gecko-dev/gfx/thebes/gfxFontUtils.cpp
Eric Rahm 67b91ff53a Bug 1162748 - Remove instances of #ifdef PR_LOGGING in graphics. r=froydnj
PR_LOGGING is now always defined, we can remove #ifdefs checking for it.
2015-05-08 14:37:01 -07:00

1768 lines
61 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ArrayUtils.h"
#include "mozilla/BinarySearch.h"
#include "gfxFontUtils.h"
#include "gfxColor.h"
#include "nsServiceManagerUtils.h"
#include "mozilla/dom/EncodingUtils.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/BinarySearch.h"
#include "nsCOMPtr.h"
#include "nsIUUIDGenerator.h"
#include "nsIUnicodeDecoder.h"
#include "harfbuzz/hb.h"
#include "plbase64.h"
#include "prlog.h"
#define LOG(log, args) PR_LOG(gfxPlatform::GetLog(log), \
PR_LOG_DEBUG, args)
#define UNICODE_BMP_LIMIT 0x10000
using namespace mozilla;
#pragma pack(1)
typedef struct {
AutoSwap_PRUint16 format;
AutoSwap_PRUint16 reserved;
AutoSwap_PRUint32 length;
AutoSwap_PRUint32 language;
AutoSwap_PRUint32 startCharCode;
AutoSwap_PRUint32 numChars;
} Format10CmapHeader;
typedef struct {
AutoSwap_PRUint16 format;
AutoSwap_PRUint16 reserved;
AutoSwap_PRUint32 length;
AutoSwap_PRUint32 language;
AutoSwap_PRUint32 numGroups;
} Format12CmapHeader;
typedef struct {
AutoSwap_PRUint32 startCharCode;
AutoSwap_PRUint32 endCharCode;
AutoSwap_PRUint32 startGlyphId;
} Format12Group;
#pragma pack()
void
gfxSparseBitSet::Dump(const char* aPrefix, eGfxLog aWhichLog) const
{
NS_ASSERTION(mBlocks.DebugGetHeader(), "mHdr is null, this is bad");
uint32_t b, numBlocks = mBlocks.Length();
for (b = 0; b < numBlocks; b++) {
Block *block = mBlocks[b];
if (!block) continue;
char outStr[256];
int index = 0;
index += sprintf(&outStr[index], "%s u+%6.6x [", aPrefix, (b << BLOCK_INDEX_SHIFT));
for (int i = 0; i < 32; i += 4) {
for (int j = i; j < i + 4; j++) {
uint8_t bits = block->mBits[j];
uint8_t flip1 = ((bits & 0xaa) >> 1) | ((bits & 0x55) << 1);
uint8_t flip2 = ((flip1 & 0xcc) >> 2) | ((flip1 & 0x33) << 2);
uint8_t flipped = ((flip2 & 0xf0) >> 4) | ((flip2 & 0x0f) << 4);
index += sprintf(&outStr[index], "%2.2x", flipped);
}
if (i + 4 != 32) index += sprintf(&outStr[index], " ");
}
index += sprintf(&outStr[index], "]");
LOG(aWhichLog, ("%s", outStr));
}
}
nsresult
gfxFontUtils::ReadCMAPTableFormat10(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap)
{
// Ensure table is large enough that we can safely read the header
NS_ENSURE_TRUE(aLength >= sizeof(Format10CmapHeader),
NS_ERROR_GFX_CMAP_MALFORMED);
// Sanity-check header fields
const Format10CmapHeader *cmap10 =
reinterpret_cast<const Format10CmapHeader*>(aBuf);
NS_ENSURE_TRUE(uint16_t(cmap10->format) == 10,
NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(uint16_t(cmap10->reserved) == 0,
NS_ERROR_GFX_CMAP_MALFORMED);
uint32_t tablelen = cmap10->length;
NS_ENSURE_TRUE(tablelen >= sizeof(Format10CmapHeader) &&
tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(cmap10->language == 0, NS_ERROR_GFX_CMAP_MALFORMED);
uint32_t numChars = cmap10->numChars;
NS_ENSURE_TRUE(tablelen == sizeof(Format10CmapHeader) +
numChars * sizeof(uint16_t), NS_ERROR_GFX_CMAP_MALFORMED);
uint32_t charCode = cmap10->startCharCode;
NS_ENSURE_TRUE(charCode <= CMAP_MAX_CODEPOINT &&
charCode + numChars <= CMAP_MAX_CODEPOINT,
NS_ERROR_GFX_CMAP_MALFORMED);
// glyphs[] array immediately follows the subtable header
const AutoSwap_PRUint16 *glyphs =
reinterpret_cast<const AutoSwap_PRUint16 *>(cmap10 + 1);
for (uint32_t i = 0; i < numChars; ++i) {
if (uint16_t(*glyphs) != 0) {
aCharacterMap.set(charCode);
}
++charCode;
++glyphs;
}
aCharacterMap.Compact();
return NS_OK;
}
nsresult
gfxFontUtils::ReadCMAPTableFormat12(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap)
{
// Ensure table is large enough that we can safely read the header
NS_ENSURE_TRUE(aLength >= sizeof(Format12CmapHeader),
NS_ERROR_GFX_CMAP_MALFORMED);
// Sanity-check header fields
const Format12CmapHeader *cmap12 =
reinterpret_cast<const Format12CmapHeader*>(aBuf);
NS_ENSURE_TRUE(uint16_t(cmap12->format) == 12,
NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(uint16_t(cmap12->reserved) == 0,
NS_ERROR_GFX_CMAP_MALFORMED);
uint32_t tablelen = cmap12->length;
NS_ENSURE_TRUE(tablelen >= sizeof(Format12CmapHeader) &&
tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(cmap12->language == 0, NS_ERROR_GFX_CMAP_MALFORMED);
// Check that the table is large enough for the group array
const uint32_t numGroups = cmap12->numGroups;
NS_ENSURE_TRUE((tablelen - sizeof(Format12CmapHeader)) /
sizeof(Format12Group) >= numGroups,
NS_ERROR_GFX_CMAP_MALFORMED);
// The array of groups immediately follows the subtable header.
const Format12Group *group =
reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader));
// Check that groups are in correct order and do not overlap,
// and record character coverage in aCharacterMap.
uint32_t prevEndCharCode = 0;
for (uint32_t i = 0; i < numGroups; i++, group++) {
uint32_t startCharCode = group->startCharCode;
const uint32_t endCharCode = group->endCharCode;
NS_ENSURE_TRUE((prevEndCharCode < startCharCode || i == 0) &&
startCharCode <= endCharCode &&
endCharCode <= CMAP_MAX_CODEPOINT,
NS_ERROR_GFX_CMAP_MALFORMED);
// don't include a character that maps to glyph ID 0 (.notdef)
if (group->startGlyphId == 0) {
startCharCode++;
}
if (startCharCode <= endCharCode) {
aCharacterMap.SetRange(startCharCode, endCharCode);
}
prevEndCharCode = endCharCode;
}
aCharacterMap.Compact();
return NS_OK;
}
nsresult
gfxFontUtils::ReadCMAPTableFormat4(const uint8_t *aBuf, uint32_t aLength,
gfxSparseBitSet& aCharacterMap)
{
enum {
OffsetFormat = 0,
OffsetLength = 2,
OffsetLanguage = 4,
OffsetSegCountX2 = 6
};
NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 4,
NS_ERROR_GFX_CMAP_MALFORMED);
uint16_t tablelen = ReadShortAt(aBuf, OffsetLength);
NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(tablelen > 16, NS_ERROR_GFX_CMAP_MALFORMED);
// This field should normally (except for Mac platform subtables) be zero according to
// the OT spec, but some buggy fonts have lang = 1 (which would be English for MacOS).
// E.g. Arial Narrow Bold, v. 1.1 (Tiger), Arial Unicode MS (see bug 530614).
// So accept either zero or one here; the error should be harmless.
