mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-01 22:55:23 +00:00
841 lines
22 KiB
C
841 lines
22 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public
|
|
* License Version 1.1 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS
|
|
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
|
|
* implied. See the License for the specific language governing
|
|
* rights and limitations under the License.
|
|
*
|
|
* The Original Code is spacecategory.c code, released
|
|
* Apr 12, 2002.
|
|
*
|
|
* The Initial Developer of the Original Code is Netscape
|
|
* Communications Corporation. Portions created by Netscape are
|
|
* Copyright (C) 2001 Netscape Communications Corporation. All
|
|
* Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Suresh Duddi <dp@netscape.com>, 12-April-2002
|
|
*
|
|
* Alternatively, the contents of this file may be used under the
|
|
* terms of the GNU Public License (the "GPL"), in which case the
|
|
* provisions of the GPL are applicable instead of those above.
|
|
* If you wish to allow use of your version of this file only
|
|
* under the terms of the GPL and not to allow others to use your
|
|
* version of this file under the MPL, indicate your decision by
|
|
* deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this
|
|
* file under either the MPL or the GPL.
|
|
*/
|
|
|
|
/*
|
|
** spacecategory.c
|
|
**
|
|
** Cagtegorizes each allocation using a predefined set of rules
|
|
** and presents a tree of categories for browsing.
|
|
*/
|
|
|
|
/*
|
|
** Required include files.
|
|
*/
|
|
#include "spacetrace.h"
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
|
|
#if defined(HAVE_BOUTELL_GD)
|
|
/*
|
|
** See http://www.boutell.com/gd for the GD graphics library.
|
|
** Ports for many platorms exist.
|
|
** Your box may already have the lib (mine did, redhat 7.1 workstation).
|
|
*/
|
|
#include <gd.h>
|
|
#include <gdfontt.h>
|
|
#include <gdfonts.h>
|
|
#include <gdfontmb.h>
|
|
#endif /* HAVE_BOUTELL_GD */
|
|
|
|
/*
|
|
** Forward declarations
|
|
**/
|
|
#if defined(DEBUG_dp)
|
|
extern void printCategoryTree(STCategoryNode* root);
|
|
#endif
|
|
|
|
/*
|
|
** AddRule
|
|
**
|
|
** Add a rule into the list of rules maintainted in global
|
|
*/
|
|
int AddRule(STGlobals *g, STCategoryRule *rule)
|
|
{
|
|
if (g->mNRules % ST_ALLOC_STEP == 0)
|
|
{
|
|
/* Need more space */
|
|
STCategoryRule** newrules;
|
|
newrules = (STCategoryRule **) realloc(g->mCategoryRules,
|
|
(g->mNRules + ST_ALLOC_STEP)*sizeof(STCategoryRule *));
|
|
if (!newrules)
|
|
{
|
|
REPORT_ERROR(__LINE__, AddRule_No_Memory);
|
|
return -1;
|
|
}
|
|
g->mCategoryRules = newrules;
|
|
}
|
|
g->mCategoryRules[g->mNRules++] = rule;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** AddChild
|
|
**
|
|
** Add the node as a child of the parent node
|
|
*/
|
|
int AddChild(STCategoryNode* parent, STCategoryNode* child)
|
|
{
|
|
if (parent->nchildren % ST_ALLOC_STEP == 0)
|
|
{
|
|
/* need more space */
|
|
STCategoryNode** newnodes;
|
|
newnodes = (STCategoryNode **) realloc(parent->children,
|
|
(parent->nchildren + ST_ALLOC_STEP)*sizeof(STCategoryNode *));
|
|
if (!newnodes)
|
|
{
|
|
REPORT_ERROR(__LINE__, AddChild_No_Memory);
|
|
return -1;
|
|
}
|
|
parent->children = newnodes;
|
|
}
|
|
parent->children[parent->nchildren++] = child;
|
|
return 0;
|
|
}
|
|
|
|
int ReParent(STCategoryNode* parent, STCategoryNode* child)
|
|
{
|
|
PRUint32 i;
|
|
if (child->parent == parent)
|
|
return 0;
|
|
|
|
/* Remove child from old parent */
|
|
if (child->parent)
|
|
{
|
|
