gecko-dev/mfbt/BufferList.h
Jed Davis 850869a8df Bug 1595453 - Allow serializing zero-length ByteBufs. r=nika
If someone tried to serialize a zero-size ByteBuf, it could add a
zero-length segment to the `BufferList` and cause an assertion failure
later when trying to send the message.  This patch makes it a no-op (and
frees the supplied buffer, because the BufferList becomes its owner).

We previously asserted against adding zero-*capacity* segments (likely
also zero size, but possibly not) with WriteBytesZeroCopy, but only on
debug builds, and it was likely happening on release builds despite
that.  That case is now allowed.

Also, error handling for `BufferList::WriteBytesZeroCopy` has been
improved.  (This doesn't affect `Pickle` because it's using infallible
allocation, and no other instances of `BufferList` seem to use
`WriteBytesZeroCopy` at this time.)

Differential Revision: https://phabricator.services.mozilla.com/D192531
2023-11-02 18:05:31 +00:00

606 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_BufferList_h
#define mozilla_BufferList_h
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <numeric>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Vector.h"
// BufferList represents a sequence of buffers of data. A BufferList can choose
// to own its buffers or not. The class handles writing to the buffers,
// iterating over them, and reading data out. Unlike SegmentedVector, the
// buffers may be of unequal size. Like SegmentedVector, BufferList is a nice
// way to avoid large contiguous allocations (which can trigger OOMs).
class InfallibleAllocPolicy;
namespace mozilla {
template <typename AllocPolicy>
class BufferList : private AllocPolicy {
// Each buffer in a BufferList has a size and a capacity. The first mSize
// bytes are initialized and the remaining |mCapacity - mSize| bytes are free.
struct Segment {
char* mData;
size_t mSize;
size_t mCapacity;
Segment(char* aData, size_t aSize, size_t aCapacity)
: mData(aData), mSize(aSize), mCapacity(aCapacity) {}
Segment(const Segment&) = delete;
Segment& operator=(const Segment&) = delete;
Segment(Segment&&) = default;
Segment& operator=(Segment&&) = default;
char* Start() const { return mData; }
char* End() const { return mData + mSize; }
};
template <typename OtherAllocPolicy>
friend class BufferList;
public:
// For the convenience of callers, all segments are required to be a multiple
// of 8 bytes in capacity. Also, every buffer except the last one is required
// to be full (i.e., size == capacity). Therefore, a byte at offset N within
// the BufferList and stored in memory at an address A will satisfy
// (N % Align == A % Align) if Align == 2, 4, or 8.
static const size_t kSegmentAlignment = 8;
// Allocate a BufferList. The BufferList will free all its buffers when it is
// destroyed. If an infallible allocator is used, an initial buffer of size
// aInitialSize and capacity aInitialCapacity is allocated automatically. This
// data will be contiguous and can be accessed via |Start()|. If a fallible
// alloc policy is used, aInitialSize must be 0, and the fallible |Init()|
// method may be called instead. Subsequent buffers will be allocated with
// capacity aStandardCapacity.
BufferList(size_t aInitialSize, size_t aInitialCapacity,
size_t aStandardCapacity, AllocPolicy aAP = AllocPolicy())
: AllocPolicy(aAP),
mOwning(true),
mSegments(aAP),
mSize(0),
mStandardCapacity(aStandardCapacity) {
MOZ_ASSERT(aInitialCapacity % kSegmentAlignment == 0);
MOZ_ASSERT(aStandardCapacity % kSegmentAlignment == 0);
if (aInitialCapacity) {
MOZ_ASSERT((aInitialSize == 0 ||
std::is_same_v<AllocPolicy, InfallibleAllocPolicy>),
"BufferList may only be constructed with an initial size when "
"using an infallible alloc policy");
AllocateSegment(aInitialSize, aInitialCapacity);
}
}
BufferList(const BufferList& aOther) = delete;
BufferList(BufferList&& aOther)
: mOwning(aOther.mOwning),
mSegments(std::move(aOther.mSegments)),
mSize(aOther.mSize),
mStandardCapacity(aOther.mStandardCapacity) {
aOther.mSegments.clear();
aOther.mSize = 0;
}
BufferList& operator=(const BufferList& aOther) = delete;
BufferList& operator=(BufferList&& aOther) {
Clear();
mOwning = aOther.mOwning;
mSegments = std::move(aOther.mSegments);
mSize = aOther.mSize;
aOther.mSegments.clear();
aOther.mSize = 0;
return *this;
}
~BufferList() { Clear(); }
// Initializes the BufferList with a segment of the given size and capacity.