NS_ENSURE_TRUE((ReadShortAt(aBuf, OffsetLanguage) & 0xfffe) == 0,
NS_ERROR_GFX_CMAP_MALFORMED);
uint16_t segCountX2 = ReadShortAt(aBuf, OffsetSegCountX2);
NS_ENSURE_TRUE(tablelen >= 16 + (segCountX2 * 4),
NS_ERROR_GFX_CMAP_MALFORMED);
const uint16_t segCount = segCountX2 / 2;
const uint16_t *endCounts = reinterpret_cast<const uint16_t*>(aBuf + 14);
const uint16_t *startCounts = endCounts + 1 /* skip one uint16_t for reservedPad */ + segCount;
const uint16_t *idDeltas = startCounts + segCount;
const uint16_t *idRangeOffsets = idDeltas + segCount;
uint16_t prevEndCount = 0;
for (uint16_t i = 0; i < segCount; i++) {
const uint16_t endCount = ReadShortAt16(endCounts, i);
const uint16_t startCount = ReadShortAt16(startCounts, i);
const uint16_t idRangeOffset = ReadShortAt16(idRangeOffsets, i);
// sanity-check range
// This permits ranges to overlap by 1 character, which is strictly
// incorrect but occurs in Baskerville on OS X 10.7 (see bug 689087),
// and appears to be harmless in practice
NS_ENSURE_TRUE(startCount >= prevEndCount && startCount <= endCount,
NS_ERROR_GFX_CMAP_MALFORMED);
prevEndCount = endCount;
if (idRangeOffset == 0) {
// figure out if there's a code in the range that would map to
// glyph ID 0 (.notdef); if so, we need to skip setting that
// character code in the map
const uint16_t skipCode = 65536 - ReadShortAt16(idDeltas, i);
if (startCount < skipCode) {
aCharacterMap.SetRange(startCount,
std::min<uint16_t>(skipCode - 1,
endCount));
}
if (skipCode < endCount) {
aCharacterMap.SetRange(std::max<uint16_t>(startCount,
skipCode + 1),
endCount);
}
} else {
// const uint16_t idDelta = ReadShortAt16(idDeltas, i); // Unused: self-documenting.
for (uint32_t c = startCount; c <= endCount; ++c) {
if (c == 0xFFFF)
break;
const uint16_t *gdata = (idRangeOffset/2
+ (c - startCount)
+ &idRangeOffsets[i]);
NS_ENSURE_TRUE((uint8_t*)gdata > aBuf &&
(uint8_t*)gdata < aBuf + aLength,
NS_ERROR_GFX_CMAP_MALFORMED);
// make sure we have a glyph
if (*gdata != 0) {
// The glyph index at this point is:
uint16_t glyph = ReadShortAt16(idDeltas, i) + *gdata;
if (glyph) {
aCharacterMap.set(c);
}
}
}
}
}
aCharacterMap.Compact();
return NS_OK;
}
nsresult
gfxFontUtils::ReadCMAPTableFormat14(const uint8_t *aBuf, uint32_t aLength,
uint8_t*& aTable)
{
enum {
OffsetFormat = 0,
OffsetTableLength = 2,
OffsetNumVarSelectorRecords = 6,
OffsetVarSelectorRecords = 10,
SizeOfVarSelectorRecord = 11,
VSRecOffsetVarSelector = 0,
VSRecOffsetDefUVSOffset = 3,
VSRecOffsetNonDefUVSOffset = 7,
SizeOfDefUVSTable = 4,
DefUVSOffsetStartUnicodeValue = 0,
DefUVSOffsetAdditionalCount = 3,
SizeOfNonDefUVSTable = 5,
NonDefUVSOffsetUnicodeValue = 0,
NonDefUVSOffsetGlyphID = 3
};
NS_ENSURE_TRUE(aLength >= OffsetVarSelectorRecords,
NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 14,
NS_ERROR_GFX_CMAP_MALFORMED);
uint32_t tablelen = ReadLongAt(aBuf, OffsetTableLength);
NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
NS_ENSURE_TRUE(tablelen >= OffsetVarSelectorRecords,
NS_ERROR_GFX_CMAP_MALFORMED);
const uint32_t numVarSelectorRecords = ReadLongAt(aBuf, OffsetNumVarSelectorRecords);
NS_ENSURE_TRUE((tablelen - OffsetVarSelectorRecords) /
SizeOfVarSelectorRecord >= numVarSelectorRecords,
NS_ERROR_GFX_CMAP_MALFORMED);
const uint8_t *records = aBuf + OffsetVarSelectorRecords;
for (uint32_t i = 0; i < numVarSelectorRecords;
i++, records += SizeOfVarSelectorRecord) {
const uint32_t varSelector = ReadUint24At(records, VSRecOffsetVarSelector);
const uint32_t defUVSOffset = ReadLongAt(records, VSRecOffsetDefUVSOffset);
const uint32_t nonDefUVSOffset = ReadLongAt(records, VSRecOffsetNonDefUVSOffset);
NS_ENSURE_TRUE(varSelector <= CMAP_MAX_CODEPOINT &&
defUVSOffset <= tablelen - 4 &&
nonDefUVSOffset <= tablelen - 4,
NS_ERROR_GFX_CMAP_MALFORMED);
if (defUVSOffset) {
const uint32_t numUnicodeValueRanges = ReadLongAt(aBuf, defUVSOffset);
NS_ENSURE_TRUE((tablelen - defUVSOffset) /
SizeOfDefUVSTable >= numUnicodeValueRanges,
NS_ERROR_GFX_CMAP_MALFORMED);
const uint8_t *tables = aBuf + defUVSOffset + 4;
uint32_t prevEndUnicode = 0;
for (uint32_t j = 0; j < numUnicodeValueRanges; j++, tables += SizeOfDefUVSTable) {
const uint32_t startUnicode = ReadUint24At(tables, DefUVSOffsetStartUnicodeValue);
const uint32_t endUnicode = startUnicode + tables[DefUVSOffsetAdditionalCount];
NS_ENSURE_TRUE((prevEndUnicode < startUnicode || j == 0) &&
endUnicode <= CMAP_MAX_CODEPOINT,
NS_ERROR_GFX_CMAP_MALFORMED);
prevEndUnicode = endUnicode;
}
}
if (nonDefUVSOffset) {
const uint32_t numUVSMappings = ReadLongAt(aBuf, nonDefUVSOffset);
NS_ENSURE_TRUE((tablelen - nonDefUVSOffset) /
SizeOfNonDefUVSTable >= numUVSMappings,
NS_ERROR_GFX_CMAP_MALFORMED);
const uint8_t *tables = aBuf + nonDefUVSOffset + 4;
uint32_t prevUnicode = 0;
for (uint32_t j = 0; j < numUVSMappings; j++, tables += SizeOfNonDefUVSTable) {
const uint32_t unicodeValue = ReadUint24At(tables, NonDefUVSOffsetUnicodeValue);
NS_ENSURE_TRUE((prevUnicode < unicodeValue || j == 0) &&
unicodeValue <= CMAP_MAX_CODEPOINT,
NS_ERROR_GFX_CMAP_MALFORMED);
prevUnicode = unicodeValue;
}
}
}
aTable = new uint8_t[tablelen];
memcpy(aTable, aBuf, tablelen);
return NS_OK;
}
// Windows requires fonts to have a format-4 cmap with a Microsoft ID (3). On the Mac, fonts either have
// a format-4 cmap with Microsoft platform/encoding id or they have one with a platformID == Unicode (0)
// For fonts with two format-4 tables, the first one (Unicode platform) is preferred on the Mac.
