gecko-dev/ipc/glue/ProtocolUtils.cpp
Andreas Farre 25ca8d7890 Bug 1620594 - Part 7: Remove TabGroup and SystemGroup. r=nika,bas
TabGroup never really made any difference in which thread something go
dispatched to. This was the intended use, but development of TabGroups
with abstract main threads never made it that far. The good thing is
that thish makes it safe to also remove to the SystemGroup and instead
switch all SystemGroup dispatches to dispatches to main thread.

Timers for setTimeout and workers were the sole users of wrapped and
throttled event targets, that those throttled queues have been moved
to the BrowsingContextGroup and are now accessed explicitly.

The SchedulerEventTarget has been removed, since there are no longer a
separate event target for every TaskCategory. Instead a
LabellingEventTarget has been added to DocGroup to handle the case
where an event is dispatched do DocGroup or when an AbstractThread is
created using a DocGroup. This means that we'll actually label more
events correctly with the DocGroup that they belong to.

DocGroups have also been moved to BrowsingContextGroup.

Depends on D67636

Differential Revision: https://phabricator.services.mozilla.com/D65936

--HG--
extra : moz-landing-system : lando
2020-04-07 15:17:47 +00:00

898 lines
28 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "base/process_util.h"
#include "base/task.h"
#ifdef OS_POSIX
# include <errno.h>
#endif
#include <type_traits>
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/Transport.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/Unused.h"
#include "nsPrintfCString.h"
#if defined(MOZ_SANDBOX) && defined(XP_WIN)
# include "mozilla/sandboxTarget.h"
#endif
#if defined(XP_WIN)
# include "aclapi.h"
# include "sddl.h"
#endif
using namespace IPC;
using base::GetCurrentProcId;
using base::ProcessHandle;
using base::ProcessId;
namespace mozilla {
#if defined(XP_WIN)
// Generate RAII classes for LPTSTR and PSECURITY_DESCRIPTOR.
MOZ_TYPE_SPECIFIC_SCOPED_POINTER_TEMPLATE(ScopedLPTStr,
std::remove_pointer_t<LPTSTR>,
::LocalFree)
MOZ_TYPE_SPECIFIC_SCOPED_POINTER_TEMPLATE(
ScopedPSecurityDescriptor, std::remove_pointer_t<PSECURITY_DESCRIPTOR>,
::LocalFree)
#endif
namespace ipc {
IPCResult IPCResult::Fail(NotNull<IProtocol*> actor, const char* where,
const char* why) {
// Calls top-level protocol to handle the error.
nsPrintfCString errorMsg("%s %s\n", where, why);
actor->GetIPCChannel()->Listener()->ProcessingError(
HasResultCodes::MsgProcessingError, errorMsg.get());
return IPCResult(false);
}
#if defined(XP_WIN)
bool DuplicateHandle(HANDLE aSourceHandle, DWORD aTargetProcessId,
HANDLE* aTargetHandle, DWORD aDesiredAccess,
DWORD aOptions) {
// If our process is the target just duplicate the handle.
if (aTargetProcessId == base::GetCurrentProcId()) {
return !!::DuplicateHandle(::GetCurrentProcess(), aSourceHandle,
::GetCurrentProcess(), aTargetHandle,
aDesiredAccess, false, aOptions);
}
# if defined(MOZ_SANDBOX)
// Try the broker next (will fail if not sandboxed).
if (SandboxTarget::Instance()->BrokerDuplicateHandle(
aSourceHandle, aTargetProcessId, aTargetHandle, aDesiredAccess,
aOptions)) {
return true;
}
# endif
// Finally, see if we already have access to the process.
