mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-07 04:05:49 +00:00
360 lines
12 KiB
C++
360 lines
12 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsAlgorithm.h"
|
|
#include "WebMBufferedParser.h"
|
|
#include "mozilla/dom/TimeRanges.h"
|
|
#include "nsThreadUtils.h"
|
|
#include <algorithm>
|
|
|
|
namespace mozilla {
|
|
|
|
static uint32_t
|
|
VIntLength(unsigned char aFirstByte, uint32_t* aMask)
|
|
{
|
|
uint32_t count = 1;
|
|
uint32_t mask = 1 << 7;
|
|
while (count < 8) {
|
|
if ((aFirstByte & mask) != 0) {
|
|
break;
|
|
}
|
|
mask >>= 1;
|
|
count += 1;
|
|
}
|
|
if (aMask) {
|
|
*aMask = mask;
|
|
}
|
|
NS_ASSERTION(count >= 1 && count <= 8, "Insane VInt length.");
|
|
return count;
|
|
}
|
|
|
|
void WebMBufferedParser::Append(const unsigned char* aBuffer, uint32_t aLength,
|
|
nsTArray<WebMTimeDataOffset>& aMapping,
|
|
ReentrantMonitor& aReentrantMonitor)
|
|
{
|
|
static const uint32_t SEGMENT_ID = 0x18538067;
|
|
static const uint32_t SEGINFO_ID = 0x1549a966;
|
|
static const uint32_t TRACKS_ID = 0x1654AE6B;
|
|
static const uint32_t CLUSTER_ID = 0x1f43b675;
|
|
static const uint32_t TIMECODESCALE_ID = 0x2ad7b1;
|
|
static const unsigned char TIMECODE_ID = 0xe7;
|
|
static const unsigned char BLOCK_ID = 0xa1;
|
|
static const unsigned char SIMPLEBLOCK_ID = 0xa3;
|
|
static const uint32_t BLOCK_TIMECODE_LENGTH = 2;
|
|
|
|
static const unsigned char CLUSTER_SYNC_ID[] = { 0x1f, 0x43, 0xb6, 0x75 };
|
|
|
|
const unsigned char* p = aBuffer;
|
|
|
|
// Parse each byte in aBuffer one-by-one, producing timecodes and updating
|
|
// aMapping as we go. Parser pauses at end of stream (which may be at any
|
|
// point within the parse) and resumes parsing the next time Append is
|
|
// called with new data.
|
|
while (p < aBuffer + aLength) {
|
|
switch (mState) {
|
|
case READ_ELEMENT_ID:
|
|
mVIntRaw = true;
|
|
mState = READ_VINT;
|
|
mNextState = READ_ELEMENT_SIZE;
|
|
break;
|
|
case READ_ELEMENT_SIZE:
|
|
mVIntRaw = false;
|
|
mElement.mID = mVInt;
|
|
mState = READ_VINT;
|
|
mNextState = PARSE_ELEMENT;
|
|
break;
|
|
case FIND_CLUSTER_SYNC:
|
|
if (*p++ == CLUSTER_SYNC_ID[mClusterSyncPos]) {
|
|
mClusterSyncPos += 1;
|
|
} else {
|
|
mClusterSyncPos = 0;
|
|
}
|
|
if (mClusterSyncPos == sizeof(CLUSTER_SYNC_ID)) {
|
|
mVInt.mValue = CLUSTER_ID;
|
|
mVInt.mLength = sizeof(CLUSTER_SYNC_ID);
|
|
mState = READ_ELEMENT_SIZE;
|
|
}
|
|
break;
|
|
case PARSE_ELEMENT:
|
|
mElement.mSize = mVInt;
|
|
switch (mElement.mID.mValue) {
|
|
