mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 05:41:12 +00:00
082eb01c54
The interface for getting the data source of the AudioInputProcessing in AudioInputTrack is moved from AudioInputProcessing::NotifyInputData to ::ProcessInput, which takes an AudioSegment forwarded from the AudioInputTrack's source track Depends on D131870 Differential Revision: https://phabricator.services.mozilla.com/D122513
263 lines
9.3 KiB
C++
263 lines
9.3 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "AudioSegment.h"
|
|
#include "AudioMixer.h"
|
|
#include "AudioChannelFormat.h"
|
|
#include <speex/speex_resampler.h>
|
|
|
|
namespace mozilla {
|
|
|
|
const uint8_t
|
|
SilentChannel::gZeroChannel[MAX_AUDIO_SAMPLE_SIZE *
|
|
SilentChannel::AUDIO_PROCESSING_FRAMES] = {0};
|
|
|
|
template <>
|
|
const float* SilentChannel::ZeroChannel<float>() {
|
|
return reinterpret_cast<const float*>(SilentChannel::gZeroChannel);
|
|
}
|
|
|
|
template <>
|
|
const int16_t* SilentChannel::ZeroChannel<int16_t>() {
|
|
return reinterpret_cast<const int16_t*>(SilentChannel::gZeroChannel);
|
|
}
|
|
|
|
void AudioSegment::ApplyVolume(float aVolume) {
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
ci->mVolume *= aVolume;
|
|
}
|
|
}
|
|
|
|
void AudioSegment::ResampleChunks(nsAutoRef<SpeexResamplerState>& aResampler,
|
|
uint32_t* aResamplerChannelCount,
|
|
uint32_t aInRate, uint32_t aOutRate) {
|
|
if (mChunks.IsEmpty()) {
|
|
return;
|
|
}
|
|
|
|
AudioSampleFormat format = AUDIO_FORMAT_SILENCE;
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
if (ci->mBufferFormat != AUDIO_FORMAT_SILENCE) {
|
|
format = ci->mBufferFormat;
|
|
}
|
|
}
|
|
|
|
switch (format) {
|
|
// If the format is silence at this point, all the chunks are silent. The
|
|
// actual function we use does not matter, it's just a matter of changing
|
|
// the chunks duration.
|
|
case AUDIO_FORMAT_SILENCE:
|
|
case AUDIO_FORMAT_FLOAT32:
|
|
Resample<float>(aResampler, aResamplerChannelCount, aInRate, aOutRate);
|
|
break;
|
|
case AUDIO_FORMAT_S16:
|
|
Resample<int16_t>(aResampler, aResamplerChannelCount, aInRate, aOutRate);
|
|
break;
|
|
default:
|
|
MOZ_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
size_t AudioSegment::WriteToInterleavedBuffer(nsTArray<AudioDataValue>& aBuffer,
|
|
uint32_t aChannels) const {
|
|
size_t offset = 0;
|
|
if (GetDuration() <= 0) {
|
|
MOZ_ASSERT(GetDuration() == 0);
|
|
return offset;
|
|
}
|
|
|
|
// Calculate how many samples in this segment
|
|
size_t frames = static_cast<size_t>(GetDuration());
|
|
CheckedInt<size_t> samples(frames);
|
|
samples *= static_cast<size_t>(aChannels);
|
|
MOZ_ASSERT(samples.isValid());
|
|
if (!samples.isValid()) {
|
|
return offset;
|
|
}
|
|
|
|
// Enlarge buffer space if needed
|
|
if (samples.value() > aBuffer.Capacity()) {
|
|
aBuffer.SetCapacity(samples.value());
|
|
}
|
|
aBuffer.SetLengthAndRetainStorage(samples.value());
|
|
aBuffer.ClearAndRetainStorage();
|
|
|
|
// Convert the de-interleaved chunks into an interleaved buffer. Note that
|
|