// May only be called once, before any segments have been allocated.
bool Init(size_t aInitialSize, size_t aInitialCapacity) {
MOZ_ASSERT(mSegments.empty());
MOZ_ASSERT(aInitialCapacity != 0);
MOZ_ASSERT(aInitialCapacity % kSegmentAlignment == 0);
return AllocateSegment(aInitialSize, aInitialCapacity);
}
bool CopyFrom(const BufferList& aOther) {
MOZ_ASSERT(mOwning);
Clear();
// We don't make an exact copy of aOther. Instead, create a single segment
// with enough space to hold all data in aOther.
if (!Init(aOther.mSize, (aOther.mSize + kSegmentAlignment - 1) &
~(kSegmentAlignment - 1))) {
return false;
}
size_t offset = 0;
for (const Segment& segment : aOther.mSegments) {
memcpy(Start() + offset, segment.mData, segment.mSize);
offset += segment.mSize;
}
MOZ_ASSERT(offset == mSize);
return true;
}
// Returns the sum of the sizes of all the buffers.
size_t Size() const { return mSize; }
size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) {
size_t size = mSegments.sizeOfExcludingThis(aMallocSizeOf);
for (Segment& segment : mSegments) {
size += aMallocSizeOf(segment.Start());
}
return size;
}
void Clear() {
if (mOwning) {
for (Segment& segment : mSegments) {
this->free_(segment.mData, segment.mCapacity);
}
}
mSegments.clear();
mSize = 0;
}
// Iterates over bytes in the segments. You can advance it by as many bytes as
// you choose.
class IterImpl {
// Invariants:
// (0) mSegment <= bufferList.mSegments.length()
// (1) mData <= mDataEnd
// (2) If mSegment is not the last segment, mData < mDataEnd
uintptr_t mSegment{0};
char* mData{nullptr};
char* mDataEnd{nullptr};
size_t mAbsoluteOffset{0};
friend class BufferList;
public:
explicit IterImpl(const BufferList& aBuffers) {
if (!aBuffers.mSegments.empty()) {
mData = aBuffers.mSegments[0].Start();
mDataEnd = aBuffers.mSegments[0].End();
}
}
// Returns a pointer to the raw data. It is valid to access up to
// RemainingInSegment bytes of this buffer.
char* Data() const {
MOZ_RELEASE_ASSERT(!Done());
return mData;
}
bool operator==(const IterImpl& other) const {
return mAbsoluteOffset == other.mAbsoluteOffset;
}
bool operator!=(const IterImpl& other) const { return !(*this == other); }
// Returns true if the memory in the range [Data(), Data() + aBytes) is all
// part of one contiguous buffer.
bool HasRoomFor(size_t aBytes) const {
return RemainingInSegment() >= aBytes;
}
// Returns the largest value aBytes for which HasRoomFor(aBytes) will be
// true.
size_t RemainingInSegment() const {
MOZ_RELEASE_ASSERT(mData <= mDataEnd);
return mDataEnd - mData;
}
// Returns true if there are at least aBytes entries remaining in the
// BufferList after this iterator.
bool HasBytesAvailable(const BufferList& aBuffers, size_t aBytes) const {
return TotalBytesAvailable(aBuffers) >= aBytes;
}
// Returns the largest value `aBytes` for which HasBytesAvailable(aBytes)
// will be true.
size_t TotalBytesAvailable(const BufferList& aBuffers) const {
return aBuffers.mSize - mAbsoluteOffset;
}
// Advances the iterator by aBytes bytes. aBytes must be less than
// RemainingInSegment(). If advancing by aBytes takes the iterator to the
// end of a buffer, it will be moved to the beginning of the next buffer
// unless it is the last buffer.
