gecko-dev/image/AnimationSurfaceProvider.cpp
Andrew Osmond 5f0abb12dc Bug 1444537 - Part 3. Fix how redecode errors could cause animated image state inconsistencies. r=tnikkel
We can discard frames from an animated image if the memory footprint
exceeds the threshold. This will cause us to redecode frames on demand
instead. However decoders can fail to produce the same results on
subsequent runs due to differences in memory pressure, etc. If this
happens our state can get inconsistent. In particular, if we keep
failing on the first frame, we end up in an infinite loop on the decoder
thread.

Since we don't have the owning image to signal, as we had to release our
reference to it after the first pass, we can do little but stop decoding.
From the user's perspective, the animation will come to a stop.
2018-04-24 13:51:35 -04:00

418 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AnimationSurfaceProvider.h"
#include "gfxPrefs.h"
#include "nsProxyRelease.h"
#include "DecodePool.h"
#include "Decoder.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
AnimationSurfaceProvider::AnimationSurfaceProvider(NotNull<RasterImage*> aImage,
const SurfaceKey& aSurfaceKey,
NotNull<Decoder*> aDecoder,
size_t aCurrentFrame)
: ISurfaceProvider(ImageKey(aImage.get()), aSurfaceKey,
AvailabilityState::StartAsPlaceholder())
, mImage(aImage.get())
, mDecodingMutex("AnimationSurfaceProvider::mDecoder")
, mDecoder(aDecoder.get())
, mFramesMutex("AnimationSurfaceProvider::mFrames")
{
MOZ_ASSERT(!mDecoder->IsMetadataDecode(),
"Use MetadataDecodingTask for metadata decodes");
MOZ_ASSERT(!mDecoder->IsFirstFrameDecode(),
"Use DecodedSurfaceProvider for single-frame image decodes");
// We still produce paletted surfaces for GIF which means the frames are
// smaller than one would expect for APNG. This may be removed if/when
// bug 1337111 lands and it is enabled by default.
size_t pixelSize = aDecoder->GetType() == DecoderType::GIF
? sizeof(uint8_t) : sizeof(uint32_t);
// Calculate how many frames we need to decode in this animation before we
// enter decode-on-demand mode.
IntSize frameSize = aSurfaceKey.Size();
size_t threshold =
(size_t(gfxPrefs::ImageAnimatedDecodeOnDemandThresholdKB()) * 1024) /
(pixelSize * frameSize.width * frameSize.height);
size_t batch = gfxPrefs::ImageAnimatedDecodeOnDemandBatchSize();
mFrames.Initialize(threshold, batch, aCurrentFrame);
}
AnimationSurfaceProvider::~AnimationSurfaceProvider()
{
DropImageReference();
}
void
AnimationSurfaceProvider::DropImageReference()
{
if (!mImage) {
return; // Nothing to do.
}
// RasterImage objects need to be destroyed on the main thread.
NS_ReleaseOnMainThreadSystemGroup("AnimationSurfaceProvider::mImage",
mImage.forget());
}
void
AnimationSurfaceProvider::Reset()
{
// We want to go back to the beginning.
bool mayDiscard;
bool restartDecoder;
{
MutexAutoLock lock(mFramesMutex);
// If we have not crossed the threshold, we know we haven't discarded any
// frames, and thus we know it is safe move our display index back to the
// very beginning. It would be cleaner to let the frame buffer make this
// decision inside the AnimationFrameBuffer::Reset method, but if we have
// crossed the threshold, we need to hold onto the decoding mutex too. We
// should avoid blocking the main thread on the decoder threads.
mayDiscard = mFrames.MayDiscard();
if (!mayDiscard) {
restartDecoder = mFrames.Reset();
}
}
if (mayDiscard) {
// We are over the threshold and have started discarding old frames. In
// that case we need to seize the decoding mutex. Thankfully we know that
// we are in the process of decoding at most the batch size frames, so
// this should not take too long to acquire.