#if defined(XP_MACOSX)
#define acceptableFormat4(p,e,k) (((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft && !(k)) || \
((p) == PLATFORM_ID_UNICODE))
#define acceptableUCS4Encoding(p, e, k) \
(((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDUCS4ForMicrosoftPlatform) && (k) != 12 || \
((p) == PLATFORM_ID_UNICODE && \
((e) == EncodingIDDefaultForUnicodePlatform || (e) >= EncodingIDUCS4ForUnicodePlatform)))
#else
#define acceptableFormat4(p,e,k) ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft)
#define acceptableUCS4Encoding(p, e, k) \
((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDUCS4ForMicrosoftPlatform)
#endif
#define acceptablePlatform(p) ((p) == PLATFORM_ID_UNICODE || (p) == PLATFORM_ID_MICROSOFT)
#define isSymbol(p,e) ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDSymbol)
#define isUVSEncoding(p, e) ((p) == PLATFORM_ID_UNICODE && (e) == EncodingIDUVSForUnicodePlatform)
uint32_t
gfxFontUtils::FindPreferredSubtable(const uint8_t *aBuf, uint32_t aBufLength,
uint32_t *aTableOffset,
uint32_t *aUVSTableOffset,
bool *aSymbolEncoding)
{
enum {
OffsetVersion = 0,
OffsetNumTables = 2,
SizeOfHeader = 4,
TableOffsetPlatformID = 0,
TableOffsetEncodingID = 2,
TableOffsetOffset = 4,
SizeOfTable = 8,
SubtableOffsetFormat = 0
};
enum {
EncodingIDSymbol = 0,
EncodingIDMicrosoft = 1,
EncodingIDDefaultForUnicodePlatform = 0,
EncodingIDUCS4ForUnicodePlatform = 3,
EncodingIDUVSForUnicodePlatform = 5,
EncodingIDUCS4ForMicrosoftPlatform = 10
};
if (aUVSTableOffset) {
*aUVSTableOffset = 0;
}
if (!aBuf || aBufLength < SizeOfHeader) {
// cmap table is missing, or too small to contain header fields!
return 0;
}
// uint16_t version = ReadShortAt(aBuf, OffsetVersion); // Unused: self-documenting.
uint16_t numTables = ReadShortAt(aBuf, OffsetNumTables);
if (aBufLength < uint32_t(SizeOfHeader + numTables * SizeOfTable)) {
return 0;
}
// save the format we want here
uint32_t keepFormat = 0;
const uint8_t *table = aBuf + SizeOfHeader;
for (uint16_t i = 0; i < numTables; ++i, table += SizeOfTable) {
const uint16_t platformID = ReadShortAt(table, TableOffsetPlatformID);
if (!acceptablePlatform(platformID))
continue;
const uint16_t encodingID = ReadShortAt(table, TableOffsetEncodingID);
const uint32_t offset = ReadLongAt(table, TableOffsetOffset);
if (aBufLength - 2 < offset) {
// this subtable is not valid - beyond end of buffer
return 0;
}
const uint8_t *subtable = aBuf + offset;
const uint16_t format = ReadShortAt(subtable, SubtableOffsetFormat);
if (isSymbol(platformID, encodingID)) {
keepFormat = format;
*aTableOffset = offset;
*aSymbolEncoding = true;
break;
} else if (format == 4 && acceptableFormat4(platformID, encodingID, keepFormat)) {
keepFormat = format;
*aTableOffset = offset;
*aSymbolEncoding = false;
} else if ((format == 10 || format == 12) &&
acceptableUCS4Encoding(platformID, encodingID, keepFormat)) {
keepFormat = format;
*aTableOffset = offset;
*aSymbolEncoding = false;
if (platformID > PLATFORM_ID_UNICODE || !aUVSTableOffset || *aUVSTableOffset) {
break; // we don't want to try anything else when this format is available.
}
} else if (format == 14 && isUVSEncoding(platformID, encodingID) && aUVSTableOffset) {
*aUVSTableOffset = offset;
if (keepFormat == 10 || keepFormat == 12) {
break;
}
}
}
return keepFormat;
}
nsresult
gfxFontUtils::ReadCMAP(const uint8_t *aBuf, uint32_t aBufLength,
gfxSparseBitSet& aCharacterMap,
uint32_t& aUVSOffset,
bool& aUnicodeFont, bool& aSymbolFont)
{
uint32_t offset;
bool symbol;
uint32_t format = FindPreferredSubtable(aBuf, aBufLength,
&offset, &aUVSOffset, &symbol);
switch (format) {
case 4:
if (symbol) {
aUnicodeFont = false;
aSymbolFont = true;
} else {
aUnicodeFont = true;
aSymbolFont = false;
}
return ReadCMAPTableFormat4(aBuf + offset, aBufLength - offset,
aCharacterMap);
case 10:
aUnicodeFont = true;
aSymbolFont = false;
return ReadCMAPTableFormat10(aBuf + offset, aBufLength - offset,
aCharacterMap);
case 12:
aUnicodeFont = true;
aSymbolFont = false;
return ReadCMAPTableFormat12(aBuf + offset, aBufLength - offset,
aCharacterMap);
default:
break;
}
return NS_ERROR_FAILURE;
}
#pragma pack(1)
typedef struct {
AutoSwap_PRUint16 format;
AutoSwap_PRUint16 length;
AutoSwap_PRUint16 language;
AutoSwap_PRUint16 segCountX2;
AutoSwap_PRUint16 searchRange;
AutoSwap_PRUint16 entrySelector;
AutoSwap_PRUint16 rangeShift;
AutoSwap_PRUint16 arrays[1];
} Format4Cmap;
typedef struct {
AutoSwap_PRUint16 format;
AutoSwap_PRUint32 length;
AutoSwap_PRUint32 numVarSelectorRecords;
typedef struct {
AutoSwap_PRUint24 varSelector;
AutoSwap_PRUint32 defaultUVSOffset;
AutoSwap_PRUint32 nonDefaultUVSOffset;
} VarSelectorRecord;
VarSelectorRecord varSelectorRecords[1];
} Format14Cmap;
typedef struct {
AutoSwap_PRUint32 numUVSMappings;
typedef struct {
AutoSwap_PRUint24 unicodeValue;
AutoSwap_PRUint16 glyphID;
} UVSMapping;
UVSMapping uvsMappings[1];
} NonDefUVSTable;
#pragma pack()
uint32_t
gfxFontUtils::MapCharToGlyphFormat4(const uint8_t *aBuf, char16_t aCh)
{
const Format4Cmap *cmap4 = reinterpret_cast<const Format4Cmap*>(aBuf);
uint16_t segCount;
const AutoSwap_PRUint16 *endCodes;
const AutoSwap_PRUint16 *startCodes;
const AutoSwap_PRUint16 *idDelta;
const AutoSwap_PRUint16 *idRangeOffset;
uint16_t probe;
uint16_t rangeShiftOver2;
uint16_t index;
segCount = (uint16_t)(cmap4->segCountX2) / 2;
endCodes = &cmap4->arrays[0];
startCodes = &cmap4->arrays[segCount + 1]; // +1 for reserved word between arrays
idDelta = &startCodes[segCount];
idRangeOffset = &idDelta[segCount];
probe = 1 << (uint16_t)(cmap4->entrySelector);
rangeShiftOver2 = (uint16_t)(cmap4->rangeShift) / 2;
if ((uint16_t)(startCodes[rangeShiftOver2]) <= aCh) {
index = rangeShiftOver2;
} else {
index = 0;
}
while (probe > 1) {
probe >>= 1;
if ((uint16_t)(startCodes[index + probe]) <= aCh) {
index += probe;
}
}
if (aCh >= (uint16_t)(startCodes[index]) && aCh <= (uint16_t)(endCodes[index])) {
uint16_t result;
if ((uint16_t)(idRangeOffset[index]) == 0) {
result = aCh;
} else {
uint16_t offset = aCh - (uint16_t)(startCodes[index]);
const AutoSwap_PRUint16 *glyphIndexTable =
(const AutoSwap_PRUint16*)((const char*)&idRangeOffset[index] +
(uint16_t)(idRangeOffset[index]));
result = glyphIndexTable[offset];
}
// note that this is unsigned 16-bit arithmetic, and may wrap around
result += (uint16_t)(idDelta[index]);
return result;
}
return 0;
}
uint32_t
gfxFontUtils::MapCharToGlyphFormat10(const uint8_t *aBuf, uint32_t aCh)
{
const Format10CmapHeader *cmap10 =
reinterpret_cast<const Format10CmapHeader*>(aBuf);
uint32_t startChar = cmap10->startCharCode;
uint32_t numChars = cmap10->numChars;
if (aCh < startChar || aCh >= startChar + numChars) {
return 0;
}
const AutoSwap_PRUint16 *glyphs =
reinterpret_cast<const AutoSwap_PRUint16 *>(cmap10 + 1);
uint16_t glyph = glyphs[aCh - startChar];
return glyph;
}
uint32_t
gfxFontUtils::MapCharToGlyphFormat12(const uint8_t *aBuf, uint32_t aCh)
{
const Format12CmapHeader *cmap12 =
reinterpret_cast<const Format12CmapHeader*>(aBuf);
// We know that numGroups is within range for the subtable size
// because it was checked by ReadCMAPTableFormat12.