ScopedProcessHandle targetProcess(
OpenProcess(PROCESS_DUP_HANDLE, FALSE, aTargetProcessId));
if (!targetProcess) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCTransportFailureReason,
NS_LITERAL_CSTRING("Failed to open target process."));
return false;
}
return !!::DuplicateHandle(::GetCurrentProcess(), aSourceHandle,
targetProcess, aTargetHandle, aDesiredAccess,
FALSE, aOptions);
}
#endif
void AnnotateSystemError() {
int64_t error = 0;
#if defined(XP_WIN)
error = ::GetLastError();
#elif defined(OS_POSIX)
error = errno;
#endif
if (error) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCSystemError,
nsPrintfCString("%" PRId64, error));
}
}
#if defined(XP_MACOSX)
void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error) {
CrashReporter::AnnotateCrashReport(tag, error);
}
#endif // defined(XP_MACOSX)
void LogMessageForProtocol(const char* aTopLevelProtocol,
base::ProcessId aOtherPid,
const char* aContextDescription, uint32_t aMessageId,
MessageDirection aDirection) {
nsPrintfCString logMessage(
"[time: %" PRId64 "][%d%s%d] [%s] %s %s\n", PR_Now(),
base::GetCurrentProcId(),
aDirection == MessageDirection::eReceiving ? "<-" : "->", aOtherPid,
aTopLevelProtocol, aContextDescription,
StringFromIPCMessageType(aMessageId));
#ifdef ANDROID
__android_log_write(ANDROID_LOG_INFO, "GeckoIPC", logMessage.get());
#endif
fputs(logMessage.get(), stderr);
}
void ProtocolErrorBreakpoint(const char* aMsg) {
// Bugs that generate these error messages can be tough to
// reproduce. Log always in the hope that someone finds the error
// message.
printf_stderr("IPDL protocol error: %s\n", aMsg);
}
void FatalError(const char* aMsg, bool aIsParent) {
#ifndef FUZZING
ProtocolErrorBreakpoint(aMsg);
#endif
nsAutoCString formattedMessage("IPDL error: \"");
formattedMessage.AppendASCII(aMsg);
if (aIsParent) {
// We're going to crash the parent process because at this time
// there's no other really nice way of getting a minidump out of
// this process if we're off the main thread.
formattedMessage.AppendLiteral("\". Intentionally crashing.");
NS_ERROR(formattedMessage.get());
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCFatalErrorMsg, nsDependentCString(aMsg));
AnnotateSystemError();
#ifndef FUZZING
MOZ_CRASH("IPC FatalError in the parent process!");
#endif
} else {
formattedMessage.AppendLiteral("\". abort()ing as a result.");
#ifndef FUZZING
MOZ_CRASH_UNSAFE(formattedMessage.get());
#endif
}
}
void LogicError(const char* aMsg) { MOZ_CRASH_UNSAFE(aMsg); }
void ActorIdReadError(const char* aActorDescription) {
#ifndef FUZZING
MOZ_CRASH_UNSAFE_PRINTF("Error deserializing id for %s", aActorDescription);
#endif
}
void BadActorIdError(const char* aActorDescription) {
nsPrintfCString message("bad id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void ActorLookupError(const char* aActorDescription) {
nsPrintfCString message("could not lookup id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void MismatchedActorTypeError(const char* aActorDescription) {
nsPrintfCString message("actor that should be of type %s has different type",
aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void UnionTypeReadError(const char* aUnionName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing type of union %s", aUnionName);
}
void ArrayLengthReadError(const char* aElementName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing length of %s[]", aElementName);
}
void SentinelReadError(const char* aClassName) {
MOZ_CRASH_UNSAFE_PRINTF("incorrect sentinel when reading %s", aClassName);
}
void TableToArray(const nsTHashtable<nsPtrHashKey<void>>& aTable,
nsTArray<void*>& aArray) {
uint32_t i = 0;
void** elements = aArray.AppendElements(aTable.Count());
for (auto iter = aTable.ConstIter(); !iter.Done(); iter.Next()) {
elements[i] = iter.Get()->GetKey();
++i;
}
}
ActorLifecycleProxy::ActorLifecycleProxy(IProtocol* aActor) : mActor(aActor) {
MOZ_ASSERT(mActor);
MOZ_ASSERT(mActor->CanSend(),
"Cannot create LifecycleProxy for non-connected actor!");
// Take a reference to our manager's lifecycle proxy to try to hold it &
// ensure it doesn't die before us.
if (mActor->mManager) {
mManager = mActor->mManager->mLifecycleProxy;
}
// Record that we've taken our first reference to our actor.
mActor->ActorAlloc();
}
ActorLifecycleProxy::~ActorLifecycleProxy() {
// When the LifecycleProxy's lifetime has come to an end, it means that the
// actor should have its `Dealloc` method called on it. In a well-behaved
// actor, this will release the IPC-held reference to the actor.