void Advance(const BufferList& aBuffers, size_t aBytes) {
const Segment& segment = aBuffers.mSegments[mSegment];
MOZ_RELEASE_ASSERT(segment.Start() <= mData);
MOZ_RELEASE_ASSERT(mData <= mDataEnd);
MOZ_RELEASE_ASSERT(mDataEnd == segment.End());
MOZ_RELEASE_ASSERT(HasRoomFor(aBytes));
mData += aBytes;
mAbsoluteOffset += aBytes;
if (mData == mDataEnd && mSegment + 1 < aBuffers.mSegments.length()) {
mSegment++;
const Segment& nextSegment = aBuffers.mSegments[mSegment];
mData = nextSegment.Start();
mDataEnd = nextSegment.End();
MOZ_RELEASE_ASSERT(mData < mDataEnd);
}
}
// Advance the iterator by aBytes, possibly crossing segments. This function
// returns false if it runs out of buffers to advance through. Otherwise it
// returns true.
bool AdvanceAcrossSegments(const BufferList& aBuffers, size_t aBytes) {
// If we don't need to cross segments, we can directly use `Advance` to
// get to our destination.
if (MOZ_LIKELY(aBytes <= RemainingInSegment())) {
Advance(aBuffers, aBytes);
return true;
}
// Check if we have enough bytes to scan this far forward.
if (!HasBytesAvailable(aBuffers, aBytes)) {
return false;
}
// Compare the distance to our target offset from the end of the
// BufferList to the distance from the start of our next segment.
// Depending on which is closer, we'll advance either forwards or
// backwards.
size_t targetOffset = mAbsoluteOffset + aBytes;
size_t fromEnd = aBuffers.mSize - targetOffset;
if (aBytes - RemainingInSegment() < fromEnd) {
// Advance through the buffer list until we reach the desired absolute
// offset.
while (mAbsoluteOffset < targetOffset) {
Advance(aBuffers, std::min(targetOffset - mAbsoluteOffset,
RemainingInSegment()));
}
MOZ_ASSERT(mAbsoluteOffset == targetOffset);
return true;
}
// Scanning starting from the end of the BufferList. We advance
// backwards from the final segment until we find the segment to end in.
//
// If we end on a segment boundary, make sure to place the cursor at the
// beginning of the next segment.
mSegment = aBuffers.mSegments.length() - 1;
while (fromEnd > aBuffers.mSegments[mSegment].mSize) {
fromEnd -= aBuffers.mSegments[mSegment].mSize;
mSegment--;
}
mDataEnd = aBuffers.mSegments[mSegment].End();
mData = mDataEnd - fromEnd;
mAbsoluteOffset = targetOffset;
MOZ_ASSERT_IF(Done(), mSegment == aBuffers.mSegments.length() - 1);
MOZ_ASSERT_IF(Done(), mAbsoluteOffset == aBuffers.mSize);
return true;
}
// Returns true when the iterator reaches the end of the BufferList.
bool Done() const { return mData == mDataEnd; }
// The absolute offset of this iterator within the BufferList.
size_t AbsoluteOffset() const { return mAbsoluteOffset; }
private:
bool IsIn(const BufferList& aBuffers) const {
return mSegment < aBuffers.mSegments.length() &&
mData >= aBuffers.mSegments[mSegment].mData &&
mData < aBuffers.mSegments[mSegment].End();
}
};
// Special convenience method that returns Iter().Data().
char* Start() {
MOZ_RELEASE_ASSERT(!mSegments.empty());
return mSegments[0].mData;
}
const char* Start() const { return mSegments[0].mData; }
IterImpl Iter() const { return IterImpl(*this); }
// Copies aSize bytes from aData into the BufferList. The storage for these
// bytes may be split across multiple buffers. Size() is increased by aSize.
[[nodiscard]] inline bool WriteBytes(const char* aData, size_t aSize);
// Allocates a buffer of at most |aMaxBytes| bytes and, if successful, returns
// that buffer, and places its size in |aSize|. If unsuccessful, returns null
// and leaves |aSize| undefined.
inline char* AllocateBytes(size_t aMaxSize, size_t* aSize);
// Copies possibly non-contiguous byte range starting at aIter into
// aData. aIter is advanced by aSize bytes. Returns false if it runs out of
// data before aSize.