uint32_t numGroups = cmap12->numGroups;
// The array of groups immediately follows the subtable header.
const Format12Group *groups =
reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader));
// For most efficient binary search, we want to work on a range that
// is a power of 2 so that we can always halve it by shifting.
// So we find the largest power of 2 that is <= numGroups.
// We will offset this range by rangeOffset so as to reach the end
// of the table, provided that doesn't put us beyond the target
// value from the outset.
uint32_t powerOf2 = mozilla::FindHighestBit(numGroups);
uint32_t rangeOffset = numGroups - powerOf2;
uint32_t range = 0;
uint32_t startCharCode;
if (groups[rangeOffset].startCharCode <= aCh) {
range = rangeOffset;
}
// Repeatedly halve the size of the range until we find the target group
while (powerOf2 > 1) {
powerOf2 >>= 1;
if (groups[range + powerOf2].startCharCode <= aCh) {
range += powerOf2;
}
}
// Check if the character is actually present in the range and return
// the corresponding glyph ID
startCharCode = groups[range].startCharCode;
if (startCharCode <= aCh && groups[range].endCharCode >= aCh) {
return groups[range].startGlyphId + aCh - startCharCode;
}
// Else it's not present, so return the .notdef glyph
return 0;
}
namespace {
struct Format14CmapWrapper
{
const Format14Cmap& mCmap14;
explicit Format14CmapWrapper(const Format14Cmap& cmap14) : mCmap14(cmap14) {}
uint32_t operator[](size_t index) const {
return mCmap14.varSelectorRecords[index].varSelector;
}
};
struct NonDefUVSTableWrapper
{
const NonDefUVSTable& mTable;
explicit NonDefUVSTableWrapper(const NonDefUVSTable& table) : mTable(table) {}
uint32_t operator[](size_t index) const {
return mTable.uvsMappings[index].unicodeValue;
}
};
} // namespace
uint16_t
gfxFontUtils::MapUVSToGlyphFormat14(const uint8_t *aBuf, uint32_t aCh, uint32_t aVS)
{
using mozilla::BinarySearch;
const Format14Cmap *cmap14 = reinterpret_cast<const Format14Cmap*>(aBuf);
size_t index;
if (!BinarySearch(Format14CmapWrapper(*cmap14),
0, cmap14->numVarSelectorRecords, aVS, &index)) {
return 0;
}
const uint32_t nonDefUVSOffset = cmap14->varSelectorRecords[index].nonDefaultUVSOffset;
const NonDefUVSTable *table = reinterpret_cast<const NonDefUVSTable*>
(aBuf + nonDefUVSOffset);
if (BinarySearch(NonDefUVSTableWrapper(*table), 0, table->numUVSMappings,
aCh, &index)) {
return table->uvsMappings[index].glyphID;
}
return 0;
}
uint32_t
gfxFontUtils::MapCharToGlyph(const uint8_t *aCmapBuf, uint32_t aBufLength,
uint32_t aUnicode, uint32_t aVarSelector)
{
uint32_t offset, uvsOffset;
bool symbol;
uint32_t format = FindPreferredSubtable(aCmapBuf, aBufLength, &offset,
&uvsOffset, &symbol);
uint32_t gid;
switch (format) {
case 4:
gid = aUnicode < UNICODE_BMP_LIMIT ?
MapCharToGlyphFormat4(aCmapBuf + offset, char16_t(aUnicode)) : 0;
break;
case 10:
gid = MapCharToGlyphFormat10(aCmapBuf + offset, aUnicode);
break;
case 12:
gid = MapCharToGlyphFormat12(aCmapBuf + offset, aUnicode);
break;
default:
NS_WARNING("unsupported cmap format, glyphs will be missing");
gid = 0;
}
if (aVarSelector && uvsOffset && gid) {
uint32_t varGID =
gfxFontUtils::MapUVSToGlyphFormat14(aCmapBuf + uvsOffset,
aUnicode, aVarSelector);
if (!varGID) {
aUnicode = gfxFontUtils::GetUVSFallback(aUnicode, aVarSelector);
if (aUnicode) {
switch (format) {
case 4:
if (aUnicode < UNICODE_BMP_LIMIT) {
varGID = MapCharToGlyphFormat4(aCmapBuf + offset,
char16_t(aUnicode));
}
break;
case 10:
varGID = MapCharToGlyphFormat10(aCmapBuf + offset,
aUnicode);
break;
case 12:
varGID = MapCharToGlyphFormat12(aCmapBuf + offset,
aUnicode);
break;
}
}
}
if (varGID) {
gid = varGID;
}
// else the variation sequence was not supported, use default mapping
// of the character code alone
}
return gid;
}
void gfxFontUtils::ParseFontList(const nsAString& aFamilyList,
nsTArray<nsString>& aFontList)
{
const char16_t kComma = char16_t(',');
// append each font name to the list
nsAutoString fontname;
const char16_t *p, *p_end;
aFamilyList.BeginReading(p);
aFamilyList.EndReading(p_end);
while (p < p_end) {
const char16_t *nameStart = p;
while (++p != p_end && *p != kComma)
/* nothing */ ;
// pull out a single name and clean out leading/trailing whitespace
fontname = Substring(nameStart, p);
fontname.CompressWhitespace(true, true);
// append it to the list
aFontList.AppendElement(fontname);
++p;
}
}
void gfxFontUtils::AppendPrefsFontList(const char *aPrefName,
nsTArray<nsString>& aFontList)
{
// get the list of single-face font families
nsAdoptingString fontlistValue = Preferences::GetString(aPrefName);
if (!fontlistValue) {
return;
}
ParseFontList(fontlistValue, aFontList);
}
void gfxFontUtils::GetPrefsFontList(const char *aPrefName,
nsTArray<nsString>& aFontList)
{
aFontList.Clear();
AppendPrefsFontList(aPrefName, aFontList);
}
// produce a unique font name that is (1) a valid Postscript name and (2) less
// than 31 characters in length. Using AddFontMemResourceEx on Windows fails
// for names longer than 30 characters in length.
#define MAX_B64_LEN 32
nsresult gfxFontUtils::MakeUniqueUserFontName(nsAString& aName)
{
nsCOMPtr<nsIUUIDGenerator> uuidgen =
do_GetService("@mozilla.org/uuid-generator;1");
NS_ENSURE_TRUE(uuidgen, NS_ERROR_OUT_OF_MEMORY);
nsID guid;
NS_ASSERTION(sizeof(guid) * 2 <= MAX_B64_LEN, "size of nsID has changed!");
nsresult rv = uuidgen->GenerateUUIDInPlace(&guid);
NS_ENSURE_SUCCESS(rv, rv);
char guidB64[MAX_B64_LEN] = {0};
if (!PL_Base64Encode(reinterpret_cast<char*>(&guid), sizeof(guid), guidB64))
return NS_ERROR_FAILURE;
// all b64 characters except for '/' are allowed in Postscript names, so convert / ==> -
char *p;
for (p = guidB64; *p; p++) {
if (*p == '/')
*p = '-';
}
aName.AssignLiteral(MOZ_UTF16("uf"));
aName.AppendASCII(guidB64);
return NS_OK;
}
// TrueType/OpenType table handling code
// need byte aligned structs
#pragma pack(1)
// name table stores set of name record structures, followed by
// large block containing all the strings. name record offset and length
// indicates the offset and length within that block.
