gecko-dev/xpcom/threads/SchedulerGroup.cpp
Ryan Hunt f4a515c179 Bug 1523969 part 27 - Move method definition inline comments to new line in 'xpcom/'. r=froydnj
Differential Revision: https://phabricator.services.mozilla.com/D21131

--HG--
extra : rebase_source : 514f36238d908de221a0116f8e8a5d0cf18a168c
extra : histedit_source : 85743d2586a7307738866ce145b93dae2a664cf3
2019-02-25 16:14:01 -06:00

314 lines
9.9 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/SchedulerGroup.h"
#include "jsfriendapi.h"
#include "mozilla/AbstractThread.h"
#include "mozilla/Atomics.h"
#include "mozilla/Move.h"
#include "mozilla/Unused.h"
#include "mozilla/dom/DocGroup.h"
#include "nsINamed.h"
#include "nsQueryObject.h"
#include "mozilla/dom/ScriptSettings.h"
#include "nsThreadUtils.h"
#include "mozilla/Telemetry.h"
using namespace mozilla;
/* SchedulerEventTarget */
namespace {
#define NS_DISPATCHEREVENTTARGET_IID \
{ \
0xbf4e36c8, 0x7d04, 0x4ef4, { \
0xbb, 0xd8, 0x11, 0x09, 0x0a, 0xdb, 0x4d, 0xf7 \
} \
}
class SchedulerEventTarget final : public nsISerialEventTarget {
RefPtr<SchedulerGroup> mDispatcher;
TaskCategory mCategory;
public:
NS_DECLARE_STATIC_IID_ACCESSOR(NS_DISPATCHEREVENTTARGET_IID)
SchedulerEventTarget(SchedulerGroup* aDispatcher, TaskCategory aCategory)
: mDispatcher(aDispatcher), mCategory(aCategory) {}
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIEVENTTARGET_FULL
SchedulerGroup* Dispatcher() const { return mDispatcher; }
private:
~SchedulerEventTarget() {}
};
NS_DEFINE_STATIC_IID_ACCESSOR(SchedulerEventTarget,
NS_DISPATCHEREVENTTARGET_IID)
static Atomic<uint64_t> gEarliestUnprocessedVsync(0);
} // namespace
NS_IMPL_ISUPPORTS(SchedulerEventTarget, SchedulerEventTarget, nsIEventTarget,
nsISerialEventTarget)
NS_IMETHODIMP
SchedulerEventTarget::DispatchFromScript(nsIRunnable* aRunnable,
uint32_t aFlags) {
return Dispatch(do_AddRef(aRunnable), aFlags);
}
NS_IMETHODIMP
SchedulerEventTarget::Dispatch(already_AddRefed<nsIRunnable> aRunnable,
uint32_t aFlags) {
if (NS_WARN_IF(aFlags != NS_DISPATCH_NORMAL)) {
return NS_ERROR_UNEXPECTED;
}
return mDispatcher->Dispatch(mCategory, std::move(aRunnable));
}
NS_IMETHODIMP
SchedulerEventTarget::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
SchedulerEventTarget::IsOnCurrentThread(bool* aIsOnCurrentThread) {
*aIsOnCurrentThread = NS_IsMainThread();
return NS_OK;
}
NS_IMETHODIMP_(bool)
SchedulerEventTarget::IsOnCurrentThreadInfallible() {
return NS_IsMainThread();
}
/* static */
nsresult SchedulerGroup::UnlabeledDispatch(
TaskCategory aCategory, already_AddRefed<nsIRunnable>&& aRunnable) {
if (NS_IsMainThread()) {
return NS_DispatchToCurrentThread(std::move(aRunnable));
} else {
return NS_DispatchToMainThread(std::move(aRunnable));
}
}
/* static */
void SchedulerGroup::MarkVsyncReceived() {
if (gEarliestUnprocessedVsync) {
// If we've seen a vsync already, but haven't handled it, keep the
// older one.