inline bool ReadBytes(IterImpl& aIter, char* aData, size_t aSize) const;
// Return a new BufferList that shares storage with this BufferList. The new
// BufferList is read-only. It allows iteration over aSize bytes starting at
// aIter. Borrow can fail, in which case *aSuccess will be false upon
// return. The borrowed BufferList can use a different AllocPolicy than the
// original one. However, it is not responsible for freeing buffers, so the
// AllocPolicy is only used for the buffer vector.
template <typename BorrowingAllocPolicy>
BufferList<BorrowingAllocPolicy> Borrow(
IterImpl& aIter, size_t aSize, bool* aSuccess,
BorrowingAllocPolicy aAP = BorrowingAllocPolicy()) const;
// Return a new BufferList and move storage from this BufferList to it. The
// new BufferList owns the buffers. Move can fail, in which case *aSuccess
// will be false upon return. The new BufferList can use a different
// AllocPolicy than the original one. The new OtherAllocPolicy is responsible
// for freeing buffers, so the OtherAllocPolicy must use freeing method
// compatible to the original one.
template <typename OtherAllocPolicy>
BufferList<OtherAllocPolicy> MoveFallible(
bool* aSuccess, OtherAllocPolicy aAP = OtherAllocPolicy());
// Return the number of bytes from 'start' to 'end', two iterators within
// this BufferList.
size_t RangeLength(const IterImpl& start, const IterImpl& end) const {
MOZ_ASSERT(start.IsIn(*this) && end.IsIn(*this));
return end.mAbsoluteOffset - start.mAbsoluteOffset;
}
// This takes ownership of the data
[[nodiscard]] bool WriteBytesZeroCopy(char* aData, size_t aSize,
size_t aCapacity) {
MOZ_ASSERT(mOwning);
MOZ_ASSERT(aSize <= aCapacity);
// Don't create zero-length segments; that can cause problems for
// consumers of the data (bug 1595453).
if (aSize == 0) {
this->free_(aData, aCapacity);
return true;
}
if (!mSegments.append(Segment(aData, aSize, aCapacity))) {
this->free_(aData, aCapacity);
return false;
}
mSize += aSize;
return true;
}
// Truncate this BufferList at the given iterator location, discarding all
// data after this point. After this call, all other iterators will be
// invalidated, and the passed-in iterator will be "Done".
//
// Returns the number of bytes discarded by this truncation.
size_t Truncate(IterImpl& aIter);
private:
explicit BufferList(AllocPolicy aAP)
: AllocPolicy(aAP), mOwning(false), mSize(0), mStandardCapacity(0) {}
char* AllocateSegment(size_t aSize, size_t aCapacity) {
MOZ_RELEASE_ASSERT(mOwning);
MOZ_ASSERT(aCapacity != 0);
MOZ_ASSERT(aSize <= aCapacity);
char* data = this->template pod_malloc<char>(aCapacity);
if (!data) {
return nullptr;
}
if (!mSegments.append(Segment(data, aSize, aCapacity))) {
this->free_(data, aCapacity);
return nullptr;
}
mSize += aSize;
return data;
}
void AssertConsistentSize() const {
#ifdef DEBUG
size_t realSize = 0;
for (const auto& segment : mSegments) {
realSize += segment.mSize;
}
MOZ_ASSERT(realSize == mSize, "cached size value is inconsistent!");
#endif
}
bool mOwning;
Vector<Segment, 1, AllocPolicy> mSegments;
size_t mSize;
size_t mStandardCapacity;
};
template <typename AllocPolicy>
[[nodiscard]] bool BufferList<AllocPolicy>::WriteBytes(const char* aData,
size_t aSize) {
MOZ_RELEASE_ASSERT(mOwning);
MOZ_RELEASE_ASSERT(mStandardCapacity);
size_t copied = 0;
while (copied < aSize) {
size_t toCopy;
char* data = AllocateBytes(aSize - copied, &toCopy);
if (!data) {
return false;
}
memcpy(data, aData + copied, toCopy);
copied += toCopy;
}
return true;
}
template <typename AllocPolicy>
char* BufferList<AllocPolicy>::AllocateBytes(size_t aMaxSize, size_t* aSize) {
MOZ_RELEASE_ASSERT(mOwning);
MOZ_RELEASE_ASSERT(mStandardCapacity);
if (!mSegments.empty()) {
Segment& lastSegment = mSegments.back();
size_t capacity = lastSegment.mCapacity - lastSegment.mSize;
if (capacity) {
size_t size = std::min(aMaxSize, capacity);
char* data = lastSegment.mData + lastSegment.mSize;
lastSegment.mSize += size;
mSize += size;
*aSize = size;
return data;
}
}
size_t size = std::min(aMaxSize, mStandardCapacity);
char* data = AllocateSegment(size, mStandardCapacity);
if (data) {
*aSize = size;
}
return data;
}
template <typename AllocPolicy>
bool BufferList<AllocPolicy>::ReadBytes(IterImpl& aIter, char* aData,
size_t aSize) const {
size_t copied = 0;
size_t remaining = aSize;
while (remaining) {
size_t toCopy = std::min(aIter.RemainingInSegment(), remaining);
if (!toCopy) {
// We've run out of data in the last segment.