for (i = 0; i < child->parent->nchildren; i++)
|
|
{
|
|
if (child->parent->children[i] == child)
|
|
{
|
|
/* Remove child from list */
|
|
if (i+1 < child->parent->nchildren)
|
|
memmove(&child->parent->children[i], &child->parent->children[i+1],
|
|
(child->parent->nchildren - i - 1) * sizeof(STCategoryNode*));
|
|
child->parent->nchildren--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add child into new parent */
|
|
AddChild(parent, child);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** findCategoryNode
|
|
**
|
|
** Given a category name, finds the Node corresponding to the category
|
|
*/
|
|
STCategoryNode* findCategoryNode(const char *catName, STGlobals *g)
|
|
{
|
|
PRUint32 i;
|
|
for(i = 0; i < g->mNCategoryMap; i++)
|
|
{
|
|
if (!strcmp(g->mCategoryMap[i]->categoryName, catName))
|
|
return g->mCategoryMap[i]->node;
|
|
}
|
|
|
|
/* Check if we are looking for the root node */
|
|
if (!strcmp(catName, ST_ROOT_CATEGORY_NAME))
|
|
return &g->mCategoryRoot;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
** AddCategoryNode
|
|
**
|
|
** Adds a mapping between a category and its Node into the categoryMap
|
|
*/
|
|
int AddCategoryNode(STCategoryNode* node, STGlobals* g)
|
|
{
|
|
if (g->mNCategoryMap % ST_ALLOC_STEP == 0)
|
|
{
|
|
/* Need more space */
|
|
STCategoryMapEntry **newmap = (STCategoryMapEntry **) realloc(g->mCategoryMap,
|
|
(g->mNCategoryMap + ST_ALLOC_STEP) * sizeof(STCategoryMapEntry *));
|
|
if (!newmap)
|
|
{
|
|
REPORT_ERROR(__LINE__, AddCategoryNode_No_Memory);
|
|
return -1;
|
|
}
|
|
g->mCategoryMap = newmap;
|
|
|
|
}
|
|
g->mCategoryMap[g->mNCategoryMap] = (STCategoryMapEntry *) calloc(1, sizeof(STCategoryMapEntry));
|
|
if (!g->mCategoryMap[g->mNCategoryMap])
|
|
{
|
|
REPORT_ERROR(__LINE__, AddCategoryNode_No_Memory);
|
|
return -1;
|
|
}
|
|
g->mCategoryMap[g->mNCategoryMap]->categoryName = node->categoryName;
|
|
g->mCategoryMap[g->mNCategoryMap]->node = node;
|
|
g->mNCategoryMap++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** NewCategoryNode
|
|
**
|
|
** Creates a new category node for category name 'catname' and makes
|
|
** 'parent' its parent.
|
|
*/
|
|
STCategoryNode* NewCategoryNode(const char* catName, STCategoryNode* parent, STGlobals* g)
|
|
{
|
|
int i;
|
|
STCategoryNode* node;
|
|
|
|
node = (STCategoryNode *) calloc(1, sizeof(STCategoryNode));
|
|
if (!node)
|
|
return NULL;
|
|
node->categoryName = catName;
|
|
|
|
/* Set parent of child */
|
|
node->parent = parent;
|
|
|
|
/* Set child in parent */
|
|
AddChild(parent, node);
|
|
|
|
/* Add node into mapping table */
|
|
AddCategoryNode(node, g);
|
|
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
** ProcessCategoryLeafRule
|
|
**
|
|
** Add this into the tree as a leaf node. It doesnt know who its parent is. For now we make
|
|
** root as its parent
|
|
*/
|
|
int ProcessCategoryLeafRule(STCategoryRule* leafRule, STCategoryNode *root, STGlobals *g)
|
|
{
|
|
STCategoryRule* rule;
|
|
STCategoryNode* node;
|
|
|
|
rule = (STCategoryRule *) calloc(1, sizeof(STCategoryRule));
|
|
if (!rule)
|
|
return -1;
|
|
|
|
/* Take ownership of all elements of rule */
|
|
*rule = *leafRule;
|
|
|
|
/* Find/Make a STCategoryNode and add it into the tree */
|
|
node = findCategoryNode(rule->categoryName, g);
|
|
if (!node)
|
|
node = NewCategoryNode(rule->categoryName, root, g);
|
|
|
|
/* Make sure rule knows which node to access */
|
|
rule->node = node;
|
|
|
|
/* Add rule into rulelist */
|
|
AddRule(g, rule);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** ProcessCategoryParentRule