//
// If the actor has already died before the `LifecycleProxy`, the `IProtocol`
// destructor below will clear our reference to it, preventing us from
// performing a use-after-free here.
if (!mActor) {
return;
}
// Clear our actor's state back to inactive, and then invoke ActorDealloc.
MOZ_ASSERT(mActor->mLinkStatus == LinkStatus::Destroyed,
"Deallocating non-destroyed actor!");
mActor->mLifecycleProxy = nullptr;
mActor->mLinkStatus = LinkStatus::Inactive;
mActor->ActorDealloc();
mActor = nullptr;
}
IProtocol::~IProtocol() {
// If the actor still has a lifecycle proxy when it is being torn down, it
// means that IPC was not given control over the lifecycle of the actor
// correctly. Usually this means that the actor was destroyed while IPC is
// calling a message handler for it, and the actor incorrectly frees itself
// during that operation.
//
// As this happens unfortunately frequently, due to many odd protocols in
// Gecko, simply emit a warning and clear the weak backreference from our
// LifecycleProxy back to us.
if (mLifecycleProxy) {
// FIXME: It would be nice to have this print out the name of the
// misbehaving actor, to help people notice it's their fault!
NS_WARNING(
"Actor destructor called before IPC lifecycle complete!\n"
"References to this actor may unexpectedly dangle!");
mLifecycleProxy->mActor = nullptr;
// If we are somehow being destroyed while active, make sure that the
// existing IPC reference has been freed. If the status of the actor is
// `Destroyed`, the reference has already been freed, and we shouldn't free
// it a second time.
MOZ_ASSERT(mLinkStatus != LinkStatus::Inactive);
if (mLinkStatus != LinkStatus::Destroyed) {
NS_IF_RELEASE(mLifecycleProxy);
}
mLifecycleProxy = nullptr;
}
}
// The following methods either directly forward to the toplevel protocol, or
// almost directly do.
int32_t IProtocol::Register(IProtocol* aRouted) {
return mToplevel->Register(aRouted);
}
int32_t IProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
return mToplevel->RegisterID(aRouted, aId);
}
IProtocol* IProtocol::Lookup(int32_t aId) { return mToplevel->Lookup(aId); }
void IProtocol::Unregister(int32_t aId) {
if (aId == mId) {
mId = kFreedActorId;
}
return mToplevel->Unregister(aId);
}
Shmem::SharedMemory* IProtocol::CreateSharedMemory(
size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe,
int32_t* aId) {
return mToplevel->CreateSharedMemory(aSize, aType, aUnsafe, aId);
}
Shmem::SharedMemory* IProtocol::LookupSharedMemory(int32_t aId) {
return mToplevel->LookupSharedMemory(aId);
}
bool IProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* aSegment) {
return mToplevel->IsTrackingSharedMemory(aSegment);
}
bool IProtocol::DestroySharedMemory(Shmem& aShmem) {
return mToplevel->DestroySharedMemory(aShmem);
}
MessageChannel* IProtocol::GetIPCChannel() {
return mToplevel->GetIPCChannel();
}
const MessageChannel* IProtocol::GetIPCChannel() const {
return mToplevel->GetIPCChannel();
}
void IProtocol::SetEventTargetForActor(IProtocol* aActor,
nsIEventTarget* aEventTarget) {
// Make sure we have a manager for the internal method to access.
aActor->SetManager(this);
mToplevel->SetEventTargetForActorInternal(aActor, aEventTarget);
}
void IProtocol::ReplaceEventTargetForActor(IProtocol* aActor,
nsIEventTarget* aEventTarget) {
MOZ_ASSERT(aActor->Manager());
mToplevel->ReplaceEventTargetForActor(aActor, aEventTarget);
}
void IProtocol::SetEventTargetForRoute(int32_t aRoute,
nsIEventTarget* aEventTarget) {
mToplevel->SetEventTargetForRoute(aRoute, aEventTarget);
}
nsIEventTarget* IProtocol::GetActorEventTarget() {
// FIXME: It's a touch sketchy that we don't return a strong reference here.