case SEGMENT_ID:
|
|
mState = READ_ELEMENT_ID;
|
|
break;
|
|
case SEGINFO_ID:
|
|
mGotTimecodeScale = true;
|
|
mState = READ_ELEMENT_ID;
|
|
break;
|
|
case TIMECODE_ID:
|
|
mVInt = VInt();
|
|
mVIntLeft = mElement.mSize.mValue;
|
|
mState = READ_VINT_REST;
|
|
mNextState = READ_CLUSTER_TIMECODE;
|
|
break;
|
|
case TIMECODESCALE_ID:
|
|
mVInt = VInt();
|
|
mVIntLeft = mElement.mSize.mValue;
|
|
mState = READ_VINT_REST;
|
|
mNextState = READ_TIMECODESCALE;
|
|
break;
|
|
case CLUSTER_ID:
|
|
mClusterOffset = mCurrentOffset + (p - aBuffer) -
|
|
(mElement.mID.mLength + mElement.mSize.mLength);
|
|
mState = READ_ELEMENT_ID;
|
|
break;
|
|
case SIMPLEBLOCK_ID:
|
|
/* FALLTHROUGH */
|
|
case BLOCK_ID:
|
|
mBlockSize = mElement.mSize.mValue;
|
|
mBlockTimecode = 0;
|
|
mBlockTimecodeLength = BLOCK_TIMECODE_LENGTH;
|
|
mBlockOffset = mCurrentOffset + (p - aBuffer) -
|
|
(mElement.mID.mLength + mElement.mSize.mLength);
|
|
mState = READ_VINT;
|
|
mNextState = READ_BLOCK_TIMECODE;
|
|
break;
|
|
case TRACKS_ID:
|
|
mSkipBytes = mElement.mSize.mValue;
|
|
mState = CHECK_INIT_FOUND;
|
|
break;
|
|
default:
|
|
mSkipBytes = mElement.mSize.mValue;
|
|
mState = SKIP_DATA;
|
|
mNextState = READ_ELEMENT_ID;
|
|
break;
|
|
}
|
|
break;
|
|
case READ_VINT: {
|
|
unsigned char c = *p++;
|
|
uint32_t mask;
|
|
mVInt.mLength = VIntLength(c, &mask);
|
|
mVIntLeft = mVInt.mLength - 1;
|
|
mVInt.mValue = mVIntRaw ? c : c & ~mask;
|
|
mState = READ_VINT_REST;
|
|
break;
|
|
}
|
|
case READ_VINT_REST:
|
|
if (mVIntLeft) {
|
|
mVInt.mValue <<= 8;
|
|
mVInt.mValue |= *p++;
|
|
mVIntLeft -= 1;
|
|
} else {
|
|
mState = mNextState;
|
|
}
|
|
break;
|
|
case READ_TIMECODESCALE:
|
|
MOZ_ASSERT(mGotTimecodeScale);
|
|
mTimecodeScale = mVInt.mValue;
|
|
mState = READ_ELEMENT_ID;
|
|
break;
|
|
case READ_CLUSTER_TIMECODE:
|
|
mClusterTimecode = mVInt.mValue;
|
|
mState = READ_ELEMENT_ID;
|
|
break;
|
|
case READ_BLOCK_TIMECODE:
|
|
if (mBlockTimecodeLength) {
|
|
mBlockTimecode <<= 8;
|
|
mBlockTimecode |= *p++;
|
|
mBlockTimecodeLength -= 1;
|
|
} else {
|
|
// It's possible we've parsed this data before, so avoid inserting
|
|
// duplicate WebMTimeDataOffset entries.
|
|
{
|
|
ReentrantMonitorAutoEnter mon(aReentrantMonitor);
|
|
int64_t endOffset = mBlockOffset + mBlockSize +
|
|
mElement.mID.mLength + mElement.mSize.mLength;
|
|
uint32_t idx = aMapping.IndexOfFirstElementGt(endOffset);
|
|
if (idx == 0 || aMapping[idx - 1] != endOffset) {
|
|
// Don't insert invalid negative timecodes.