// http://www.microsoft.com/typography/otspec/name.htm
struct NameRecordData {
uint32_t offset;
uint32_t length;
};
#pragma pack()
static bool
IsValidSFNTVersion(uint32_t version)
{
// normally 0x00010000, CFF-style OT fonts == 'OTTO' and Apple TT fonts = 'true'
// 'typ1' is also possible for old Type 1 fonts in a SFNT container but not supported
return version == 0x10000 ||
version == TRUETYPE_TAG('O','T','T','O') ||
version == TRUETYPE_TAG('t','r','u','e');
}
// copy and swap UTF-16 values, assume no surrogate pairs, can be in place
static void
CopySwapUTF16(const uint16_t *aInBuf, uint16_t *aOutBuf, uint32_t aLen)
{
const uint16_t *end = aInBuf + aLen;
while (aInBuf < end) {
uint16_t value = *aInBuf;
*aOutBuf = (value >> 8) | (value & 0xff) << 8;
aOutBuf++;
aInBuf++;
}
}
gfxUserFontType
gfxFontUtils::DetermineFontDataType(const uint8_t *aFontData, uint32_t aFontDataLength)
{
// test for OpenType font data
// problem: EOT-Lite with 0x10000 length will look like TrueType!
if (aFontDataLength >= sizeof(SFNTHeader)) {
const SFNTHeader *sfntHeader = reinterpret_cast<const SFNTHeader*>(aFontData);
uint32_t sfntVersion = sfntHeader->sfntVersion;
if (IsValidSFNTVersion(sfntVersion)) {
return GFX_USERFONT_OPENTYPE;
}
}
// test for WOFF
if (aFontDataLength >= sizeof(AutoSwap_PRUint32)) {
const AutoSwap_PRUint32 *version =
reinterpret_cast<const AutoSwap_PRUint32*>(aFontData);
if (uint32_t(*version) == TRUETYPE_TAG('w','O','F','F')) {
return GFX_USERFONT_WOFF;
}
if (Preferences::GetBool(GFX_PREF_WOFF2_ENABLED) &&
uint32_t(*version) == TRUETYPE_TAG('w','O','F','2')) {
return GFX_USERFONT_WOFF2;
}
}
// tests for other formats here
return GFX_USERFONT_UNKNOWN;
}
nsresult
gfxFontUtils::RenameFont(const nsAString& aName, const uint8_t *aFontData,
uint32_t aFontDataLength, FallibleTArray<uint8_t> *aNewFont)
{
NS_ASSERTION(aNewFont, "null font data array");
uint64_t dataLength(aFontDataLength);
// new name table
static const uint32_t neededNameIDs[] = {NAME_ID_FAMILY,
NAME_ID_STYLE,
NAME_ID_UNIQUE,
NAME_ID_FULL,
NAME_ID_POSTSCRIPT};
// calculate new name table size
uint16_t nameCount = ArrayLength(neededNameIDs);
// leave room for null-terminator
uint16_t nameStrLength = (aName.Length() + 1) * sizeof(char16_t);
// round name table size up to 4-byte multiple
uint32_t nameTableSize = (sizeof(NameHeader) +
sizeof(NameRecord) * nameCount +
nameStrLength +
3) & ~3;
if (dataLength + nameTableSize > UINT32_MAX)
return NS_ERROR_FAILURE;
// bug 505386 - need to handle unpadded font length
uint32_t paddedFontDataSize = (aFontDataLength + 3) & ~3;
uint32_t adjFontDataSize = paddedFontDataSize + nameTableSize;
// create new buffer: old font data plus new name table
if (!aNewFont->AppendElements(adjFontDataSize))
return NS_ERROR_OUT_OF_MEMORY;
// copy the old font data
uint8_t *newFontData = reinterpret_cast<uint8_t*>(aNewFont->Elements());
// null the last four bytes in case the font length is not a multiple of 4
memset(newFontData + aFontDataLength, 0, paddedFontDataSize - aFontDataLength);
// copy font data
memcpy(newFontData, aFontData, aFontDataLength);
// null out the last 4 bytes for checksum calculations
memset(newFontData + adjFontDataSize - 4, 0, 4);
NameHeader *nameHeader = reinterpret_cast<NameHeader*>(newFontData +
paddedFontDataSize);
// -- name header
nameHeader->format = 0;
nameHeader->count = nameCount;
nameHeader->stringOffset = sizeof(NameHeader) + nameCount * sizeof(NameRecord);
// -- name records
uint32_t i;
NameRecord *nameRecord = reinterpret_cast<NameRecord*>(nameHeader + 1);
for (i = 0; i < nameCount; i++, nameRecord++) {
nameRecord->platformID = PLATFORM_ID_MICROSOFT;
nameRecord->encodingID = ENCODING_ID_MICROSOFT_UNICODEBMP;
nameRecord->languageID = LANG_ID_MICROSOFT_EN_US;
nameRecord->nameID = neededNameIDs[i];
nameRecord->offset = 0;
nameRecord->length = nameStrLength;
}
// -- string data, located after the name records, stored in big-endian form
char16_t *strData = reinterpret_cast<char16_t*>(nameRecord);
mozilla::NativeEndian::copyAndSwapToBigEndian(strData,
aName.BeginReading(),
aName.Length());
strData[aName.Length()] = 0; // add null termination
// adjust name table header to point to the new name table
SFNTHeader *sfntHeader = reinterpret_cast<SFNTHeader*>(newFontData);
// table directory entries begin immediately following SFNT header
TableDirEntry *dirEntry =
reinterpret_cast<TableDirEntry*>(newFontData + sizeof(SFNTHeader));
uint32_t numTables = sfntHeader->numTables;
for (i = 0; i < numTables; i++, dirEntry++) {
if (dirEntry->tag == TRUETYPE_TAG('n','a','m','e')) {
break;
}
}
// function only called if font validates, so this should always be true
NS_ASSERTION(i < numTables, "attempt to rename font with no name table");
// note: dirEntry now points to name record
// recalculate name table checksum
uint32_t checkSum = 0;
AutoSwap_PRUint32 *nameData = reinterpret_cast<AutoSwap_PRUint32*> (nameHeader);
AutoSwap_PRUint32 *nameDataEnd = nameData + (nameTableSize >> 2);
while (nameData < nameDataEnd)
checkSum = checkSum + *nameData++;
// adjust name table entry to point to new name table
dirEntry->offset = paddedFontDataSize;
dirEntry->length = nameTableSize;
dirEntry->checkSum = checkSum;
// fix up checksums
uint32_t checksum = 0;
// checksum for font = (checksum of header) + (checksum of tables)
uint32_t headerLen = sizeof(SFNTHeader) + sizeof(TableDirEntry) * numTables;
const AutoSwap_PRUint32 *headerData =
reinterpret_cast<const AutoSwap_PRUint32*>(newFontData);
// header length is in bytes, checksum calculated in longwords
for (i = 0; i < (headerLen >> 2); i++, headerData++) {
checksum += *headerData;
}
uint32_t headOffset = 0;
dirEntry = reinterpret_cast<TableDirEntry*>(newFontData + sizeof(SFNTHeader));
for (i = 0; i < numTables; i++, dirEntry++) {
if (dirEntry->tag == TRUETYPE_TAG('h','e','a','d')) {
headOffset = dirEntry->offset;
}
checksum += dirEntry->checkSum;
}
NS_ASSERTION(headOffset != 0, "no head table for font");
HeadTable *headData = reinterpret_cast<HeadTable*>(newFontData + headOffset);
headData->checkSumAdjustment = HeadTable::HEAD_CHECKSUM_CALC_CONST - checksum;
return NS_OK;
}
// This is only called after the basic validity of the downloaded sfnt
// data has been checked, so it should never fail to find the name table
// (though it might fail to read it, if memory isn't available);
// other checks here are just for extra paranoia.