// we may upmix or downmix the audio data if the channel in the chunks
|
|
// mismatch with aChannels
|
|
for (ConstChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
const AudioChunk& c = *ci;
|
|
size_t samplesInChunk = static_cast<size_t>(c.mDuration) * aChannels;
|
|
switch (c.mBufferFormat) {
|
|
case AUDIO_FORMAT_S16:
|
|
WriteChunk<int16_t>(c, aChannels, c.mVolume,
|
|
aBuffer.Elements() + offset);
|
|
break;
|
|
case AUDIO_FORMAT_FLOAT32:
|
|
WriteChunk<float>(c, aChannels, c.mVolume, aBuffer.Elements() + offset);
|
|
break;
|
|
case AUDIO_FORMAT_SILENCE:
|
|
PodZero(aBuffer.Elements() + offset, samplesInChunk);
|
|
break;
|
|
default:
|
|
MOZ_ASSERT_UNREACHABLE("Unknown format");
|
|
PodZero(aBuffer.Elements() + offset, samplesInChunk);
|
|
break;
|
|
}
|
|
offset += samplesInChunk;
|
|
}
|
|
MOZ_DIAGNOSTIC_ASSERT(samples.value() == offset,
|
|
"Segment's duration is incorrect");
|
|
aBuffer.SetLengthAndRetainStorage(offset);
|
|
return offset;
|
|
}
|
|
|
|
// This helps to to safely get a pointer to the position we want to start
|
|
// writing a planar audio buffer, depending on the channel and the offset in the
|
|
// buffer.
|
|
static AudioDataValue* PointerForOffsetInChannel(AudioDataValue* aData,
|
|
size_t aLengthSamples,
|
|
uint32_t aChannelCount,
|
|
uint32_t aChannel,
|
|
uint32_t aOffsetSamples) {
|
|
size_t samplesPerChannel = aLengthSamples / aChannelCount;
|
|
size_t beginningOfChannel = samplesPerChannel * aChannel;
|
|
MOZ_ASSERT(aChannel * samplesPerChannel + aOffsetSamples < aLengthSamples,
|
|
"Offset request out of bounds.");
|
|
return aData + beginningOfChannel + aOffsetSamples;
|
|
}
|
|
|
|
void AudioSegment::Mix(AudioMixer& aMixer, uint32_t aOutputChannels,
|
|
uint32_t aSampleRate) {
|
|
AutoTArray<AudioDataValue,
|
|
SilentChannel::AUDIO_PROCESSING_FRAMES * GUESS_AUDIO_CHANNELS>
|
|
buf;
|
|
AutoTArray<const AudioDataValue*, GUESS_AUDIO_CHANNELS> channelData;
|
|
uint32_t offsetSamples = 0;
|
|
uint32_t duration = GetDuration();
|
|
|
|
if (duration <= 0) {
|
|
MOZ_ASSERT(duration == 0);
|
|
return;
|
|
}
|
|
|
|
uint32_t outBufferLength = duration * aOutputChannels;
|
|
buf.SetLength(outBufferLength);
|
|
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
AudioChunk& c = *ci;
|
|
uint32_t frames = c.mDuration;
|
|
|
|
// If the chunk is silent, simply write the right number of silence in the
|
|
// buffers.
|
|
if (c.mBufferFormat == AUDIO_FORMAT_SILENCE) {
|
|
for (uint32_t channel = 0; channel < aOutputChannels; channel++) {
|
|
AudioDataValue* ptr =
|
|
PointerForOffsetInChannel(buf.Elements(), outBufferLength,
|
|
aOutputChannels, channel, offsetSamples);
|
|
PodZero(ptr, frames);
|
|
}
|
|
} else {
|
|
// Othewise, we need to upmix or downmix appropriately, depending on the
|
|
// desired input and output channels.
|
|
channelData.SetLength(c.mChannelData.Length());
|
|
for (uint32_t i = 0; i < channelData.Length(); ++i) {
|
|
channelData[i] = static_cast<const AudioDataValue*>(c.mChannelData[i]);
|
|
}
|
|
if (channelData.Length() < aOutputChannels) {
|
|
// Up-mix.