|
|
if (mBlockTimecode >= 0 || mClusterTimecode >= uint16_t(abs(mBlockTimecode))) {
|
|
MOZ_ASSERT(mGotTimecodeScale);
|
|
uint64_t absTimecode = mClusterTimecode + mBlockTimecode;
|
|
absTimecode *= mTimecodeScale;
|
|
WebMTimeDataOffset entry(endOffset, absTimecode, mClusterOffset);
|
|
aMapping.InsertElementAt(idx, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Skip rest of block header and the block's payload.
|
|
mBlockSize -= mVInt.mLength;
|
|
mBlockSize -= BLOCK_TIMECODE_LENGTH;
|
|
mSkipBytes = uint32_t(mBlockSize);
|
|
mState = SKIP_DATA;
|
|
mNextState = READ_ELEMENT_ID;
|
|
}
|
|
break;
|
|
case SKIP_DATA:
|
|
if (mSkipBytes) {
|
|
uint32_t left = aLength - (p - aBuffer);
|
|
left = std::min(left, mSkipBytes);
|
|
p += left;
|
|
mSkipBytes -= left;
|
|
} else {
|
|
mState = mNextState;
|
|
}
|
|
break;
|
|
case CHECK_INIT_FOUND:
|
|
if (mSkipBytes) {
|
|
uint32_t left = aLength - (p - aBuffer);
|
|
left = std::min(left, mSkipBytes);
|
|
p += left;
|
|
mSkipBytes -= left;
|
|
}
|
|
if (!mSkipBytes) {
|
|
if (mInitEndOffset < 0) {
|
|
mInitEndOffset = mCurrentOffset + (p - aBuffer);
|
|
}
|
|
mState = READ_ELEMENT_ID;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(p == aBuffer + aLength, "Must have parsed to end of data.");
|
|
mCurrentOffset += aLength;
|
|
}
|
|
|
|
// SyncOffsetComparator and TimeComparator are slightly confusing, in that
|
|
// the nsTArray they're used with (mTimeMapping) is sorted by mEndOffset and
|
|
// these comparators are used on the other fields of WebMTimeDataOffset.
|
|
// This is only valid because timecodes are required to be monotonically
|
|
// increasing within a file (thus establishing an ordering relationship with
|
|
// mTimecode), and mEndOffset is derived from mSyncOffset.
|
|
struct SyncOffsetComparator {
|
|
bool Equals(const WebMTimeDataOffset& a, const int64_t& b) const {
|
|
return a.mSyncOffset == b;
|
|
}
|
|
|
|
bool LessThan(const WebMTimeDataOffset& a, const int64_t& b) const {
|
|
return a.mSyncOffset < b;
|
|
}
|
|
};
|
|
|
|
struct TimeComparator {
|
|
bool Equals(const WebMTimeDataOffset& a, const uint64_t& b) const {
|
|
return a.mTimecode == b;
|
|
}
|
|
|
|
bool LessThan(const WebMTimeDataOffset& a, const uint64_t& b) const {
|
|
return a.mTimecode < b;
|
|
}
|
|
};
|
|
|
|
bool WebMBufferedState::CalculateBufferedForRange(int64_t aStartOffset, int64_t aEndOffset,
|
|
uint64_t* aStartTime, uint64_t* aEndTime)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
// Find the first WebMTimeDataOffset at or after aStartOffset.
|
|
uint32_t start = mTimeMapping.IndexOfFirstElementGt(aStartOffset - 1, SyncOffsetComparator());
|
|
if (start == mTimeMapping.Length()) {
|
|
return false;
|
|
}
|
|
|
|
// Find the first WebMTimeDataOffset at or before aEndOffset.
|
|
uint32_t end = mTimeMapping.IndexOfFirstElementGt(aEndOffset);
|
|
if (end > 0) {
|
|
end -= 1;
|
|
}
|
|
|
|
// Range is empty.