nsresult
gfxFontUtils::GetFullNameFromSFNT(const uint8_t* aFontData, uint32_t aLength,
nsAString& aFullName)
{
aFullName.AssignLiteral("(MISSING NAME)"); // should always get replaced
NS_ENSURE_TRUE(aLength >= sizeof(SFNTHeader), NS_ERROR_UNEXPECTED);
const SFNTHeader *sfntHeader =
reinterpret_cast<const SFNTHeader*>(aFontData);
const TableDirEntry *dirEntry =
reinterpret_cast<const TableDirEntry*>(aFontData + sizeof(SFNTHeader));
uint32_t numTables = sfntHeader->numTables;
NS_ENSURE_TRUE(aLength >=
sizeof(SFNTHeader) + numTables * sizeof(TableDirEntry),
NS_ERROR_UNEXPECTED);
bool foundName = false;
for (uint32_t i = 0; i < numTables; i++, dirEntry++) {
if (dirEntry->tag == TRUETYPE_TAG('n','a','m','e')) {
foundName = true;
break;
}
}
// should never fail, as we're only called after font validation succeeded
NS_ENSURE_TRUE(foundName, NS_ERROR_NOT_AVAILABLE);
uint32_t len = dirEntry->length;
NS_ENSURE_TRUE(aLength > len && aLength - len >= dirEntry->offset,
NS_ERROR_UNEXPECTED);
hb_blob_t *nameBlob =
hb_blob_create((const char*)aFontData + dirEntry->offset, len,
HB_MEMORY_MODE_READONLY, nullptr, nullptr);
nsresult rv = GetFullNameFromTable(nameBlob, aFullName);
hb_blob_destroy(nameBlob);
return rv;
}
nsresult
gfxFontUtils::GetFullNameFromTable(hb_blob_t *aNameTable,
nsAString& aFullName)
{
nsAutoString name;
nsresult rv =
gfxFontUtils::ReadCanonicalName(aNameTable,
gfxFontUtils::NAME_ID_FULL,
name);
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
aFullName = name;
return NS_OK;
}
rv = gfxFontUtils::ReadCanonicalName(aNameTable,
gfxFontUtils::NAME_ID_FAMILY,
name);
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
nsAutoString styleName;
rv = gfxFontUtils::ReadCanonicalName(aNameTable,
gfxFontUtils::NAME_ID_STYLE,
styleName);
if (NS_SUCCEEDED(rv) && !styleName.IsEmpty()) {
name.Append(' ');
name.Append(styleName);
aFullName = name;
}
return NS_OK;
}
return NS_ERROR_NOT_AVAILABLE;
}
nsresult
gfxFontUtils::GetFamilyNameFromTable(hb_blob_t *aNameTable,
nsAString& aFullName)
{
nsAutoString name;
nsresult rv =
gfxFontUtils::ReadCanonicalName(aNameTable,
gfxFontUtils::NAME_ID_FAMILY,
name);
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
aFullName = name;
return NS_OK;
}
return NS_ERROR_NOT_AVAILABLE;
}
enum {
#if defined(XP_MACOSX)
CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MAC_ENGLISH,
PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MAC
#else
CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MICROSOFT_EN_US,
PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MICROSOFT
#endif
};
nsresult
gfxFontUtils::ReadNames(const char *aNameData, uint32_t aDataLen,
uint32_t aNameID, int32_t aPlatformID,
nsTArray<nsString>& aNames)
{
return ReadNames(aNameData, aDataLen, aNameID, LANG_ALL,
aPlatformID, aNames);
}
nsresult
gfxFontUtils::ReadCanonicalName(hb_blob_t *aNameTable, uint32_t aNameID,
nsString& aName)
{
uint32_t nameTableLen;
const char *nameTable = hb_blob_get_data(aNameTable, &nameTableLen);
return ReadCanonicalName(nameTable, nameTableLen, aNameID, aName);
}
nsresult
gfxFontUtils::ReadCanonicalName(const char *aNameData, uint32_t aDataLen,
uint32_t aNameID, nsString& aName)
{
nsresult rv;
nsTArray<nsString> names;
// first, look for the English name (this will succeed 99% of the time)
rv = ReadNames(aNameData, aDataLen, aNameID, CANONICAL_LANG_ID,
PLATFORM_ID, names);
NS_ENSURE_SUCCESS(rv, rv);
// otherwise, grab names for all languages
if (names.Length() == 0) {
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL,
PLATFORM_ID, names);
NS_ENSURE_SUCCESS(rv, rv);
}
#if defined(XP_MACOSX)
// may be dealing with font that only has Microsoft name entries
if (names.Length() == 0) {
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ID_MICROSOFT_EN_US,
PLATFORM_ID_MICROSOFT, names);
NS_ENSURE_SUCCESS(rv, rv);
// getting really desperate now, take anything!
if (names.Length() == 0) {
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL,
PLATFORM_ID_MICROSOFT, names);
NS_ENSURE_SUCCESS(rv, rv);
}
}
#endif
// return the first name (99.9% of the time names will
// contain a single English name)
if (names.Length()) {
aName.Assign(names[0]);
return NS_OK;
}
return NS_ERROR_FAILURE;
}
// Charsets to use for decoding Mac platform font names.
// This table is sorted by {encoding, language}, with the wildcard "ANY" being
// greater than any defined values for each field; we use a binary search on both
// fields, and fall back to matching only encoding if necessary
// Some "redundant" entries for specific combinations are included such as
// encoding=roman, lang=english, in order that common entries will be found
// on the first search.
