_AllocFlag)) {
return;
}
SkCanvas maskCanvas(maskBitmap);
maskCanvas.setMatrix(maskMatrix);
maskCanvas.drawPaint(maskPaint);
mCanvas->save();
mCanvas->resetMatrix();
mCanvas->drawBitmap(maskBitmap, maskOrigin.fX, maskOrigin.fY, &paint.mPaint);
mCanvas->restore();
}
void DrawTargetSkia::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
MarkChanged();
SkMatrix invOffset = SkMatrix::MakeTrans(SkFloatToScalar(-aOffset.x),
SkFloatToScalar(-aOffset.y));
AutoPaintSetup paint(mCanvas, aOptions, aSource, nullptr, &invOffset);
sk_sp<SkImage> alphaMask = ExtractAlphaForSurface(aMask);
if (!alphaMask) {
gfxDebug() << *this << ": MaskSurface() failed to extract alpha for mask";
return;
}
mCanvas->drawImage(alphaMask, aOffset.x + aMask->GetRect().x,
aOffset.y + aMask->GetRect().y, &paint.mPaint);
}
bool DrawTarget::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
// Composite the 3D transform with the DT's transform.
Matrix4x4 fullMat = aMatrix * Matrix4x4::From2D(mTransform);
if (fullMat.IsSingular()) {
return false;
}
// Transform the surface bounds and clip to this DT.
IntRect xformBounds = RoundedOut(fullMat.TransformAndClipBounds(
Rect(Point(0, 0), Size(aSurface->GetSize())),
Rect(Point(0, 0), Size(GetSize()))));
if (xformBounds.IsEmpty()) {
return true;
}
// Offset the matrix by the transformed origin.
fullMat.PostTranslate(-xformBounds.X(), -xformBounds.Y(), 0);
// Read in the source data.
sk_sp<SkImage> srcImage = GetSkImageForSurface(aSurface);
if (!srcImage) {
return true;
}
// Set up an intermediate destination surface only the size of the transformed
// bounds. Try to pass through the source's format unmodified in both the BGRA
// and ARGB cases.
RefPtr<DataSourceSurface> dstSurf = Factory::CreateDataSourceSurface(
xformBounds.Size(),
!srcImage->isOpaque() ? aSurface->GetFormat()
: SurfaceFormat::A8R8G8B8_UINT32,
true);
if (!dstSurf) {
return false;
}
DataSourceSurface::ScopedMap map(dstSurf, DataSourceSurface::READ_WRITE);
std::unique_ptr<SkCanvas> dstCanvas(SkCanvas::MakeRasterDirect(
SkImageInfo::Make(xformBounds.Width(), xformBounds.Height(),
GfxFormatToSkiaColorType(dstSurf->GetFormat()),
kPremul_SkAlphaType),
map.GetData(), map.GetStride()));
if (!dstCanvas) {
return false;
}
// Do the transform.
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
paint.setBlendMode(SkBlendMode::kSrc);
SkMatrix xform;
GfxMatrixToSkiaMatrix(fullMat, xform);
dstCanvas->setMatrix(xform);
dstCanvas->drawImage(srcImage, 0, 0, &paint);
dstCanvas->flush();
// Temporarily reset the DT's transform, since it has already been composed
// above.
Matrix origTransform = mTransform;
SetTransform(Matrix());
// Draw the transformed surface within the transformed bounds.
DrawSurface(dstSurf, Rect(xformBounds),
Rect(Point(0, 0), Size(xformBounds.Size())));
SetTransform(origTransform);
return true;
}
bool DrawTargetSkia::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
if (aMatrix.IsSingular()) {
return false;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return true;
}
mCanvas->save();
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
SkMatrix xform;
GfxMatrixToSkiaMatrix(aMatrix, xform);
mCanvas->concat(xform);
mCanvas->drawImage(image, 0, 0, &paint);
mCanvas->restore();
return true;
}
already_AddRefed<SourceSurface> DrawTargetSkia::CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const {
RefPtr<SourceSurfaceSkia> newSurf = new SourceSurfaceSkia();
if (!newSurf->InitFromData(aData, aSize, aStride, aFormat)) {
gfxDebug() << *this
<< ": Failure to create source surface from data. Size: "
<< aSize;
return nullptr;
}
return newSurf.forget();
}
already_AddRefed<DrawTarget> DrawTargetSkia::CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
RefPtr<DrawTargetSkia> target = new DrawTargetSkia();
#ifdef DEBUG
if (!IsBackedByPixels(mCanvas)) {
// If our canvas is backed by vector storage such as PDF then we want to
// create a new DrawTarget with similar storage to avoid losing fidelity
// (fidelity will be lost if the returned DT is Snapshot()'ed and drawn
// back onto us since a raster will be drawn instead of vector commands).