RefPtr<nsIEventTarget> target = GetActorEventTarget(this);
return target;
}
already_AddRefed<nsIEventTarget> IProtocol::GetActorEventTarget(
IProtocol* aActor) {
return mToplevel->GetActorEventTarget(aActor);
}
ProcessId IProtocol::OtherPid() const { return mToplevel->OtherPid(); }
void IProtocol::SetId(int32_t aId) {
MOZ_ASSERT(mId == aId || mLinkStatus == LinkStatus::Inactive);
mId = aId;
}
Maybe<IProtocol*> IProtocol::ReadActor(const IPC::Message* aMessage,
PickleIterator* aIter, bool aNullable,
const char* aActorDescription,
int32_t aProtocolTypeId) {
int32_t id;
if (!IPC::ReadParam(aMessage, aIter, &id)) {
ActorIdReadError(aActorDescription);
return Nothing();
}
if (id == 1 || (id == 0 && !aNullable)) {
BadActorIdError(aActorDescription);
return Nothing();
}
if (id == 0) {
return Some(static_cast<IProtocol*>(nullptr));
}
IProtocol* listener = this->Lookup(id);
if (!listener) {
ActorLookupError(aActorDescription);
return Nothing();
}
if (listener->GetProtocolId() != aProtocolTypeId) {
MismatchedActorTypeError(aActorDescription);
return Nothing();
}
return Some(listener);
}
void IProtocol::FatalError(const char* const aErrorMsg) const {
HandleFatalError(aErrorMsg);
}
void IProtocol::HandleFatalError(const char* aErrorMsg) const {
if (IProtocol* manager = Manager()) {
manager->HandleFatalError(aErrorMsg);
return;
}
mozilla::ipc::FatalError(aErrorMsg, mSide == ParentSide);
}
bool IProtocol::AllocShmem(size_t aSize,
Shmem::SharedMemory::SharedMemoryType aType,
Shmem* aOutMem) {
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, aType, false, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(Shmem::PrivateIPDLCaller(), rawmem, id);
return true;
}
bool IProtocol::AllocUnsafeShmem(size_t aSize,
Shmem::SharedMemory::SharedMemoryType aType,
Shmem* aOutMem) {
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, aType, true, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(Shmem::PrivateIPDLCaller(), rawmem, id);
return true;
}
bool IProtocol::DeallocShmem(Shmem& aMem) {
bool ok = DestroySharedMemory(aMem);
#ifdef DEBUG
if (!ok) {
if (mSide == ChildSide) {
FatalError("bad Shmem");
} else {
NS_WARNING("bad Shmem");
}
return false;
}
#endif // DEBUG
aMem.forget(Shmem::PrivateIPDLCaller());
return ok;
}
void IProtocol::SetManager(IProtocol* aManager) {
MOZ_RELEASE_ASSERT(!mManager || mManager == aManager);
mManager = aManager;
mToplevel = aManager->mToplevel;
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->Register(this);
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager, int32_t aId) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->RegisterID(this, aId);
}
bool IProtocol::ChannelSend(IPC::Message* aMsg) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
// NOTE: This send call failing can only occur during toplevel channel
// teardown. As this is an async call, this isn't reasonable to predict or
// respond to, so just drop the message on the floor silently.
GetIPCChannel()->Send(msg.release());
return true;
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
bool IProtocol::ChannelSend(IPC::Message* aMsg, IPC::Message* aReply) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
return GetIPCChannel()->Send(msg.release(), aReply);
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
bool IProtocol::ChannelCall(IPC::Message* aMsg, IPC::Message* aReply) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
return GetIPCChannel()->Call(msg.release(), aReply);
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
void IProtocol::ActorConnected() {
if (mLinkStatus != LinkStatus::Inactive) {
return;
}
mLinkStatus = LinkStatus::Connected;
MOZ_ASSERT(!mLifecycleProxy, "double-connecting live actor");
mLifecycleProxy = new ActorLifecycleProxy(this);
NS_ADDREF(mLifecycleProxy); // Reference freed in DestroySubtree();
}
void IProtocol::DoomSubtree() {
MOZ_ASSERT(CanSend(), "dooming non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "dooming zombie actor");
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous Doom
IProtocol* actor = proxy->Get();
if (actor && actor->CanSend()) {
actor->DoomSubtree();
}
}
// ActorDoom is called immediately before changing state, this allows messages
// to be sent during ActorDoom immediately before the channel is closed and
// sending messages is disabled.