#define ANY 0xffff
const gfxFontUtils::MacFontNameCharsetMapping gfxFontUtils::gMacFontNameCharsets[] =
{
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ENGLISH, "macintosh" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ICELANDIC, "x-mac-icelandic" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_TURKISH, "x-mac-turkish" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_POLISH, "x-mac-ce" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ROMANIAN, "x-mac-romanian" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_CZECH, "x-mac-ce" },
{ ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_SLOVAK, "x-mac-ce" },
{ ENCODING_ID_MAC_ROMAN, ANY, "macintosh" },
{ ENCODING_ID_MAC_JAPANESE, LANG_ID_MAC_JAPANESE, "Shift_JIS" },
{ ENCODING_ID_MAC_JAPANESE, ANY, "Shift_JIS" },
{ ENCODING_ID_MAC_TRAD_CHINESE, LANG_ID_MAC_TRAD_CHINESE, "Big5" },
{ ENCODING_ID_MAC_TRAD_CHINESE, ANY, "Big5" },
{ ENCODING_ID_MAC_KOREAN, LANG_ID_MAC_KOREAN, "EUC-KR" },
{ ENCODING_ID_MAC_KOREAN, ANY, "EUC-KR" },
{ ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_ARABIC, "x-mac-arabic" },
{ ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_URDU, "x-mac-farsi" },
{ ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_FARSI, "x-mac-farsi" },
{ ENCODING_ID_MAC_ARABIC, ANY, "x-mac-arabic" },
{ ENCODING_ID_MAC_HEBREW, LANG_ID_MAC_HEBREW, "x-mac-hebrew" },
{ ENCODING_ID_MAC_HEBREW, ANY, "x-mac-hebrew" },
{ ENCODING_ID_MAC_GREEK, ANY, "x-mac-greek" },
{ ENCODING_ID_MAC_CYRILLIC, ANY, "x-mac-cyrillic" },
{ ENCODING_ID_MAC_DEVANAGARI, ANY, "x-mac-devanagari"},
{ ENCODING_ID_MAC_GURMUKHI, ANY, "x-mac-gurmukhi" },
{ ENCODING_ID_MAC_GUJARATI, ANY, "x-mac-gujarati" },
{ ENCODING_ID_MAC_SIMP_CHINESE, LANG_ID_MAC_SIMP_CHINESE, "gb18030" },
{ ENCODING_ID_MAC_SIMP_CHINESE, ANY, "gb18030" }
};
const char* gfxFontUtils::gISOFontNameCharsets[] =
{
/* 0 */ "windows-1252", /* US-ASCII */
/* 1 */ nullptr , /* spec says "ISO 10646" but does not specify encoding form! */
/* 2 */ "windows-1252" /* ISO-8859-1 */
};
const char* gfxFontUtils::gMSFontNameCharsets[] =
{
/* [0] ENCODING_ID_MICROSOFT_SYMBOL */ "" ,
/* [1] ENCODING_ID_MICROSOFT_UNICODEBMP */ "" ,
/* [2] ENCODING_ID_MICROSOFT_SHIFTJIS */ "Shift_JIS" ,
/* [3] ENCODING_ID_MICROSOFT_PRC */ nullptr ,
/* [4] ENCODING_ID_MICROSOFT_BIG5 */ "Big5" ,
/* [5] ENCODING_ID_MICROSOFT_WANSUNG */ nullptr ,
/* [6] ENCODING_ID_MICROSOFT_JOHAB */ nullptr ,
/* [7] reserved */ nullptr ,
/* [8] reserved */ nullptr ,
/* [9] reserved */ nullptr ,
/*[10] ENCODING_ID_MICROSOFT_UNICODEFULL */ ""
};
struct MacCharsetMappingComparator
{
typedef gfxFontUtils::MacFontNameCharsetMapping MacFontNameCharsetMapping;
const MacFontNameCharsetMapping& mSearchValue;
explicit MacCharsetMappingComparator(const MacFontNameCharsetMapping& aSearchValue)
: mSearchValue(aSearchValue) {}
int operator()(const MacFontNameCharsetMapping& aEntry) const {
if (mSearchValue < aEntry) {
return -1;
}
if (aEntry < mSearchValue) {
return 1;
}
return 0;
}
};
// Return the name of the charset we should use to decode a font name
// given the name table attributes.
// Special return values:
// "" charset is UTF16BE, no need for a converter
// nullptr unknown charset, do not attempt conversion
const char*
gfxFontUtils::GetCharsetForFontName(uint16_t aPlatform, uint16_t aScript, uint16_t aLanguage)
{
switch (aPlatform)
{
case PLATFORM_ID_UNICODE:
return "";
case PLATFORM_ID_MAC:
{
MacFontNameCharsetMapping searchValue = { aScript, aLanguage, nullptr };
for (uint32_t i = 0; i < 2; ++i) {
size_t idx;
if (BinarySearchIf(gMacFontNameCharsets, 0, ArrayLength(gMacFontNameCharsets),
MacCharsetMappingComparator(searchValue), &idx)) {
return gMacFontNameCharsets[idx].mCharsetName;
}
// no match, so try again finding one in any language
searchValue.mLanguage = ANY;
}
}
break;
case PLATFORM_ID_ISO:
if (aScript < ArrayLength(gISOFontNameCharsets)) {
return gISOFontNameCharsets[aScript];
}
break;
case PLATFORM_ID_MICROSOFT:
if (aScript < ArrayLength(gMSFontNameCharsets)) {
return gMSFontNameCharsets[aScript];
}
break;
}
return nullptr;
}
// convert a raw name from the name table to an nsString, if possible;
// return value indicates whether conversion succeeded
bool
gfxFontUtils::DecodeFontName(const char *aNameData, int32_t aByteLen,
uint32_t aPlatformCode, uint32_t aScriptCode,
uint32_t aLangCode, nsAString& aName)
{
if (aByteLen <= 0) {
NS_WARNING("empty font name");
aName.SetLength(0);
return true;
}
const char *csName = GetCharsetForFontName(aPlatformCode, aScriptCode, aLangCode);
if (!csName) {
// nullptr -> unknown charset
#ifdef DEBUG
char warnBuf[128];
if (aByteLen > 64)
aByteLen = 64;
sprintf(warnBuf, "skipping font name, unknown charset %d:%d:%d for <%.*s>",
aPlatformCode, aScriptCode, aLangCode, aByteLen, aNameData);
NS_WARNING(warnBuf);
#endif
return false;
}
if (csName[0] == 0) {
// empty charset name: data is utf16be, no need to instantiate a converter
uint32_t strLen = aByteLen / 2;
#ifdef IS_LITTLE_ENDIAN
aName.SetLength(strLen);
CopySwapUTF16(reinterpret_cast<const uint16_t*>(aNameData),
reinterpret_cast<uint16_t*>(aName.BeginWriting()), strLen);
#else
aName.Assign(reinterpret_cast<const char16_t*>(aNameData), strLen);
#endif
return true;
}
nsCOMPtr<nsIUnicodeDecoder> decoder =
mozilla::dom::EncodingUtils::DecoderForEncoding(csName);
if (!decoder) {
NS_WARNING("failed to get the decoder for a font name string");
return false;
}
int32_t destLength;
nsresult rv = decoder->GetMaxLength(aNameData, aByteLen, &destLength);
if (NS_FAILED(rv)) {
NS_WARNING("decoder->GetMaxLength failed, invalid font name?");
return false;
}
// make space for the converted string
aName.SetLength(destLength);
rv = decoder->Convert(aNameData, &aByteLen,
aName.BeginWriting(), &destLength);
if (NS_FAILED(rv)) {
NS_WARNING("decoder->Convert failed, invalid font name?");
return false;
}
aName.Truncate(destLength); // set the actual length
return true;
}
nsresult
gfxFontUtils::ReadNames(const char *aNameData, uint32_t aDataLen,
uint32_t aNameID,
int32_t aLangID, int32_t aPlatformID,
nsTArray<nsString>& aNames)
{
NS_ASSERTION(aDataLen != 0, "null name table");
if (!aDataLen) {
return NS_ERROR_FAILURE;
}
// -- name table data
const NameHeader *nameHeader = reinterpret_cast<const NameHeader*>(aNameData);
uint32_t nameCount = nameHeader->count;
// -- sanity check the number of name records
if (uint64_t(nameCount) * sizeof(NameRecord) > aDataLen) {
NS_WARNING("invalid font (name table data)");
return NS_ERROR_FAILURE;
}
// -- iterate through name records
const NameRecord *nameRecord
= reinterpret_cast<const NameRecord*>(aNameData + sizeof(NameHeader));
uint64_t nameStringsBase = uint64_t(nameHeader->stringOffset);
uint32_t i;
for (i = 0; i < nameCount; i++, nameRecord++) {
uint32_t platformID;
// skip over unwanted nameID's
if (uint32_t(nameRecord->nameID) != aNameID)
continue;
// skip over unwanted platform data
platformID = nameRecord->platformID;
if (aPlatformID != PLATFORM_ALL
&& uint32_t(nameRecord->platformID) != PLATFORM_ID)
continue;
// skip over unwanted languages
if (aLangID != LANG_ALL
&& uint32_t(nameRecord->languageID) != uint32_t(aLangID))
continue;
// add name to names array
// -- calculate string location
uint32_t namelen = nameRecord->length;
uint32_t nameoff = nameRecord->offset; // offset from base of string storage
if (nameStringsBase + uint64_t(nameoff) + uint64_t(namelen)
> aDataLen) {
NS_WARNING("invalid font (name table strings)");
return NS_ERROR_FAILURE;
}
// -- decode if necessary and make nsString
nsAutoString name;
DecodeFontName(aNameData + nameStringsBase + nameoff, namelen,
platformID, uint32_t(nameRecord->encodingID),
uint32_t(nameRecord->languageID), name);
uint32_t k, numNames;
bool foundName = false;
numNames = aNames.Length();
for (k = 0; k < numNames; k++) {
if (name.Equals(aNames[k])) {
foundName = true;
break;
}
}
if (!foundName)
aNames.AppendElement(name);
}
return NS_OK;
}
#pragma pack(1)
struct COLRBaseGlyphRecord {
AutoSwap_PRUint16 glyphId;
AutoSwap_PRUint16 firstLayerIndex;
AutoSwap_PRUint16 numLayers;
};
struct COLRLayerRecord {
AutoSwap_PRUint16 glyphId;
AutoSwap_PRUint16 paletteEntryIndex;
};
struct CPALColorRecord {
uint8_t blue;
uint8_t green;
uint8_t red;
uint8_t alpha;
};
#pragma pack()
bool
gfxFontUtils::ValidateColorGlyphs(hb_blob_t* aCOLR, hb_blob_t* aCPAL)
{
unsigned int colrLength;
const COLRHeader* colr =
reinterpret_cast<const COLRHeader*>(hb_blob_get_data(aCOLR, &colrLength));
unsigned int cpalLength;
const CPALHeaderVersion0* cpal =
reinterpret_cast<const CPALHeaderVersion0*>(hb_blob_get_data(aCPAL, &cpalLength));
if (!colr || !cpal || !colrLength || !cpalLength) {
return false;
}
if (uint16_t(colr->version) != 0 || uint16_t(cpal->version) != 0) {
// We only support version 0 headers.