NS_WARNING("Not backed by pixels - we need to handle PDF backed SkCanvas");
}
#endif
if (!target->Init(aSize, aFormat)) {
return nullptr;
}
return target.forget();
}
bool DrawTargetSkia::CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
auto minmaxPair = std::minmax(aSize.width, aSize.height);
return minmaxPair.first >= 0 &&
size_t(minmaxPair.second) < GetMaxSurfaceSize();
}
RefPtr<DrawTarget> DrawTargetSkia::CreateClippedDrawTarget(
const Rect& aBounds, SurfaceFormat aFormat) {
SkIRect clipBounds;
RefPtr<DrawTarget> result;
// Doing this save()/restore() dance is wasteful
mCanvas->save();
if (!aBounds.IsEmpty()) {
mCanvas->clipRect(RectToSkRect(aBounds), SkClipOp::kIntersect, true);
}
if (mCanvas->getDeviceClipBounds(&clipBounds)) {
RefPtr<DrawTarget> dt = CreateSimilarDrawTarget(
IntSize(clipBounds.width(), clipBounds.height()), aFormat);
result = gfx::Factory::CreateOffsetDrawTarget(
dt, IntPoint(clipBounds.x(), clipBounds.y()));
result->SetTransform(mTransform);
} else {
// Everything is clipped but we still want some kind of surface
result = CreateSimilarDrawTarget(IntSize(1, 1), aFormat);
}
mCanvas->restore();
return result;
}
already_AddRefed<SourceSurface>
DrawTargetSkia::OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
DataSourceSurface::ScopedMap map(dataSurface, DataSourceSurface::READ_WRITE);
// For plugins, GDI can sometimes just write 0 to the alpha channel
// even for RGBX formats. In this case, we have to manually write
// the alpha channel to make Skia happy with RGBX and in case GDI
// writes some bad data. Luckily, this only happens on plugins.
WriteRGBXFormat(map.GetData(), dataSurface->GetSize(), map.GetStride(),
dataSurface->GetFormat());
return dataSurface.forget();
}
already_AddRefed<SourceSurface> DrawTargetSkia::OptimizeSourceSurface(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// If we're not using skia-gl then drawing doesn't require any
// uploading, so any data surface is fine. Call GetDataSurface
// to trigger any required readback so that it only happens
// once.
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
#ifdef DEBUG
DataSourceSurface::ScopedMap map(dataSurface, DataSourceSurface::READ);
MOZ_ASSERT(VerifyRGBXFormat(map.GetData(), dataSurface->GetSize(),
map.GetStride(), dataSurface->GetFormat()));
#endif
return dataSurface.forget();
}
already_AddRefed<SourceSurface>
DrawTargetSkia::CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const {
return nullptr;
}
void DrawTargetSkia::CopySurface(SourceSurface* aSurface,
const IntRect& aSourceRect,
const IntPoint& aDestination) {
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
mCanvas->save();
mCanvas->setMatrix(SkMatrix::MakeTrans(SkIntToScalar(aDestination.x),
SkIntToScalar(aDestination.y)));
mCanvas->clipRect(SkRect::MakeIWH(aSourceRect.Width(), aSourceRect.Height()),
SkClipOp::kReplace_deprecated);
SkPaint paint;
if (!image->isOpaque()) {
// Keep the xfermode as SOURCE_OVER for opaque bitmaps
// http://code.google.com/p/skia/issues/detail?id=628
paint.setBlendMode(SkBlendMode::kSrc);
}
// drawImage with A8 images ends up doing a mask operation
// so we need to clear before
if (image->isAlphaOnly()) {
mCanvas->clear(SK_ColorTRANSPARENT);
}
mCanvas->drawImage(image, -SkIntToScalar(aSourceRect.X()),
-SkIntToScalar(aSourceRect.Y()), &paint);
mCanvas->restore();
}
static inline SkPixelGeometry GetSkPixelGeometry() {
return Factory::GetBGRSubpixelOrder() ? kBGR_H_SkPixelGeometry
: kRGB_H_SkPixelGeometry;
}
bool DrawTargetSkia::Init(const IntSize& aSize, SurfaceFormat aFormat) {
if (size_t(std::max(aSize.width, aSize.height)) > GetMaxSurfaceSize()) {
return false;
}
// we need to have surfaces that have a stride aligned to 4 for interop with
// cairo
SkImageInfo info = MakeSkiaImageInfo(aSize, aFormat);
size_t stride = SkAlign4(info.minRowBytes());
SkSurfaceProps props(0, GetSkPixelGeometry());
mSurface = SkSurface::MakeRaster(info, stride, &props);
if (!mSurface) {
return false;
}
mSize = aSize;
mFormat = aFormat;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(mFormat));
if (info.isOpaque()) {
mCanvas->clear(SK_ColorBLACK);
}
return true;
}
bool DrawTargetSkia::Init(SkCanvas* aCanvas) {
mCanvas = aCanvas;
SkImageInfo imageInfo = mCanvas->imageInfo();
// If the canvas is backed by pixels we clear it to be on the safe side. If
// it's not (for example, for PDF output) we don't.