ActorDoom();
mLinkStatus = LinkStatus::Doomed;
}
void IProtocol::DestroySubtree(ActorDestroyReason aWhy) {
MOZ_ASSERT(CanRecv(), "destroying non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "destroying zombie actor");
// If we're a managed actor, unregister from our manager
if (Manager()) {
Unregister(Id());
}
// Destroy subtree
ActorDestroyReason subtreeWhy = aWhy;
if (aWhy == Deletion || aWhy == FailedConstructor) {
subtreeWhy = AncestorDeletion;
}
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous
// Destroy
IProtocol* actor = proxy->Get();
if (actor && actor->CanRecv()) {
actor->DestroySubtree(subtreeWhy);
}
}
// Ensure that we don't send any messages while we're calling `ActorDestroy`
// by setting our state to `Doomed`.
mLinkStatus = LinkStatus::Doomed;
// The actor is being destroyed, reject any pending responses, invoke
// `ActorDestroy` to destroy it, and then clear our status to
// `LinkStatus::Destroyed`.
GetIPCChannel()->RejectPendingResponsesForActor(this);
ActorDestroy(aWhy);
mLinkStatus = LinkStatus::Destroyed;
}
IToplevelProtocol::IToplevelProtocol(const char* aName, ProtocolId aProtoId,
Side aSide)
: IProtocol(aProtoId, aSide),
mOtherPid(mozilla::ipc::kInvalidProcessId),
mLastLocalId(0),
mEventTargetMutex("ProtocolEventTargetMutex"),
mChannel(aName, this) {
mToplevel = this;
}
base::ProcessId IToplevelProtocol::OtherPid() const {
base::ProcessId pid = OtherPidMaybeInvalid();
MOZ_RELEASE_ASSERT(pid != kInvalidProcessId);
return pid;
}
void IToplevelProtocol::SetOtherProcessId(base::ProcessId aOtherPid) {
mOtherPid = aOtherPid;
}
bool IToplevelProtocol::Open(UniquePtr<Transport> aTransport,
base::ProcessId aOtherPid, MessageLoop* aThread,
mozilla::ipc::Side aSide) {
SetOtherProcessId(aOtherPid);
return GetIPCChannel()->Open(std::move(aTransport), aThread, aSide);
}
bool IToplevelProtocol::Open(MessageChannel* aChannel,
MessageLoop* aMessageLoop,
mozilla::ipc::Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->Open(aChannel, aMessageLoop->SerialEventTarget(),
aSide);
}
bool IToplevelProtocol::Open(MessageChannel* aChannel,
nsIEventTarget* aEventTarget,
mozilla::ipc::Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->Open(aChannel, aEventTarget, aSide);
}
bool IToplevelProtocol::OpenOnSameThread(MessageChannel* aChannel, Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->OpenOnSameThread(aChannel, aSide);
}
void IToplevelProtocol::Close() { GetIPCChannel()->Close(); }
void IToplevelProtocol::SetReplyTimeoutMs(int32_t aTimeoutMs) {
GetIPCChannel()->SetReplyTimeoutMs(aTimeoutMs);
}
bool IToplevelProtocol::IsOnCxxStack() const {
return GetIPCChannel()->IsOnCxxStack();
}
int32_t IToplevelProtocol::NextId() {
// Genreate the next ID to use for a shared memory or protocol. Parent and
// Child sides of the protocol use different pools.
int32_t tag = 0;
if (GetSide() == ParentSide) {
tag |= 1 << 1;
}
// Check any overflow
MOZ_RELEASE_ASSERT(mLastLocalId < (1 << 29));
// Compute the ID to use with the low two bits as our tag, and the remaining
// bits as a monotonic.
return (++mLastLocalId << 2) | tag;
}
int32_t IToplevelProtocol::Register(IProtocol* aRouted) {
if (aRouted->Id() != kNullActorId && aRouted->Id() != kFreedActorId) {
// If there's already an ID, just return that.
return aRouted->Id();
}
int32_t id = RegisterID(aRouted, NextId());
// Inherit our event target from our manager.