return false;
}
const uint32_t offsetBaseGlyphRecord = colr->offsetBaseGlyphRecord;
const uint16_t numBaseGlyphRecord = colr->numBaseGlyphRecord;
const uint32_t offsetLayerRecord = colr->offsetLayerRecord;
const uint16_t numLayerRecords = colr->numLayerRecords;
const uint32_t offsetFirstColorRecord = cpal->offsetFirstColorRecord;
const uint16_t numColorRecords = cpal->numColorRecords;
const uint32_t numPaletteEntries = cpal->numPaletteEntries;
if (offsetBaseGlyphRecord >= colrLength) {
return false;
}
if (offsetLayerRecord >= colrLength) {
return false;
}
if (offsetFirstColorRecord >= cpalLength) {
return false;
}
if (!numPaletteEntries) {
return false;
}
if (sizeof(COLRBaseGlyphRecord) * numBaseGlyphRecord >
colrLength - offsetBaseGlyphRecord) {
// COLR base glyph record will be overflow
return false;
}
if (sizeof(COLRLayerRecord) * numLayerRecords >
colrLength - offsetLayerRecord) {
// COLR layer record will be overflow
return false;
}
if (sizeof(CPALColorRecord) * numColorRecords >
cpalLength - offsetFirstColorRecord) {
// CPAL color record will be overflow
return false;
}
if (numPaletteEntries * uint16_t(cpal->numPalettes) != numColorRecords ) {
// palette of CPAL color record will be overflow.
return false;
}
uint16_t lastGlyphId = 0;
const COLRBaseGlyphRecord* baseGlyph =
reinterpret_cast<const COLRBaseGlyphRecord*>(
reinterpret_cast<const uint8_t*>(colr) + offsetBaseGlyphRecord);
for (uint16_t i = 0; i < numBaseGlyphRecord; i++, baseGlyph++) {
const uint32_t firstLayerIndex = baseGlyph->firstLayerIndex;
const uint16_t numLayers = baseGlyph->numLayers;
const uint16_t glyphId = baseGlyph->glyphId;
if (lastGlyphId && lastGlyphId >= glyphId) {
// glyphId must be sorted
return false;
}
lastGlyphId = glyphId;
if (!numLayers) {
// no layer
return false;
}
if (firstLayerIndex + numLayers > numLayerRecords) {
// layer length of target glyph is overflow
return false;
}
}
const COLRLayerRecord* layer =
reinterpret_cast<const COLRLayerRecord*>(
reinterpret_cast<const uint8_t*>(colr) + offsetLayerRecord);
for (uint16_t i = 0; i < numLayerRecords; i++, layer++) {
if (uint16_t(layer->paletteEntryIndex) >= numPaletteEntries) {
// CPAL palette entry record is overflow
return false;
}
}
return true;
}
static int
CompareBaseGlyph(const void* key, const void* data)
{
uint32_t glyphId = (uint32_t)(uintptr_t)key;
const COLRBaseGlyphRecord* baseGlyph =
reinterpret_cast<const COLRBaseGlyphRecord*>(data);
uint32_t baseGlyphId = uint16_t(baseGlyph->glyphId);
if (baseGlyphId == glyphId) {
return 0;
}
return baseGlyphId > glyphId ? -1 : 1;
}
static
COLRBaseGlyphRecord*
LookForBaseGlyphRecord(const COLRHeader* aCOLR, uint32_t aGlyphId)
{
const uint8_t* baseGlyphRecords =
reinterpret_cast<const uint8_t*>(aCOLR) +
uint32_t(aCOLR->offsetBaseGlyphRecord);
// BaseGlyphRecord is sorted by glyphId
return reinterpret_cast<COLRBaseGlyphRecord*>(
bsearch((void*)(uintptr_t)aGlyphId,
baseGlyphRecords,
uint16_t(aCOLR->numBaseGlyphRecord),
sizeof(COLRBaseGlyphRecord),
CompareBaseGlyph));
}
bool
gfxFontUtils::GetColorGlyphLayers(hb_blob_t* aCOLR,
hb_blob_t* aCPAL,
uint32_t aGlyphId,
nsTArray<uint16_t>& aGlyphs,
nsTArray<mozilla::gfx::Color>& aColors)
{
unsigned int blobLength;
const COLRHeader* colr =
reinterpret_cast<const COLRHeader*>(hb_blob_get_data(aCOLR,
&blobLength));
MOZ_ASSERT(colr, "Cannot get COLR raw data");
MOZ_ASSERT(blobLength, "Found COLR data, but length is 0");
COLRBaseGlyphRecord* baseGlyph = LookForBaseGlyphRecord(colr, aGlyphId);
if (!baseGlyph) {
return false;
}
const CPALHeaderVersion0* cpal =
reinterpret_cast<const CPALHeaderVersion0*>(
hb_blob_get_data(aCPAL, &blobLength));
MOZ_ASSERT(cpal, "Cannot get CPAL raw data");
MOZ_ASSERT(blobLength, "Found CPAL data, but length is 0");
const COLRLayerRecord* layer =
reinterpret_cast<const COLRLayerRecord*>(
reinterpret_cast<const uint8_t*>(colr) +
uint32_t(colr->offsetLayerRecord) +
sizeof(COLRLayerRecord) * uint16_t(baseGlyph->firstLayerIndex));
const uint16_t numLayers = baseGlyph->numLayers;
const uint32_t offsetFirstColorRecord = cpal->offsetFirstColorRecord;
for (uint16_t layerIndex = 0; layerIndex < numLayers; layerIndex++) {
aGlyphs.AppendElement(uint16_t(layer->glyphId));
const CPALColorRecord* color =
reinterpret_cast<const CPALColorRecord*>(
reinterpret_cast<const uint8_t*>(cpal) +
offsetFirstColorRecord +
sizeof(CPALColorRecord) * uint16_t(layer->paletteEntryIndex));
aColors.AppendElement(mozilla::gfx::Color(color->red / 255.0,
color->green / 255.0,
color->blue / 255.0,
color->alpha / 255.0));
layer++;
}
return true;
}
#ifdef XP_WIN
/* static */
bool
gfxFontUtils::IsCffFont(const uint8_t* aFontData)
{
// this is only called after aFontData has passed basic validation,
// so we know there is enough data present to allow us to read the version!
const SFNTHeader *sfntHeader = reinterpret_cast<const SFNTHeader*>(aFontData);
return (sfntHeader->sfntVersion == TRUETYPE_TAG('O','T','T','O'));
}
#endif