|
|
**
|
|
** Rule has all the children of category as patterns. Sets up the tree so that
|
|
** the parent child relationship is honored.
|
|
*/
|
|
int ProcessCategoryParentRule(STCategoryRule* parentRule, STCategoryNode *root, STGlobals* g)
|
|
{
|
|
STCategoryNode* node;
|
|
STCategoryNode* child;
|
|
PRUint32 i;
|
|
|
|
/* Find the parent node in the tree. If not make one and add it into the tree */
|
|
node = findCategoryNode(parentRule->categoryName, g);
|
|
if (!node)
|
|
{
|
|
node = NewCategoryNode(parentRule->categoryName, root, g);
|
|
if (!node)
|
|
return -1;
|
|
}
|
|
|
|
/* For every child node, Find/Create it and make it the child of this node */
|
|
for(i = 0; i < parentRule->npats; i++)
|
|
{
|
|
child = findCategoryNode(parentRule->pats[i], g);
|
|
if (!child)
|
|
{
|
|
child = NewCategoryNode(parentRule->pats[i], node, g);
|
|
if (!child)
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
/* Reparent child to node. This is because when we created the node
|
|
** we would have created it as the child of root. Now we need to
|
|
** remove it from root's child list and add it into this node
|
|
*/
|
|
ReParent(node, child);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** initCategories
|
|
**
|
|
** Initialize all categories. This reads in a file that says how to categorize
|
|
** each callsite, creates a tree of these categories and makes a list of these
|
|
** patterns in order for matching
|
|
*/
|
|
int initCategories(STGlobals* g)
|
|
{
|
|
FILE *fp;
|
|
char buf[1024], *in;
|
|
int n, i;
|
|
PRBool inrule, leaf;
|
|
STCategoryRule rule;
|
|
|
|
fp = fopen(g->mOptions.mCategoryFile, "r");
|
|
if (!fp)
|
|
{
|
|
/* It isnt an error to not have a categories file */
|
|
REPORT_INFO("No categories file.");
|
|
return -1;
|
|
}
|
|
|
|
inrule = PR_FALSE;
|
|
leaf = PR_FALSE;
|
|
|
|
memset(&rule, 0, sizeof(rule));
|
|
|
|
while (fgets(buf, sizeof(buf), fp) != NULL)
|
|
{
|
|
/* Lose the \n */
|
|
n = strlen(buf);
|
|
if (buf[n-1] == '\n')
|
|
buf[--n] = '\0';
|
|
in = buf;
|
|
|
|
/* skip comments */
|
|
if (*in == '#')
|
|
continue;
|
|
|
|
/* skip empty lines. If we are in a rule, end the rule. */
|
|
while(*in && isspace(*in))
|
|
in++;
|
|
if (*in == '\0') {
|
|
if (inrule)
|
|
{
|
|
/* End the rule : leaf or non-leaf*/
|
|
if (leaf)
|
|
ProcessCategoryLeafRule(&rule, &g->mCategoryRoot, g);
|
|
else
|
|
/* non-leaf */
|
|
ProcessCategoryParentRule(&rule, &g->mCategoryRoot, g);
|
|
inrule = PR_FALSE;
|
|
memset(&rule, 0, sizeof(rule));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* if we are in a rule acculumate */
|
|
if (inrule)
|
|
{
|
|
rule.pats[rule.npats] = strdup(in);
|
|
rule.patlen[rule.npats++] = strlen(in);
|
|
}
|
|
else if (*in == '<')
|
|
{
|
|
/* Start a category */
|
|
inrule = PR_TRUE;
|
|
leaf = PR_TRUE;
|
|
|
|
/* Get the category name */
|
|
in++;
|
|
n = strlen(in);
|
|
if (in[n-1] == '>')
|
|
in[n-1] = '\0';
|
|
rule.categoryName = strdup(in);
|
|
}
|
|
else
|
|
{
|
|
/* this is a non-leaf category. Should be of the form CategoryName
|
|
** followed by list of child category names one per line
|
|
*/
|
|
inrule = PR_TRUE;
|
|
leaf = PR_FALSE;
|
|
rule.categoryName = strdup(in);
|
|
}
|
|
}
|
|
|
|
/* If we were in a rule when processing the last line, end the rule */
|
|
if (inrule)
|
|
{
|
|
/* End the rule : leaf or non-leaf*/
|
|
if (leaf)
|
|
ProcessCategoryLeafRule(&rule, &g->mCategoryRoot, g);
|
|
else
|
|
/* non-leaf */
|
|
ProcessCategoryParentRule(&rule, &g->mCategoryRoot, g);