if (IProtocol* manager = aRouted->Manager()) {
MutexAutoLock lock(mEventTargetMutex);
if (nsCOMPtr<nsIEventTarget> target =
mEventTargetMap.Lookup(manager->Id())) {
mEventTargetMap.AddWithID(target, id);
}
}
return id;
}
int32_t IToplevelProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
aRouted->SetId(aId);
aRouted->ActorConnected();
mActorMap.AddWithID(aRouted, aId);
return aId;
}
IProtocol* IToplevelProtocol::Lookup(int32_t aId) {
return mActorMap.Lookup(aId);
}
void IToplevelProtocol::Unregister(int32_t aId) {
mActorMap.Remove(aId);
MutexAutoLock lock(mEventTargetMutex);
mEventTargetMap.RemoveIfPresent(aId);
}
Shmem::SharedMemory* IToplevelProtocol::CreateSharedMemory(
size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, bool aUnsafe,
Shmem::id_t* aId) {
RefPtr<Shmem::SharedMemory> segment(
Shmem::Alloc(Shmem::PrivateIPDLCaller(), aSize, aType, aUnsafe));
if (!segment) {
return nullptr;
}
int32_t id = NextId();
Shmem shmem(Shmem::PrivateIPDLCaller(), segment.get(), id);
base::ProcessId pid =
#ifdef ANDROID
// We use OtherPidMaybeInvalid() because on Android this method is
// actually called on an unconnected protocol, but Android's shared memory
// implementation doesn't actually use the PID.
OtherPidMaybeInvalid();
#else
OtherPid();
#endif
Message* descriptor =
shmem.ShareTo(Shmem::PrivateIPDLCaller(), pid, MSG_ROUTING_CONTROL);
if (!descriptor) {
return nullptr;
}
Unused << GetIPCChannel()->Send(descriptor);
*aId = shmem.Id(Shmem::PrivateIPDLCaller());
Shmem::SharedMemory* rawSegment = segment.get();
mShmemMap.AddWithID(segment.forget().take(), *aId);
return rawSegment;
}
Shmem::SharedMemory* IToplevelProtocol::LookupSharedMemory(Shmem::id_t aId) {
return mShmemMap.Lookup(aId);
}
bool IToplevelProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* segment) {
return mShmemMap.HasData(segment);
}
bool IToplevelProtocol::DestroySharedMemory(Shmem& shmem) {
Shmem::id_t aId = shmem.Id(Shmem::PrivateIPDLCaller());
Shmem::SharedMemory* segment = LookupSharedMemory(aId);
if (!segment) {
return false;
}
Message* descriptor =
shmem.UnshareFrom(Shmem::PrivateIPDLCaller(), MSG_ROUTING_CONTROL);
mShmemMap.Remove(aId);
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), segment);
MessageChannel* channel = GetIPCChannel();
if (!channel->CanSend()) {
delete descriptor;
return true;
}
return descriptor && channel->Send(descriptor);
}
void IToplevelProtocol::DeallocShmems() {
for (IDMap<SharedMemory*>::const_iterator cit = mShmemMap.begin();
cit != mShmemMap.end(); ++cit) {
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), cit->second);
}
mShmemMap.Clear();
}
bool IToplevelProtocol::ShmemCreated(const Message& aMsg) {
Shmem::id_t id;
RefPtr<Shmem::SharedMemory> rawmem(
Shmem::OpenExisting(Shmem::PrivateIPDLCaller(), aMsg, &id, true));
if (!rawmem) {
return false;
}
mShmemMap.AddWithID(rawmem.forget().take(), id);
return true;
}
bool IToplevelProtocol::ShmemDestroyed(const Message& aMsg) {
Shmem::id_t id;
PickleIterator iter = PickleIterator(aMsg);
if (!IPC::ReadParam(&aMsg, &iter, &id)) {
return false;
}
aMsg.EndRead(iter);
Shmem::SharedMemory* rawmem = LookupSharedMemory(id);
if (rawmem) {
mShmemMap.Remove(id);
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), rawmem);
}
return true;
}
already_AddRefed<nsIEventTarget> IToplevelProtocol::GetMessageEventTarget(
const Message& aMsg) {
int32_t route = aMsg.routing_id();
Maybe<MutexAutoLock> lock;
lock.emplace(mEventTargetMutex);
nsCOMPtr<nsIEventTarget> target = mEventTargetMap.Lookup(route);
if (aMsg.is_constructor()) {
ActorHandle handle;
PickleIterator iter = PickleIterator(aMsg);
if (!IPC::ReadParam(&aMsg, &iter, &handle)) {
return nullptr;
}
// Normally a new actor inherits its event target from its manager. If the
// manager has no event target, we give the subclass a chance to make a new
// one.