|
|
AudioChannelsUpMix(&channelData, aOutputChannels,
|
|
SilentChannel::ZeroChannel<AudioDataValue>());
|
|
for (uint32_t channel = 0; channel < aOutputChannels; channel++) {
|
|
AudioDataValue* ptr = PointerForOffsetInChannel(
|
|
buf.Elements(), outBufferLength, aOutputChannels, channel,
|
|
offsetSamples);
|
|
PodCopy(ptr,
|
|
reinterpret_cast<const AudioDataValue*>(channelData[channel]),
|
|
frames);
|
|
}
|
|
MOZ_ASSERT(channelData.Length() == aOutputChannels);
|
|
} else if (channelData.Length() > aOutputChannels) {
|
|
// Down mix.
|
|
AutoTArray<AudioDataValue*, GUESS_AUDIO_CHANNELS> outChannelPtrs;
|
|
outChannelPtrs.SetLength(aOutputChannels);
|
|
uint32_t offsetSamples = 0;
|
|
for (uint32_t channel = 0; channel < aOutputChannels; channel++) {
|
|
outChannelPtrs[channel] = PointerForOffsetInChannel(
|
|
buf.Elements(), outBufferLength, aOutputChannels, channel,
|
|
offsetSamples);
|
|
}
|
|
AudioChannelsDownMix(channelData, outChannelPtrs.Elements(),
|
|
aOutputChannels, frames);
|
|
} else {
|
|
// The channel count is already what we want, just copy it over.
|
|
for (uint32_t channel = 0; channel < aOutputChannels; channel++) {
|
|
AudioDataValue* ptr = PointerForOffsetInChannel(
|
|
buf.Elements(), outBufferLength, aOutputChannels, channel,
|
|
offsetSamples);
|
|
PodCopy(ptr,
|
|
reinterpret_cast<const AudioDataValue*>(channelData[channel]),
|
|
frames);
|
|
}
|
|
}
|
|
}
|
|
offsetSamples += frames;
|
|
}
|
|
|
|
if (offsetSamples) {
|
|
MOZ_ASSERT(offsetSamples == outBufferLength / aOutputChannels,
|
|
"We forgot to write some samples?");
|
|
aMixer.Mix(buf.Elements(), aOutputChannels, offsetSamples, aSampleRate);
|
|
}
|
|
}
|
|
|
|
void AudioSegment::WriteTo(AudioMixer& aMixer, uint32_t aOutputChannels,
|
|
uint32_t aSampleRate) {
|
|
AutoTArray<AudioDataValue,
|
|
SilentChannel::AUDIO_PROCESSING_FRAMES * GUESS_AUDIO_CHANNELS>
|
|
buf;
|
|
// Offset in the buffer that will be written to the mixer, in samples.
|
|
uint32_t offset = 0;
|
|
|
|
if (GetDuration() <= 0) {
|
|
MOZ_ASSERT(GetDuration() == 0);
|
|
return;
|
|
}
|
|
|
|
uint32_t outBufferLength = GetDuration() * aOutputChannels;
|
|
buf.SetLength(outBufferLength);
|
|
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
AudioChunk& c = *ci;
|
|
|
|
switch (c.mBufferFormat) {
|
|
case AUDIO_FORMAT_S16:
|
|
WriteChunk<int16_t>(c, aOutputChannels, c.mVolume,
|
|
buf.Elements() + offset);
|
|
break;
|
|
case AUDIO_FORMAT_FLOAT32:
|
|
WriteChunk<float>(c, aOutputChannels, c.mVolume,
|
|
buf.Elements() + offset);
|
|
break;
|
|
case AUDIO_FORMAT_SILENCE:
|
|
// The mixer is expecting interleaved data, so this is ok.
|
|
PodZero(buf.Elements() + offset, c.mDuration * aOutputChannels);
|
|
break;
|
|
default:
|
|
MOZ_ASSERT(false, "Not handled");
|
|
}
|
|
|
|
offset += c.mDuration * aOutputChannels;
|
|
}
|
|
|
|
if (offset) {
|
|
aMixer.Mix(buf.Elements(), aOutputChannels, offset / aOutputChannels,
|
|
aSampleRate);
|
|
}
|
|
}
|
|
|
|
} // namespace mozilla
|