|
|
}
|
|
|
|
/* Add the final "uncategorized" category. We make new memory locations
|
|
** for all these to conform to the general principle of all strings are allocated
|
|
** so it makes release logic very simple.
|
|
*/
|
|
memset(&rule, 0, sizeof(rule));
|
|
rule.categoryName = strdup("uncategorized");
|
|
rule.pats[0] = strdup("");
|
|
rule.patlen[0] = 0;
|
|
rule.npats = 1;
|
|
ProcessCategoryLeafRule(&rule, &g->mCategoryRoot, g);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** callsiteMatchesRule
|
|
**
|
|
** Returns the corresponding node if callsite matches the rule. Rule is a sequence
|
|
** of patterns that must match contiguously the callsite.
|
|
*/
|
|
int callsiteMatchesRule(tmcallsite* aCallsite, STCategoryRule* aRule)
|
|
{
|
|
PRUint32 patnum = 0;
|
|
const char *methodName = NULL;
|
|
|
|
while (patnum < aRule->npats && aCallsite && aCallsite->method)
|
|
{
|
|
methodName = tmmethodnode_name(aCallsite->method);
|
|
if (!methodName)
|
|
return 0;
|
|
if (!*aRule->pats[patnum] || !strncmp(methodName, aRule->pats[patnum], aRule->patlen[patnum]))
|
|
{
|
|
/* We have matched so far. Proceed up the stack and to the next pattern */
|
|
patnum++;
|
|
aCallsite = aCallsite->parent;
|
|
}
|
|
else
|
|
{
|
|
/* Deal with mismatch */
|
|
if (patnum > 0)
|
|
{
|
|
/* contiguous mismatch. Stop */
|
|
return 0;
|
|
}
|
|
/* We still haven't matched the first pattern. Proceed up the stack without
|
|
** moving to the next pattern.
|
|
*/
|
|
aCallsite = aCallsite->parent;
|
|
}
|
|
}
|
|
|
|
if (patnum == aRule->npats)
|
|
{
|
|
/* all patterns matched. We have a winner. */
|
|
#if defined(DEBUG_dp) && 0
|
|
fprintf(stderr, "[%s] match\n", aRule->categoryName);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG_dp
|
|
PRIntervalTime _gMatchTime = 0;
|
|
PRUint32 _gMatchCount = 0;
|
|
PRUint32 _gMatchRules = 0;
|
|
#endif
|
|
|
|
/*
|
|
** matchAllocation
|
|
**
|
|
** Runs through all rules and returns the node corresponding to
|
|
** a match of the allocation.
|
|
*/
|
|
STCategoryNode* matchAllocation(STGlobals* g, STAllocation* aAllocation)
|
|
{
|
|
#ifdef DEBUG_dp
|
|
PRIntervalTime start = PR_IntervalNow();
|
|
#endif
|
|
PRUint32 rulenum;
|
|
STCategoryNode* node = NULL;
|
|
STCategoryRule* rule;
|
|
|
|
for (rulenum = 0; rulenum < g->mNRules; rulenum++)
|
|
{
|
|
#ifdef DEBUG_dp
|
|
_gMatchRules++;
|
|
#endif
|
|
rule = g->mCategoryRules[rulenum];
|
|
if (callsiteMatchesRule(aAllocation->mEvents[0].mCallsite, rule))
|
|
{
|
|
node = rule->node;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_dp
|
|
_gMatchCount++;
|
|
_gMatchTime += PR_IntervalNow() - start;