MutexAutoLock lock(mDecodingMutex);
// Recreate the decoder so we can regenerate the frames again.
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
MutexAutoLock lock2(mFramesMutex);
restartDecoder = mFrames.Reset();
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
void
AnimationSurfaceProvider::Advance(size_t aFrame)
{
bool restartDecoder;
{
// Typical advancement of a frame.
MutexAutoLock lock(mFramesMutex);
restartDecoder = mFrames.AdvanceTo(aFrame);
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
DrawableFrameRef
AnimationSurfaceProvider::DrawableRef(size_t aFrame)
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling DrawableRef() on a placeholder");
return DrawableFrameRef();
}
return mFrames.Get(aFrame);
}
bool
AnimationSurfaceProvider::IsFinished() const
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() on a placeholder");
return false;
}
if (mFrames.Frames().IsEmpty()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() when we have no frames");
return false;
}
// As long as we have at least one finished frame, we're finished.
return mFrames.Frames()[0]->IsFinished();
}
bool
AnimationSurfaceProvider::IsFullyDecoded() const
{
MutexAutoLock lock(mFramesMutex);
return mFrames.SizeKnown() && !mFrames.MayDiscard();
}
size_t
AnimationSurfaceProvider::LogicalSizeInBytes() const
{
// When decoding animated images, we need at most three live surfaces: the
// composited surface, the previous composited surface for
// DisposalMethod::RESTORE_PREVIOUS, and the surface we're currently decoding
// into. The composited surfaces are always BGRA. Although the surface we're
// decoding into may be paletted, and may be smaller than the real size of the
// image, we assume the worst case here.
// XXX(seth): Note that this is actually not accurate yet; we're storing the
// full sequence of frames, not just the three live surfaces mentioned above.
// Unfortunately there's no way to know in advance how many frames an
// animation has, so we really can't do better here. This will become correct
// once bug 1289954 is complete.
IntSize size = GetSurfaceKey().Size();
return 3 * size.width * size.height * sizeof(uint32_t);
}
void
AnimationSurfaceProvider::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut,
size_t& aExtHandlesOut)
{
// Note that the surface cache lock is already held here, and then we acquire
// mFramesMutex. For this method, this ordering is unavoidable, which means
// that we must be careful to always use the same ordering elsewhere.
MutexAutoLock lock(mFramesMutex);
for (const RawAccessFrameRef& frame : mFrames.Frames()) {
if (frame) {
frame->AddSizeOfExcludingThis(aMallocSizeOf, aHeapSizeOut,
aNonHeapSizeOut, aExtHandlesOut);
}
}
}
void
AnimationSurfaceProvider::Run()
{
MutexAutoLock lock(mDecodingMutex);
if (!mDecoder) {
MOZ_ASSERT_UNREACHABLE("Running after decoding finished?");
return;
}
while (true) {
// Run the decoder.
LexerResult result = mDecoder->Decode(WrapNotNull(this));
if (result.is<TerminalState>()) {
// We may have a new frame now, but it's not guaranteed - a decoding
// failure or truncated data may mean that no new frame got produced.
// Since we're not sure, rather than call CheckForNewFrameAtYield() here
// we call CheckForNewFrameAtTerminalState(), which handles both of these
// possibilities.
bool continueDecoding = CheckForNewFrameAtTerminalState();
FinishDecoding();
// Even if it is the last frame, we may not have enough frames buffered
// ahead of the current. If we are shutting down, we want to ensure we
// release the thread as soon as possible. The animation may advance even
// during shutdown, which keeps us decoding, and thus blocking the decode
// pool during teardown.
if (!mDecoder || !continueDecoding ||
DecodePool::Singleton()->IsShuttingDown()) {
return;
}
// Restart from the very beginning because the decoder was recreated.
continue;
}
// Notify for the progress we've made so far.
if (mImage && mDecoder->HasProgress()) {
NotifyProgress(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
if (result == LexerResult(Yield::NEED_MORE_DATA)) {
// We can't make any more progress right now. The decoder itself will ensure
// that we get reenqueued when more data is available; just return for now.
return;
}
// There's new output available - a new frame! Grab it. If we don't need any
// more for the moment we can break out of the loop. If we are shutting
// down, we want to ensure we release the thread as soon as possible. The
// animation may advance even during shutdown, which keeps us decoding, and
// thus blocking the decode pool during teardown.