if (!target) {
MutexAutoUnlock unlock(mEventTargetMutex);
target = GetConstructedEventTarget(aMsg);
}
#ifdef DEBUG
// If this function is called more than once for the same message,
// the actor handle ID will already be in the map and the AddWithID
// call below will trigger a crash in DEBUG builds. Avoid this by
// removing the entry first and ASSERTing that if the ID has already
// been inserted, it matches the provided |aMsg| ID. If the ASSERT fails,
// the map contains a different event target which is unexpected.
nsCOMPtr<nsIEventTarget> existingTgt = mEventTargetMap.Lookup(handle.mId);
MOZ_ASSERT(existingTgt == target || existingTgt == nullptr);
mEventTargetMap.RemoveIfPresent(handle.mId);
#endif /* DEBUG */
mEventTargetMap.AddWithID(target, handle.mId);
} else if (!target) {
// We don't need the lock after this point.
lock.reset();
target = GetSpecificMessageEventTarget(aMsg);
}
return target.forget();
}
already_AddRefed<nsIEventTarget> IToplevelProtocol::GetActorEventTarget(
IProtocol* aActor) {
MOZ_RELEASE_ASSERT(aActor->Id() != kNullActorId &&
aActor->Id() != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
nsCOMPtr<nsIEventTarget> target = mEventTargetMap.Lookup(aActor->Id());
return target.forget();
}
nsIEventTarget* IToplevelProtocol::GetActorEventTarget() {
// The EventTarget of a ToplevelProtocol shall never be set.
return nullptr;
}
void IToplevelProtocol::SetEventTargetForActorInternal(
IProtocol* aActor, nsIEventTarget* aEventTarget) {
// The EventTarget of a ToplevelProtocol shall never be set.
MOZ_RELEASE_ASSERT(aActor != this);
// We should only call this function on actors that haven't been used for IPC
// code yet. Otherwise we'll be posting stuff to the wrong event target before
// we're called.
MOZ_RELEASE_ASSERT(aActor->Id() == kNullActorId ||
aActor->Id() == kFreedActorId);
MOZ_ASSERT(aActor->Manager() && aActor->ToplevelProtocol() == this);
// Register the actor early. When it's registered again, it will keep the same
// ID.
int32_t id = Register(aActor);
aActor->SetId(id);
MutexAutoLock lock(mEventTargetMutex);
// FIXME bug 1445121 - sometimes the id is already mapped.
// (IDMap debug-asserts that the existing state is as expected.)
bool replace = false;
#ifdef DEBUG
replace = mEventTargetMap.Lookup(id) != nullptr;
#endif
if (replace) {
mEventTargetMap.ReplaceWithID(aEventTarget, id);
} else {
mEventTargetMap.AddWithID(aEventTarget, id);
}
}
void IToplevelProtocol::ReplaceEventTargetForActor(
IProtocol* aActor, nsIEventTarget* aEventTarget) {
// The EventTarget of a ToplevelProtocol shall never be set.
MOZ_RELEASE_ASSERT(aActor != this);
int32_t id = aActor->Id();
// The ID of the actor should have existed.
MOZ_RELEASE_ASSERT(id != kNullActorId && id != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
mEventTargetMap.ReplaceWithID(aEventTarget, id);
}
void IToplevelProtocol::SetEventTargetForRoute(int32_t aRoute,
nsIEventTarget* aEventTarget) {
MOZ_RELEASE_ASSERT(aRoute != Id());
MOZ_RELEASE_ASSERT(aRoute != kNullActorId && aRoute != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
MOZ_ASSERT(!mEventTargetMap.Lookup(aRoute));
mEventTargetMap.AddWithID(aEventTarget, aRoute);
}
} // namespace ipc
} // namespace mozilla