|
|
#endif
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
** categorizeAllocation
|
|
**
|
|
** Given an allocation, it adds it into the category tree at the right spot
|
|
** by comparing the allocation to the rules and adding into the right node.
|
|
** Also, does propogation of cost upwards in the tree.
|
|
** The root of the tree is in the globls as the tree is dependent on the
|
|
** category file (options) rather than the run.
|
|
*/
|
|
int categorizeAllocation(STAllocation* aAllocation, STGlobals* g)
|
|
{
|
|
/* Run through the rules in order to see if this allcation matches
|
|
** any of them.
|
|
*/
|
|
STCategoryNode* node;
|
|
|
|
node = matchAllocation(g, aAllocation);
|
|
if (!node)
|
|
{
|
|
/* ugh! it should atleast go into the "uncategorized" node. wierd!
|
|
*/
|
|
REPORT_ERROR(__LINE__, categorizeAllocation);
|
|
return -1;
|
|
}
|
|
|
|
/* Create run for node if not already */
|
|
if (!node->run)
|
|
{
|
|
/*
|
|
** Create run with positive timestamp as we can harvest it later
|
|
** for callsite details summarization
|
|
*/
|
|
node->run = createRun(PR_IntervalNow());
|
|
if (!node->run)
|
|
{
|
|
REPORT_ERROR(__LINE__, categorizeAllocation_No_Memory);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Add allocation into node. We expand the table of allocations in steps */
|
|
if (node->run->mAllocationCount % ST_ALLOC_STEP == 0)
|
|
{
|
|
/* Need more space */
|
|
STAllocation** allocs;
|
|
allocs = (STAllocation**) realloc(node->run->mAllocations,
|
|
(node->run->mAllocationCount + ST_ALLOC_STEP) * sizeof(STAllocation*));
|
|
if (!allocs)
|
|
{
|
|
REPORT_ERROR(__LINE__, categorizeAllocation_No_Memory);
|
|
return -1;
|
|
}
|
|
node->run->mAllocations = allocs;
|
|
}
|
|
node->run->mAllocations[node->run->mAllocationCount++] = aAllocation;
|
|
|
|
/*
|
|
** Make sure run's stats are calculated. We dont go update the parents of allocation
|
|
** at this time. That will happen when we focus on this category. This updating of
|
|
** stats will provide us fast categoryreports.
|
|
*/
|
|
recalculateAllocationCost(node->run, aAllocation, PR_FALSE);
|
|
|
|
/* Propogate upwards the statistics */
|
|
/* XXX */
|
|
#if defined(DEBUG_dp) && 0
|
|
fprintf(stderr, "DEBUG: [%s] match\n", node->categoryName);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
typedef PRBool STCategoryNodeProcessor(void* clientData, STCategoryNode* node);
|
|
|
|
PRBool freeNodeRunProcessor(void* clientData, STCategoryNode* node)
|
|
{
|
|
if (node->run)
|
|
{
|
|
freeRun(node->run);
|
|
node->run = NULL;
|
|
}
|
|
return PR_TRUE;
|
|
}
|
|
|
|
#if defined(DEBUG_dp)
|
|
PRBool printNodeProcessor(void* clientData, STCategoryNode* node)
|
|
{
|
|
STCategoryNode* root = (STCategoryNode*) clientData;
|
|
if (node->nchildren)
|
|
fprintf(stderr, "%-20s [%d children]\n", node->categoryName, node->nchildren);
|
|
else
|
|
fprintf(stderr, "%-20s [ %7d allocations, %7d size, %4.1f%% ]\n", node->categoryName,