|
|
if (end <= start) {
|
|
return false;
|
|
}
|
|
|
|
NS_ASSERTION(mTimeMapping[start].mSyncOffset >= aStartOffset &&
|
|
mTimeMapping[end].mEndOffset <= aEndOffset,
|
|
"Computed time range must lie within data range.");
|
|
if (start > 0) {
|
|
NS_ASSERTION(mTimeMapping[start - 1].mSyncOffset < aStartOffset,
|
|
"Must have found least WebMTimeDataOffset for start");
|
|
}
|
|
if (end < mTimeMapping.Length() - 1) {
|
|
NS_ASSERTION(mTimeMapping[end + 1].mEndOffset > aEndOffset,
|
|
"Must have found greatest WebMTimeDataOffset for end");
|
|
}
|
|
|
|
uint64_t frameDuration = mTimeMapping[end].mTimecode - mTimeMapping[end - 1].mTimecode;
|
|
*aStartTime = mTimeMapping[start].mTimecode;
|
|
*aEndTime = mTimeMapping[end].mTimecode + frameDuration;
|
|
return true;
|
|
}
|
|
|
|
bool WebMBufferedState::GetOffsetForTime(uint64_t aTime, int64_t* aOffset)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
uint64_t time = aTime;
|
|
if (time > 0) {
|
|
time = time - 1;
|
|
}
|
|
uint32_t idx = mTimeMapping.IndexOfFirstElementGt(time, TimeComparator());
|
|
if (idx == mTimeMapping.Length()) {
|
|
return false;
|
|
}
|
|
|
|
*aOffset = mTimeMapping[idx].mSyncOffset;
|
|
return true;
|
|
}
|
|
|
|
void WebMBufferedState::NotifyDataArrived(const char* aBuffer, uint32_t aLength, int64_t aOffset)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
uint32_t idx = mRangeParsers.IndexOfFirstElementGt(aOffset - 1);
|
|
if (idx == 0 || !(mRangeParsers[idx-1] == aOffset)) {
|
|
// If the incoming data overlaps an already parsed range, adjust the
|
|
// buffer so that we only reparse the new data. It's also possible to
|
|
// have an overlap where the end of the incoming data is within an
|
|
// already parsed range, but we don't bother handling that other than by
|
|
// avoiding storing duplicate timecodes when the parser runs.
|
|
if (idx != mRangeParsers.Length() && mRangeParsers[idx].mStartOffset <= aOffset) {
|
|
// Complete overlap, skip parsing.
|
|
if (aOffset + aLength <= mRangeParsers[idx].mCurrentOffset) {
|
|
return;
|
|
}
|
|
|
|
// Partial overlap, adjust the buffer to parse only the new data.
|
|
int64_t adjust = mRangeParsers[idx].mCurrentOffset - aOffset;
|
|
NS_ASSERTION(adjust >= 0, "Overlap detection bug.");
|
|
aBuffer += adjust;
|
|
aLength -= uint32_t(adjust);
|
|
} else {
|
|
mRangeParsers.InsertElementAt(idx, WebMBufferedParser(aOffset));
|
|
if (idx != 0) {
|
|
mRangeParsers[idx].SetTimecodeScale(mRangeParsers[0].GetTimecodeScale());
|
|
}
|
|
}
|
|
}
|
|
|
|
mRangeParsers[idx].Append(reinterpret_cast<const unsigned char*>(aBuffer),
|
|
aLength,
|
|
mTimeMapping,
|
|
mReentrantMonitor);
|
|
|
|
// Merge parsers with overlapping regions and clean up the remnants.
|
|
uint32_t i = 0;
|
|
while (i + 1 < mRangeParsers.Length()) {
|
|
if (mRangeParsers[i].mCurrentOffset >= mRangeParsers[i + 1].mStartOffset) {
|
|
mRangeParsers[i + 1].mStartOffset = mRangeParsers[i].mStartOffset;
|
|
mRangeParsers[i + 1].mInitEndOffset = mRangeParsers[i].mInitEndOffset;
|
|
mRangeParsers.RemoveElementAt(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t WebMBufferedState::GetInitEndOffset()
|
|
{
|
|
if (mRangeParsers.IsEmpty()) {
|
|
return -1;
|
|
}
|
|
return mRangeParsers[0].mInitEndOffset;
|
|
}
|
|
|
|
} // namespace mozilla
|