return;
}
MOZ_ASSERT(!NS_IsMainThread());
bool inconsistent = false;
TimeStamp creation = TimeStamp::ProcessCreation(&inconsistent);
if (inconsistent) {
return;
}
gEarliestUnprocessedVsync = (TimeStamp::Now() - creation).ToMicroseconds();
}
/* static */
void SchedulerGroup::MarkVsyncRan() { gEarliestUnprocessedVsync = 0; }
MOZ_THREAD_LOCAL(bool) SchedulerGroup::sTlsValidatingAccess;
SchedulerGroup::SchedulerGroup() : mIsRunning(false) {
if (NS_IsMainThread()) {
sTlsValidatingAccess.infallibleInit();
}
}
nsresult SchedulerGroup::DispatchWithDocGroup(
TaskCategory aCategory, already_AddRefed<nsIRunnable>&& aRunnable,
dom::DocGroup* aDocGroup) {
return LabeledDispatch(aCategory, std::move(aRunnable), aDocGroup);
}
nsresult SchedulerGroup::Dispatch(TaskCategory aCategory,
already_AddRefed<nsIRunnable>&& aRunnable) {
return LabeledDispatch(aCategory, std::move(aRunnable), nullptr);
}
nsISerialEventTarget* SchedulerGroup::EventTargetFor(
TaskCategory aCategory) const {
MOZ_ASSERT(aCategory != TaskCategory::Count);
MOZ_ASSERT(mEventTargets[size_t(aCategory)]);
return mEventTargets[size_t(aCategory)];
}
AbstractThread* SchedulerGroup::AbstractMainThreadFor(TaskCategory aCategory) {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
return AbstractMainThreadForImpl(aCategory);
}
AbstractThread* SchedulerGroup::AbstractMainThreadForImpl(
TaskCategory aCategory) {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aCategory != TaskCategory::Count);
MOZ_ASSERT(mEventTargets[size_t(aCategory)]);
if (!mAbstractThreads[size_t(aCategory)]) {
mAbstractThreads[size_t(aCategory)] =
AbstractThread::CreateEventTargetWrapper(
mEventTargets[size_t(aCategory)],
/* aDrainDirectTasks = */ true);
}
return mAbstractThreads[size_t(aCategory)];
}
void SchedulerGroup::CreateEventTargets(bool aNeedValidation) {
for (size_t i = 0; i < size_t(TaskCategory::Count); i++) {
TaskCategory category = static_cast<TaskCategory>(i);
if (!aNeedValidation) {
// The chrome TabGroup dispatches directly to the main thread. This means
// that we don't have to worry about cyclical references when cleaning up
// the chrome TabGroup.
mEventTargets[i] = GetMainThreadSerialEventTarget();
} else {
mEventTargets[i] = CreateEventTargetFor(category);
}
}
}
void SchedulerGroup::Shutdown(bool aXPCOMShutdown) {
// There is a RefPtr cycle TabGroup -> SchedulerEventTarget -> TabGroup. To
// avoid leaks, we need to break the chain somewhere. We shouldn't be using
// the ThrottledEventQueue for this TabGroup when no windows belong to it,
// so it's safe to null out the queue here.