|
|
node->run ? node->run->mStats.mCompositeCount:0,
|
|
node->run ? node->run->mStats.mSize:0,
|
|
node->run ? ((double)node->run->mStats.mSize / root->run->mStats.mSize * 100):0
|
|
);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
** walkTree
|
|
**
|
|
** General purpose tree walker. Issues callback for each node.
|
|
** If 'maxdepth' > 0, then stops after processing that depth. Root is
|
|
** depth 0, the nodes below it are depth 1 etc...
|
|
*/
|
|
#define MODINC(n, mod) ((n+1) % mod)
|
|
|
|
void walkTree(STCategoryNode* root, STCategoryNodeProcessor func, void *clientData, int maxdepth)
|
|
{
|
|
STCategoryNode* nodes[1024], *node;
|
|
PRUint32 begin, end, i;
|
|
int ret = 0;
|
|
int curdepth = 0, ncurdepth = 0;
|
|
|
|
nodes[0] = root;
|
|
begin = 0; end = 1;
|
|
ncurdepth = 1;
|
|
while (begin != end)
|
|
{
|
|
node = nodes[begin];
|
|
ret = (*func)(clientData, node);
|
|
if (ret == PR_FALSE)
|
|
{
|
|
/* Abort */
|
|
break;
|
|
}
|
|
begin = MODINC(begin, 1024);
|
|
for (i = 0; i < node->nchildren; i++)
|
|
{
|
|
nodes[end] = node->children[i];
|
|
end = MODINC(end, 1024);
|
|
}
|
|
/* Depth tracking. Do it only if walkTree is contrained by a maxdepth */
|
|
if (maxdepth > 0 && --ncurdepth == 0)
|
|
{
|
|
/*
|
|
** No more children in current depth. The rest of the nodes
|
|
** we have in our list should be nodes in the depth below us.
|
|
*/
|
|
ncurdepth = (begin < end) ? (end - begin) : (1024 - begin + end);
|
|
if (++curdepth > maxdepth)
|
|
{
|
|
/*
|
|
** Gone too deep. Stop.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
int freeRule(STCategoryRule* rule)
|
|
{
|
|
PRUint32 i;
|
|
char *p = (char *)rule->categoryName;
|
|
PR_FREEIF(p);
|
|
|
|
for (i = 0; i < rule->npats; i++)
|
|
free(rule->pats[i]);
|
|
|
|
free(rule);
|
|
return 0;
|
|
}
|
|
|
|
void freeNodeRun(STCategoryNode* root)
|
|
{
|
|
walkTree(root, freeNodeRunProcessor, NULL, 0);
|
|
}
|
|
|
|
void freeNodeMap(STGlobals* g)
|
|
{
|
|
PRUint32 i;
|
|
|
|
/* all nodes are in the map table. Just delete all of those. */
|
|
for(i = 0; i < g->mNCategoryMap; i++)
|
|
{
|
|
free(g->mCategoryMap[i]->node);
|
|
free(g->mCategoryMap[i]);
|
|
}
|
|
free(g->mCategoryMap);
|
|
}
|
|
|
|
int freeCategories(STGlobals* g)
|
|
{
|
|
PRUint32 i;
|
|
|
|
/*
|
|
** walk the tree and free runs held in nodes
|
|
*/
|
|
freeNodeRun(&g->mCategoryRoot);