MOZ_ASSERT(result == LexerResult(Yield::OUTPUT_AVAILABLE));
if (!CheckForNewFrameAtYield() ||
DecodePool::Singleton()->IsShuttingDown()) {
return;
}
}
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtYield()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// Try to get the new frame from the decoder.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
MOZ_ASSERT(mDecoder->HasFrameToTake());
mDecoder->ClearHasFrameToTake();
if (!frame) {
MOZ_ASSERT_UNREACHABLE("Decoder yielded but didn't produce a frame?");
return true;
}
// We should've gotten a different frame than last time.
MOZ_ASSERT_IF(!mFrames.Frames().IsEmpty(),
mFrames.Frames().LastElement().get() != frame.get());
// Append the new frame to the list.
continueDecoding = mFrames.Insert(Move(frame));
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
size_t frameCount = mFrames.Frames().Length();
if (frameCount == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
return continueDecoding;
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtTerminalState()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// The decoder may or may not have a new frame for us at this point. Avoid
// reinserting the same frame again.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
// If the decoder didn't finish a new frame (ie if, after starting the
// frame, it got an error and aborted the frame and the rest of the decode)
// that means it won't be reporting it to the image or FrameAnimator so we
// should ignore it too, that's what HasFrameToTake tracks basically.
if (!mDecoder->HasFrameToTake()) {
frame = RawAccessFrameRef();
} else {
MOZ_ASSERT(frame);
mDecoder->ClearHasFrameToTake();
}
if (!frame || (!mFrames.Frames().IsEmpty() &&
mFrames.Frames().LastElement().get() == frame.get())) {
return mFrames.MarkComplete();
}
// Append the new frame to the list.
mFrames.Insert(Move(frame));
continueDecoding = mFrames.MarkComplete();
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
if (mFrames.Frames().Length() == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
return continueDecoding;
}
void
AnimationSurfaceProvider::AnnounceSurfaceAvailable()
{
mFramesMutex.AssertNotCurrentThreadOwns();
MOZ_ASSERT(mImage);
// We just got the first frame; let the surface cache know. We deliberately do
// this outside of mFramesMutex to avoid a potential deadlock with
// AddSizeOfExcludingThis(), since otherwise we'd be acquiring mFramesMutex
// and then the surface cache lock, while the memory reporting code would
// acquire the surface cache lock and then mFramesMutex.
SurfaceCache::SurfaceAvailable(WrapNotNull(this));
}
void
AnimationSurfaceProvider::FinishDecoding()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
if (mImage) {
// Send notifications.
NotifyDecodeComplete(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
// Determine if we need to recreate the decoder, in case we are discarding
// frames and need to loop back to the beginning.
bool recreateDecoder;
{
MutexAutoLock lock(mFramesMutex);
recreateDecoder = !mFrames.HasRedecodeError() && mFrames.MayDiscard();
}
if (recreateDecoder) {
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
} else {
mDecoder = nullptr;
}
// We don't need a reference to our image anymore, either, and we don't want
// one. We may be stored in the surface cache for a long time after decoding
// finishes. If we don't drop our reference to the image, we'll end up
// keeping it alive as long as we remain in the surface cache, which could
// greatly extend the image's lifetime - in fact, if the image isn't
// discardable, it'd result in a leak!
DropImageReference();
}
bool
AnimationSurfaceProvider::ShouldPreferSyncRun() const
{
MutexAutoLock lock(mDecodingMutex);
MOZ_ASSERT(mDecoder);
return mDecoder->ShouldSyncDecode(gfxPrefs::ImageMemDecodeBytesAtATime());
}
} // namespace image
} // namespace mozilla