return false;
}
memcpy(aData + copied, aIter.Data(), toCopy);
copied += toCopy;
remaining -= toCopy;
aIter.Advance(*this, toCopy);
}
return true;
}
template <typename AllocPolicy>
template <typename BorrowingAllocPolicy>
BufferList<BorrowingAllocPolicy> BufferList<AllocPolicy>::Borrow(
IterImpl& aIter, size_t aSize, bool* aSuccess,
BorrowingAllocPolicy aAP) const {
BufferList<BorrowingAllocPolicy> result(aAP);
size_t size = aSize;
while (size) {
size_t toAdvance = std::min(size, aIter.RemainingInSegment());
if (!toAdvance || !result.mSegments.append(
typename BufferList<BorrowingAllocPolicy>::Segment(
aIter.mData, toAdvance, toAdvance))) {
*aSuccess = false;
return result;
}
aIter.Advance(*this, toAdvance);
size -= toAdvance;
}
result.mSize = aSize;
*aSuccess = true;
return result;
}
template <typename AllocPolicy>
template <typename OtherAllocPolicy>
BufferList<OtherAllocPolicy> BufferList<AllocPolicy>::MoveFallible(
bool* aSuccess, OtherAllocPolicy aAP) {
BufferList<OtherAllocPolicy> result(0, 0, mStandardCapacity, aAP);
IterImpl iter = Iter();
while (!iter.Done()) {
size_t toAdvance = iter.RemainingInSegment();
if (!toAdvance ||
!result.mSegments.append(typename BufferList<OtherAllocPolicy>::Segment(
iter.mData, toAdvance, toAdvance))) {
*aSuccess = false;
result.mSegments.clear();
return result;
}
iter.Advance(*this, toAdvance);
}
result.mSize = mSize;
mSegments.clear();
mSize = 0;
*aSuccess = true;
return result;
}
template <typename AllocPolicy>
size_t BufferList<AllocPolicy>::Truncate(IterImpl& aIter) {
MOZ_ASSERT(aIter.IsIn(*this) || aIter.Done());
if (aIter.Done()) {
return 0;
}
size_t prevSize = mSize;
// Remove any segments after the iterator's current segment.
while (mSegments.length() > aIter.mSegment + 1) {
Segment& toFree = mSegments.back();
mSize -= toFree.mSize;
if (mOwning) {
this->free_(toFree.mData, toFree.mCapacity);
}
mSegments.popBack();
}
// The last segment is now aIter's current segment. Truncate or remove it.
Segment& seg = mSegments.back();
MOZ_ASSERT(aIter.mDataEnd == seg.End());
mSize -= aIter.RemainingInSegment();
seg.mSize -= aIter.RemainingInSegment();
if (!seg.mSize) {
if (mOwning) {
this->free_(seg.mData, seg.mCapacity);
}
mSegments.popBack();
}
// Correct `aIter` to point to the new end of the BufferList.
if (mSegments.empty()) {
MOZ_ASSERT(mSize == 0);
aIter.mSegment = 0;
aIter.mData = aIter.mDataEnd = nullptr;
} else {
aIter.mSegment = mSegments.length() - 1;
aIter.mData = aIter.mDataEnd = mSegments.back().End();
}
MOZ_ASSERT(aIter.Done());
AssertConsistentSize();
return prevSize - mSize;
}
} // namespace mozilla
#endif /* mozilla_BufferList_h */