if (IsBackedByPixels(mCanvas)) {
SkColor clearColor =
imageInfo.isOpaque() ? SK_ColorBLACK : SK_ColorTRANSPARENT;
mCanvas->clear(clearColor);
}
SkISize size = mCanvas->getBaseLayerSize();
mSize.width = size.width();
mSize.height = size.height();
mFormat =
SkiaColorTypeToGfxFormat(imageInfo.colorType(), imageInfo.alphaType());
SetPermitSubpixelAA(IsOpaque(mFormat));
return true;
}
bool DrawTargetSkia::Init(unsigned char* aData, const IntSize& aSize,
int32_t aStride, SurfaceFormat aFormat,
bool aUninitialized) {
MOZ_ASSERT((aFormat != SurfaceFormat::B8G8R8X8) || aUninitialized ||
VerifyRGBXFormat(aData, aSize, aStride, aFormat));
SkSurfaceProps props(0, GetSkPixelGeometry());
mSurface = SkSurface::MakeRasterDirect(MakeSkiaImageInfo(aSize, aFormat),
aData, aStride, &props);
if (!mSurface) {
return false;
}
mSize = aSize;
mFormat = aFormat;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(mFormat));
return true;
}
bool DrawTargetSkia::Init(RefPtr<DataSourceSurface>&& aSurface) {
auto map =
new DataSourceSurface::ScopedMap(aSurface, DataSourceSurface::READ_WRITE);
if (!map->IsMapped()) {
delete map;
return false;
}
SurfaceFormat format = aSurface->GetFormat();
IntSize size = aSurface->GetSize();
MOZ_ASSERT((format != SurfaceFormat::B8G8R8X8) ||
VerifyRGBXFormat(map->GetData(), size, map->GetStride(), format));
SkSurfaceProps props(0, GetSkPixelGeometry());
mSurface = SkSurface::MakeRasterDirectReleaseProc(
MakeSkiaImageInfo(size, format), map->GetData(), map->GetStride(),
DrawTargetSkia::ReleaseMappedSkSurface, map, &props);
if (!mSurface) {
delete map;
return false;
}
// map is now owned by mSurface
mBackingSurface = std::move(aSurface);
mSize = size;
mFormat = format;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(format));
return true;
}
/* static */ void DrawTargetSkia::ReleaseMappedSkSurface(void* aPixels,
void* aContext) {
auto map = reinterpret_cast<DataSourceSurface::ScopedMap*>(aContext);
delete map;
}
void DrawTargetSkia::SetTransform(const Matrix& aTransform) {
SkMatrix mat;
GfxMatrixToSkiaMatrix(aTransform, mat);
mCanvas->setMatrix(mat);
mTransform = aTransform;
}
void* DrawTargetSkia::GetNativeSurface(NativeSurfaceType aType) {
return nullptr;
}
already_AddRefed<PathBuilder> DrawTargetSkia::CreatePathBuilder(
FillRule aFillRule) const {
return MakeAndAddRef<PathBuilderSkia>(aFillRule);
}
void DrawTargetSkia::ClearRect(const Rect& aRect) {
MarkChanged();
mCanvas->save();
mCanvas->clipRect(RectToSkRect(aRect), SkClipOp::kIntersect, true);
SkColor clearColor = (mFormat == SurfaceFormat::B8G8R8X8)
? SK_ColorBLACK
: SK_ColorTRANSPARENT;
mCanvas->clear(clearColor);
mCanvas->restore();
}
void DrawTargetSkia::PushClip(const Path* aPath) {
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
mCanvas->save();
mCanvas->clipPath(skiaPath->GetPath(), SkClipOp::kIntersect, true);
}
void DrawTargetSkia::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
// Build a region by unioning all the rects together.