|
|
|
|
/*
|
|
** delete nodemap. This is the where nodes get deleted.
|
|
*/
|
|
freeNodeMap(g);
|
|
|
|
/*
|
|
** delete rule stuff
|
|
*/
|
|
for (i = 0; i < g->mNRules; i++)
|
|
{
|
|
freeRule(g->mCategoryRules[i]);
|
|
}
|
|
free(g->mCategoryRules);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** categorizeRun
|
|
**
|
|
** categorize all the allocations of the run using the rules into
|
|
** a tree rooted at globls.mCategoryRoot
|
|
*/
|
|
int categorizeRun(const STRun* aRun, STGlobals* g)
|
|
{
|
|
PRUint32 i;
|
|
#if defined(DEBUG_dp)
|
|
PRIntervalTime start = PR_IntervalNow();
|
|
fprintf(stderr, "DEBUG: categorizing run...\n");
|
|
#endif
|
|
|
|
/*
|
|
** First, cleanup our tree
|
|
*/
|
|
walkTree(&g->mCategoryRoot, freeNodeRunProcessor, NULL, 0);
|
|
|
|
if (g->mNCategoryMap > 0)
|
|
{
|
|
for (i = 0; i < aRun->mAllocationCount; i++)
|
|
{
|
|
categorizeAllocation(aRun->mAllocations[i], g);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** the run is always going to be the one corresponding to the root node
|
|
*/
|
|
g->mCategoryRoot.run = (STRun *) aRun;
|
|
g->mCategoryRoot.categoryName = ST_ROOT_CATEGORY_NAME;
|
|
|
|
#if defined(DEBUG_dp)
|
|
walkTree(&g->mCategoryRoot, printNodeProcessor, &g->mCategoryRoot, 0);
|
|
fprintf(stderr, "DEBUG: categorizing ends: %dms [%d rules, %d allocations]\n",
|
|
PR_IntervalToMilliseconds(PR_IntervalNow() - start), g->mNRules, aRun->mAllocationCount);
|
|
fprintf(stderr, "DEBUG: match : %dms [%d calls, %d rule-compares]\n",
|
|
PR_IntervalToMilliseconds(_gMatchTime),
|
|
_gMatchCount, _gMatchRules);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** displayCategoryReport
|
|
**
|
|
** Generate the category report - a list of all categories and details about each
|
|
** depth parameter controls how deep we traverse the category tree.
|
|
*/
|
|
PRBool displayCategoryNodeProcessor(void* clientData, STCategoryNode* node)
|
|
{
|
|
STCategoryNode* root = (STCategoryNode *) clientData;
|
|
PRUint32 byteSize = 0, heapCost = 0, count = 0;
|
|
double percent = 0;
|
|
char buf[256];
|
|
|
|
if (node->run)
|
|
{
|
|
/*
|
|
** Byte size
|
|
*/
|
|
byteSize = node->run->mStats.mSize;
|
|
|
|
/*
|
|
** Composite count
|
|
*/
|
|
count = node->run->mStats.mCompositeCount;
|
|
|
|
/*
|
|
** Heap operation cost
|
|
**/
|
|
heapCost = node->run->mStats.mHeapRuntimeCost;
|
|
|
|
/*
|
|
** % of total size
|
|
*/
|
|
if (root->run)
|
|
{
|
|
percent = ((double) byteSize) / root->run->mStats.mSize * 100;
|
|
}
|
|
}
|
|
|
|
PR_fprintf(globals.mRequest.mFD,
|
|
" <tr>\n"
|
|
" <td>");
|
|
/* a link to topcallsites report with focus on category */
|
|
PR_snprintf(buf, sizeof(buf), "top_callsites.html?mCategory=%s", node->categoryName);
|
|
htmlAnchor(buf, node->categoryName, NULL);
|
|
PR_fprintf(globals.mRequest.mFD,
|
|
"</td>\n"
|
|
" <td align=right>%u</td>\n"
|
|
" <td align=right>%4.1f%%</td>\n"
|
|
" <td align=right>%u</td>\n"
|
|
" <td align=right>" ST_MICROVAL_FORMAT "</td>\n"
|
|
" </tr>\n",
|
|
byteSize, percent, count,
|
|
ST_MICROVAL_PRINTABLE(heapCost));
|
|
|
|
return PR_TRUE;
|
|
}
|
|
|
|
|
|
int displayCategoryReport(STCategoryNode *root, int depth)
|
|
{
|
|
PR_fprintf(globals.mRequest.mFD,
|
|
"<table border=1>\n"
|
|
" <tr>\n"
|
|
" <th>Category</th>\n"
|
|
" <th>Composite Byte Size</th>\n"
|
|
" <th>%% of Total Size</th>\n"
|
|
" <th>Heap Object Count</th>\n"
|
|
" <th>Composite Heap Operations Seconds</th>\n"
|
|
" </tr>\n"
|
|
);
|
|
|
|
walkTree(root, displayCategoryNodeProcessor, root, depth);
|
|
|
|
PR_fprintf(globals.mRequest.mFD, "</table>\n");
|
|
|
|
return 0;
|
|
}
|