gecko-dev/servo/components/style/bloom.rs
Bobby Holley a9e7b86e87 servo: Merge #15462 - Accumulate parent elements that need selector bits set on the ThreadLocalStyleContext (from bholley:accumulate_selector_flags); r=emilio
Discussion and review in https://bugzilla.mozilla.org/show_bug.cgi?id=1336646

Source-Repo: https://github.com/servo/servo
Source-Revision: cbfd4464270f8690b90b9b96c395523a3a39e2de

--HG--
extra : subtree_source : https%3A//hg.mozilla.org/projects/converted-servo-linear
extra : subtree_revision : c3bfb03915e31cb95db1b247edb24872eb1cfcf5
2017-02-08 19:33:27 -08:00

256 lines
9.3 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The style bloom filter is used as an optimization when matching deep
//! descendant selectors.
#![deny(missing_docs)]
use dom::{SendElement, TElement};
use matching::MatchMethods;
use selectors::bloom::BloomFilter;
/// A struct that allows us to fast-reject deep descendant selectors avoiding
/// selector-matching.
///
/// This is implemented using a counting bloom filter, and it's a standard
/// optimization. See Gecko's `AncestorFilter`, and Blink's and WebKit's
/// `SelectorFilter`.
///
/// The constraints for Servo's style system are a bit different compared to
/// traditional style systems given Servo does a parallel breadth-first
/// traversal instead of a sequential depth-first traversal.
///
/// This implies that we need to track a bit more state than other browsers to
/// ensure we're doing the correct thing during the traversal, and being able to
/// apply this optimization effectively.
///
/// Concretely, we have a bloom filter instance per worker thread, and we track
/// the current DOM depth in order to find a common ancestor when it doesn't
/// match the previous element we've styled.
///
/// This is usually a pretty fast operation (we use to be one level deeper than
/// the previous one), but in the case of work-stealing, we may needed to push
/// and pop multiple elements.
///
/// See the `insert_parents_recovering`, where most of the magic happens.
///
/// Regarding thread-safety, this struct is safe because:
///
/// * We clear this after a restyle.
/// * The DOM shape and attributes (and every other thing we access here) are
/// immutable during a restyle.
///
pub struct StyleBloom<E: TElement> {
/// The bloom filter per se.
filter: Box<BloomFilter>,
/// The stack of elements that this bloom filter contains.
elements: Vec<SendElement<E>>,
}
impl<E: TElement> StyleBloom<E> {
/// Create an empty `StyleBloom`.
pub fn new() -> Self {
StyleBloom {
filter: Box::new(BloomFilter::new()),
elements: vec![],
}
}
/// Return the bloom filter used properly by the `selectors` crate.
pub fn filter(&self) -> &BloomFilter {
&*self.filter
}
/// Push an element to the bloom filter, knowing that it's a child of the
/// last element parent.
pub fn push(&mut self, element: E) {
if cfg!(debug_assertions) {
if self.elements.is_empty() {
assert!(element.parent_element().is_none());
}
}
element.insert_into_bloom_filter(&mut *self.filter);
self.elements.push(unsafe { SendElement::new(element) });
}
/// Pop the last element in the bloom filter and return it.
fn pop(&mut self) -> Option<E> {
let popped = self.elements.pop().map(|el| *el);
if let Some(popped) = popped {
popped.remove_from_bloom_filter(&mut self.filter);
}
popped
}
/// Returns true if the bloom filter is empty.
pub fn is_empty(&self) -> bool {
self.elements.is_empty()
}
/// Clears the bloom filter.
pub fn clear(&mut self) {
self.filter.clear();
self.elements.clear();
}
/// Rebuilds the bloom filter up to the parent of the given element.
pub fn rebuild(&mut self, mut element: E) -> usize {
self.clear();
while let Some(parent) = element.parent_element() {
parent.insert_into_bloom_filter(&mut *self.filter);
self.elements.push(unsafe { SendElement::new(parent) });
element = parent;
}
// Put them in the order we expect, from root to `element`'s parent.
self.elements.reverse();
return self.elements.len();
}
/// In debug builds, asserts that all the parents of `element` are in the
/// bloom filter.
///
/// Goes away in release builds.