SkRegion region;
for (uint32_t i = 0; i < aCount; i++) {
region.op(IntRectToSkIRect(aRects[i]), SkRegion::kUnion_Op);
}
// Clip with the resulting region. clipRegion does not transform
// this region by the current transform, unlike the other SkCanvas
// clip methods, so it is just passed through in device-space.
mCanvas->save();
mCanvas->clipRegion(region, SkClipOp::kIntersect);
}
void DrawTargetSkia::PushClipRect(const Rect& aRect) {
SkRect rect = RectToSkRect(aRect);
mCanvas->save();
mCanvas->clipRect(rect, SkClipOp::kIntersect, true);
}
void DrawTargetSkia::PopClip() {
mCanvas->restore();
SetTransform(GetTransform());
}
void DrawTargetSkia::PushLayer(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds, bool aCopyBackground) {
PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, CompositionOp::OP_OVER);
}
void DrawTargetSkia::PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds,
bool aCopyBackground,
CompositionOp aCompositionOp) {
PushedLayer layer(GetPermitSubpixelAA(), aMask);
mPushedLayers.push_back(layer);
SkPaint paint;
paint.setAlpha(ColorFloatToByte(aOpacity));
paint.setBlendMode(GfxOpToSkiaOp(aCompositionOp));
// aBounds is supplied in device space, but SaveLayerRec wants local space.
SkRect bounds = IntRectToSkRect(aBounds);
if (!bounds.isEmpty()) {
SkMatrix inverseCTM;
if (mCanvas->getTotalMatrix().invert(&inverseCTM)) {
inverseCTM.mapRect(&bounds);
} else {
bounds.setEmpty();
}
}
sk_sp<SkImage> clipImage = aMask ? GetSkImageForSurface(aMask) : nullptr;
SkMatrix clipMatrix;
GfxMatrixToSkiaMatrix(aMaskTransform, clipMatrix);
if (aMask) {
clipMatrix.preTranslate(aMask->GetRect().X(), aMask->GetRect().Y());
}
SkCanvas::SaveLayerRec saveRec(
aBounds.IsEmpty() ? nullptr : &bounds, &paint, nullptr, clipImage.get(),
&clipMatrix,
SkCanvas::kPreserveLCDText_SaveLayerFlag |
(aCopyBackground ? SkCanvas::kInitWithPrevious_SaveLayerFlag : 0));
mCanvas->saveLayer(saveRec);
SetPermitSubpixelAA(aOpaque);
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
void DrawTargetSkia::PopLayer() {
MarkChanged();
MOZ_ASSERT(mPushedLayers.size());
const PushedLayer& layer = mPushedLayers.back();
mCanvas->restore();
SetTransform(GetTransform());
SetPermitSubpixelAA(layer.mOldPermitSubpixelAA);
mPushedLayers.pop_back();
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
already_AddRefed<GradientStops> DrawTargetSkia::CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops, ExtendMode aExtendMode) const {
std::vector<GradientStop> stops;
stops.resize(aNumStops);
for (uint32_t i = 0; i < aNumStops; i++) {
stops[i] = aStops[i];
}
std::stable_sort(stops.begin(), stops.end());
return MakeAndAddRef<GradientStopsSkia>(stops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode> DrawTargetSkia::CreateFilter(FilterType aType) {
return FilterNodeSoftware::Create(aType);
}
void DrawTargetSkia::MarkChanged() {
// I'm not entirely certain whether this lock is needed, as multiple threads
// should never modify the DrawTarget at the same time anyway, but this seems
// like the safest.
MutexAutoLock lock(mSnapshotLock);
if (mSnapshot) {
if (mSnapshot->hasOneRef()) {
// No owners outside of this DrawTarget's own reference. Just dump it.
mSnapshot = nullptr;
return;
}
mSnapshot->DrawTargetWillChange();
mSnapshot = nullptr;
// Handle copying of any image snapshots bound to the surface.
if (mSurface) {
mSurface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode);
}
}
}
} // namespace mozilla::gfx