for (size_t i = 0; i < size_t(TaskCategory::Count); i++) {
mEventTargets[i] =
aXPCOMShutdown ? nullptr : GetMainThreadSerialEventTarget();
mAbstractThreads[i] = nullptr;
}
}
already_AddRefed<nsISerialEventTarget> SchedulerGroup::CreateEventTargetFor(
TaskCategory aCategory) {
RefPtr<SchedulerEventTarget> target =
new SchedulerEventTarget(this, aCategory);
return target.forget();
}
/* static */
SchedulerGroup* SchedulerGroup::FromEventTarget(nsIEventTarget* aEventTarget) {
RefPtr<SchedulerEventTarget> target = do_QueryObject(aEventTarget);
if (!target) {
return nullptr;
}
return target->Dispatcher();
}
nsresult SchedulerGroup::LabeledDispatch(
TaskCategory aCategory, already_AddRefed<nsIRunnable>&& aRunnable,
dom::DocGroup* aDocGroup) {
nsCOMPtr<nsIRunnable> runnable(aRunnable);
if (XRE_IsContentProcess()) {
RefPtr<Runnable> internalRunnable =
new Runnable(runnable.forget(), this, aDocGroup);
return InternalUnlabeledDispatch(aCategory, internalRunnable.forget());
}
return UnlabeledDispatch(aCategory, runnable.forget());
}
/*static*/
nsresult SchedulerGroup::InternalUnlabeledDispatch(
TaskCategory aCategory, already_AddRefed<Runnable>&& aRunnable) {
if (NS_IsMainThread()) {
// NS_DispatchToCurrentThread will not leak the passed in runnable
// when it fails, so we don't need to do anything special.
return NS_DispatchToCurrentThread(std::move(aRunnable));
}
RefPtr<Runnable> runnable(aRunnable);
nsresult rv = NS_DispatchToMainThread(do_AddRef(runnable));
if (NS_FAILED(rv)) {
// Dispatch failed. This is a situation where we would have used
// NS_DispatchToMainThread rather than calling into the SchedulerGroup
// machinery, and the caller would be expecting to leak the nsIRunnable
// originally passed in. But because we've had to wrap things up
// internally, we were going to leak the nsIRunnable *and* our Runnable
// wrapper. But there's no reason that we have to leak our Runnable
// wrapper; we can just leak the wrapped nsIRunnable, and let the caller
// take care of unleaking it if they need to.
Unused << runnable->mRunnable.forget().take();
nsrefcnt refcnt = runnable.get()->Release();
MOZ_RELEASE_ASSERT(refcnt == 1, "still holding an unexpected reference!");
}
return rv;
}
/* static */
void SchedulerGroup::SetValidatingAccess(ValidationType aType) {
bool validating = aType == StartValidation;
sTlsValidatingAccess.set(validating);
dom::AutoJSAPI jsapi;
jsapi.Init();
js::EnableAccessValidation(jsapi.cx(), validating);
}
SchedulerGroup::Runnable::Runnable(already_AddRefed<nsIRunnable>&& aRunnable,
SchedulerGroup* aGroup,
dom::DocGroup* aDocGroup)
: mozilla::Runnable("SchedulerGroup::Runnable"),
mRunnable(std::move(aRunnable)),
mGroup(aGroup),
mDocGroup(aDocGroup) {}
dom::DocGroup* SchedulerGroup::Runnable::DocGroup() const { return mDocGroup; }
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
SchedulerGroup::Runnable::GetName(nsACString& aName) {
// Try to get a name from the underlying runnable.
nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable);
if (named) {
named->GetName(aName);
}
if (aName.IsEmpty()) {
aName.AssignLiteral("anonymous");
}
return NS_OK;
}
#endif
NS_IMETHODIMP
SchedulerGroup::Runnable::Run() {
MOZ_RELEASE_ASSERT(NS_IsMainThread());
nsresult result = mRunnable->Run();
// The runnable's destructor can have side effects, so try to execute it in
// the scope of the TabGroup.
mRunnable = nullptr;
mGroup->SetValidatingAccess(EndValidation);
return result;
}
NS_IMETHODIMP
SchedulerGroup::Runnable::GetPriority(uint32_t* aPriority) {
*aPriority = nsIRunnablePriority::PRIORITY_NORMAL;
nsCOMPtr<nsIRunnablePriority> runnablePrio = do_QueryInterface(mRunnable);
return runnablePrio ? runnablePrio->GetPriority(aPriority) : NS_OK;
}
NS_IMPL_ISUPPORTS_INHERITED(SchedulerGroup::Runnable, mozilla::Runnable,
nsIRunnablePriority, SchedulerGroup::Runnable)