pub fn assert_complete(&self, mut element: E) {
if cfg!(debug_assertions) {
let mut checked = 0;
while let Some(parent) = element.parent_element() {
assert_eq!(parent, *self.elements[self.elements.len() - 1 - checked]);
element = parent;
checked += 1;
}
assert_eq!(checked, self.elements.len());
}
}
/// Insert the parents of an element in the bloom filter, trying to recover
/// the filter if the last element inserted doesn't match.
///
/// Gets the element depth in the dom, to make it efficient, or if not
/// provided always rebuilds the filter from scratch.
///
/// Returns the new bloom filter depth, that the traversal code is
/// responsible to keep around if it wants to get an effective filter.
pub fn insert_parents_recovering(&mut self,
element: E,
element_depth: Option<usize>)
-> usize
{
// Easy case, we're in a different restyle, or we're empty.
if self.elements.is_empty() {
return self.rebuild(element);
}
let parent_element = match element.parent_element() {
Some(parent) => parent,
None => {
// Yay, another easy case.
self.clear();
return 0;
}
};
if self.elements.last().map(|el| **el) == Some(parent_element) {
// Ta da, cache hit, we're all done.
return self.elements.len();
}
let element_depth = match element_depth {
Some(depth) => depth,
// If we don't know the depth of `element`, we'd rather don't try
// fixing up the bloom filter, since it's quadratic.
None => {
return self.rebuild(element);
}
};
// We should've early exited above.
debug_assert!(element_depth != 0,
"We should have already cleared the bloom filter");
debug_assert!(!self.elements.is_empty(),
"How! We should've just rebuilt!");
// Now the fun begins: We have the depth of the dom and the depth of the
// last element inserted in the filter, let's try to find a common
// parent.
//
// The current depth, that is, the depth of the last element inserted in
// the bloom filter, is the number of elements _minus one_, that is: if
// there's one element, it must be the root -> depth zero.
let mut current_depth = self.elements.len() - 1;
// If the filter represents an element too deep in the dom, we need to
// pop ancestors.
while current_depth > element_depth - 1 {
self.pop().expect("Emilio is bad at math");
current_depth -= 1;
}
// Now let's try to find a common parent in the bloom filter chain,
// starting with parent_element.
let mut common_parent = parent_element;
let mut common_parent_depth = element_depth - 1;
// Let's collect the parents we are going to need to insert once we've
// found the common one.
let mut parents_to_insert = vec![];
// If the bloom filter still doesn't have enough elements, the common
// parent is up in the dom.
while common_parent_depth > current_depth {
// TODO(emilio): Seems like we could insert parents here, then
// reverse the slice.
parents_to_insert.push(common_parent);
common_parent =
common_parent.parent_element().expect("We were lied");
common_parent_depth -= 1;
}
// Now the two depths are the same.
debug_assert_eq!(common_parent_depth, current_depth);
// Happy case: The parents match, we only need to push the ancestors
// we've collected and we'll never enter in this loop.
//
// Not-so-happy case: Parent's don't match, so we need to keep going up
// until we find a common ancestor.
//
// Gecko currently models native anonymous content that conceptually hangs
// off the document (such as scrollbars) as a separate subtree from the
// document root. Thus it's possible with Gecko that we do not find any
// common ancestor.
while **self.elements.last().unwrap() != common_parent {
parents_to_insert.push(common_parent);
self.pop().unwrap();
common_parent = match common_parent.parent_element() {
Some(parent) => parent,
None => {
debug_assert!(self.elements.is_empty());
if cfg!(feature = "gecko") {
break;
} else {
panic!("should have found a common ancestor");
}
}
}
}
// Now the parents match, so insert the stack of elements we have been
// collecting so far.
for parent in parents_to_insert.into_iter().rev() {
self.push(parent);
}
debug_assert_eq!(self.elements.len(), element_depth);
// We're done! Easy.
return self.elements.len();
}
}